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Singular Integrals With Rough Kernels

Ahmad Al-Salman and Yibiao Pan

Abstract. In this paper we establish the Lp boundedness of a class of singular integrals with rough

kernels associated to polynomial mappings.

1 Introduction

Let n ≥ 2 and R
n be the n-dimensional Euclidean space. Let Sn−1 denote the

unit sphere in R
n equipped with the induced Lebesgue measure dσ. Consider the

Calderón-Zygmund singular integral operator

(1) (TΩ f )(x) = p.v.

∫

Rn

f (x − y)
Ω(y)

|y|n dy,

where Ω is a homogeneous function of degree zero and satisfies Ω ∈ L1(Sn−1) and

(2)

∫

Sn−1

Ω(y) dσ(y) = 0.

Since the publication of the fundamental papers of Calderón and Zygmund, the

operators TΩ have been studied by many authors. Calderón and Zygmund showed

that Ω ∈ L log+ L(Sn−1) is essentially the weakest possible size condition on Ω for

the Lp boundedness of TΩ to hold ([1]). Subsequently, it was proved by Connet

([2]) and Ricci-Weiss ([9]) independently that TΩ is bounded on Lp for every Ω in

the Hardy space H1(Sn−1) (which contains L log+ L(Sn−1) as a proper subspace) and

p ∈ (1,∞).

In a more recent paper, Grafakos and Stefanov introduced the following condition:

(3) sup
ξ∈Sn−1

∫

Sn−1

|Ω(y)|
(

log
1

|〈ξ, y〉|

) 1+α

dσ(y) <∞,

and showed that it implies the Lp boundedness of TΩ for p in a range dependent on

the positive exponent α. For α > 0 let Fα(Sn−1) denote the space of all integrable

functions Ω on Sn−1 which satisfy (3).

Theorem 1 ([7]) Let Ω ∈ Fα(Sn−1) and satisfy (2). Then TΩ extends to a bounded

operator from Lp(R
n) into itself for p ∈ ( 2+α

1+α , 2 + α).
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The range for p was later improved to ( 2+2α
1+2α , 2+2α) in [4]. It should also be noted

that Grafakos and Stefanov showed that
⋂

α>0

Fα(Sn−1) 6⊂ H1(Sn−1) 6⊂
⋃

α>0

Fα(Sn−1).

For details, see [7].

The main purpose of this paper is to investigate the Lp boundedness of singular

integrals along subvarieties with kernels satisfying conditions similar to (3). More

specifically, let P = (P1, . . . , Pd), where P j is a real-valued polynomial in R
n for

j = 1, . . . , d. Define the operator TΩ,P in R
d by

(4) (TΩ,P f )(x) = p.v.

∫

Rn

f
(

x − P(y)
) Ω(y)

|y|n dy,

where x ∈ R
d. Clearly, when d = n and P(y) = y, one obtains TΩ,P = TΩ. For

general polynomial mappings P, the Lp boundedness was first established for Ω ∈
C1(Sn−1) as the model case for singular Radon transforms ([10]), and more recently

for Ω ∈ H1(Sn−1) (see [6]).

In order to state our main results, we let A(n,m) denote the set of polynomials on

R
n which have real coefficients and degrees not exceeding m, and let V (n,m) denote

the collection of polynomials in A(n,m) which are homogeneous of degree m.

For P(y) =
∑

|β|≤m aβ yβ we set ‖P‖ = (
∑

|β|≤m |aβ |2)1/2.

Definition Let n ≥ 2, m ∈ N and α > 0. An integrable function Ω on Sn−1 is said

to be in the space F(n,m, α) if

(5) sup
P∈V (n,m),‖P‖=1

∫

Sn−1

|Ω(y)|
(

log
1

|P(y)|

) 1+α

dσ(y) <∞.

Clearly F(n, 1, α) = Fα(Sn−1). We have the following:

Theorem 2 Let n ≥ 2, m, d ∈ N and P = (P1, . . . , Pd) ∈
(
A(n,m)

) d
. Let Ω satisfy

(2) and Ω ∈
⋂m

s=1 F(n, s, α) for some α > 0. Then the operator TΩ,P is bounded on

Lp(R
d) for p ∈ ( 2+2α

1+2α , 2 + 2α). Moreover, the bound for the operator norm ‖TΩ,P‖p,p is

independent of the coefficients of the polynomials {P j}.

For n = 2 we shall show that (see Lemma 3.2)

∞⋂

m=1

F(2,m, α) = Fα(S1),

which leads to the following:

Corollary 3 Let d ∈ N and P = (P1, . . . , Pd) where P j : R
2 → R is a polynomial for

1 ≤ j ≤ d. If Ω ∈ Fα(S1) for some α > 0 and satisfies (2), then, for p ∈ ( 2+2α
1+2α , 2+2α),

there exists a C p > 0 such that

‖TΩ,P f ‖Lp(Rd) ≤ C p‖ f ‖Lp(Rd)

for f ∈ Lp(R
d). The constant C p may depend on deg(P) = max1≤ j≤m deg(P j), but it

is independent of the coefficients of the polynomials P1, . . . , Pd.
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2 Some Lemmas

Lemma 2.1 Let d,m ∈ N, α > 0, and L : R
d → R

m be a linear transformation. Let

{ak}k∈Z be a sequence of positive numbers satisfying infk∈Z(ak+1/ak) = a > 1, {σk}k∈Z

be a sequence of uniformly bounded measures on R
d and set T f =

∑
k∈Z

σk∗ f , initially

for f ∈ S(R
d). Suppose that

(i) |σ̂k(ξ)| ≤ C min{ak+1|Lξ|, [log+(ak|Lξ|)]−(1+α)} holds for ξ ∈ R
d and k ∈ Z;

(ii)
∥∥ (

∑
k∈Z

|σk∗gk|2)1/2
∥∥

q
≤ Aq

∥∥ (
∑

k∈Z
|σk∗gk|2)1/2

∥∥
q

holds for arbitrary functions

{gk}k∈Z on R
d and 1 < q <∞.

Then T extends to a bounded operator from Lp(R
d) into itself for p ∈ ( 2+2α

1+2α , 2 + 2α).

Moreover, the bound on ‖T‖p,p is independent of L.

Proof We shall combine the method of Duoandikoetxea and Rubio de Francia ([3])

with ideas from [4, 6, 7]. By an argument in [6], we may assume that m ≤ d and

Lξ = (ξ1, . . . , ξm) = ξ ′ for ξ = (ξ1, . . . , ξd) = (ξ ′, ξ ′′) ∈ R
d. Choose C∞ functions

{ψ j} j∈Z on R such that supp(ψ j) ⊆ [a−1
j+1, a

−1
j−1], |ψ(s)

j (t)| ≤ Ct−s, and

∑

j∈Z

[ψ j(t)]2
= 1

for t > 0, s ≥ 0. Define the operator S j by

Ŝ j f (ξ) = ψ j(|ξ ′|) f̂ (ξ)

for j ∈ Z and set

T j f =

∑

k∈Z

S j+k(σk ∗ S j+k f ).

Thus we have

(6) T f =

∑

j∈Z

T j f .

It follows from Littlewood-Paley theory and (ii) that

(7) ‖T j f ‖q ≤ Cq‖ f ‖q

holds for 1 < q < ∞, f ∈ Lq(R
d) and j ∈ Z with Cq independent of j. Let

Γ j = {ξ ∈ R
d : a−1

j+1 ≤ |ξ ′| < a−1
j−1} and χ j = χΓ j

. By Plancherel’s Theorem,

(8) ‖T j f ‖2
2 ≤ C

∫

Rd

| f̂ (ξ)|2
[∑

k∈Z

|σ̂k(ξ)|2χ j+k(ξ)
]

dξ.

For j > 1 and k ∈ Z,

(9) |σ̂k(ξ)|2χ j+k(ξ) ≤ C
( ak+1

a j+k−1

) 2

≤ Ca−2 j+4.
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On the other hand, when j < −1,

(10) |σ̂k(ξ)|2χ j+k(ξ) ≤ C
[

log
( ak+1

a j+k−1

)]−2(1+α)

≤ C| j|−2(1+α)

holds for k ∈ Z. By (7)–(10) and the finite overlapping property of {Γ j+k : k ∈ Z},

we obtain

(11) ‖T j f ‖2 ≤ C(1 + | j|)−(1+α)‖ f ‖2.

By interpolating between (7) and (11), for every p ∈ ( 2+2α
1+2α , 2 + 2α), there is a θp > 1

such that

(12) ‖T j f ‖p ≤ C(1 + | j|)−θp‖ f ‖p

holds for j ∈ Z. The lemma now follows from (6) and (12).

Lemma 2.2 Let α > 0, m, d ∈ N and {σs,k : 0 ≤ s ≤ m and k ∈ Z} be a fam-

ily of uniformly bounded Borel measures on R
d with σ0,k = 0 for every k ∈ Z. Let

{ηs : 1 ≤ s ≤ m} ⊂ R
+ \ {1}, {ls : 1 ≤ s ≤ m} ⊂ N, and Ls : R

d → R
ls be linear

transformations for 1 ≤ s ≤ m. Suppose that

(i) |σ̂s,k(ξ)| ≤ C[log+(ηk
s |Lsξ|)]−(1+α) for ξ ∈ R

d, k ∈ Z and 1 ≤ s ≤ m;

(ii) |σ̂s,k(ξ) − σ̂s−1,k(ξ)| ≤ C(ηk
s |Lsξ|) for ξ ∈ R

d, k ∈ Z and 1 ≤ s ≤ m;

(iii) For every q ∈ (1,∞) there exists an Aq > 0 such that

(13)
∥∥ sup

k∈Z

(|σs,k| ∗ | f |)
∥∥

q
≤ Aq‖ f ‖q

for all f ∈ Lq(R
d) and 1 ≤ s ≤ m.

Then for p ∈ ( 2+2α
1+2α , 2 + 2α), there exists a C p > 0 such that

(14)
∥∥∥

∑

k∈Z

σm,k ∗ f
∥∥∥

p
≤ C p‖ f ‖p

holds for all f ∈ Lp(R
d). Moreover, the constant C p is independent of the linear trans-

formations {Ls : 1 ≤ s ≤ m}.

One may use the arguments in Section 5 of [5] and Lemma 2.1 to obtain a proof

of Lemma 2.2. Details are omitted.

3 Proofs of Main Results

Proof of Theorem 2 Let n ≥ 2, m, d ∈ N and P = (P1, . . . , Pd), where

P j(y) =

∑

|β|≤m

a jβ yβ
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for j = 1, . . . , d. Let Ω satisfy (2) and Ω ∈ ⋂m
s=1 F(n, s, α) for some α > 0. For

0 ≤ s ≤ m and k ∈ Z we define the measure σs,k on R
d by

(15)

∫

Rd

f dσs,k =

∫

2k−1≤|y|<2k

f
( ∑

|β|≤s

a1β yβ , . . . ,
∑

|β|≤s

adβ yβ
)

Ω(y)

|y|n dy.

It follows from (2) that σ0,k = 0 for all k ∈ Z and

(16) TΩ,P f =

∑

k∈Z

σm,k ∗ f .

By Theorem 7.4 in [6], (13) holds for all f ∈ Lq(R
d) and 1 ≤ s ≤ m. Let ls denote

the number of multi-indices β = (β1, . . . , βn) satisfying |β| = s and define the linear

transformation Ls : R
d → R

ls by

(17) Lsξ =
(

(Lsξ)β
)
|β|=s

=

( d∑

j=1

a jβξ j

)
|β|=s

.

It follows from (15) and (17) that

|σ̂s,k(ξ) − σ̂s−1,k(ξ)| ≤
∫

2k−1≤|y|<2k

∣∣∣∣exp
[

i
( d∑

j=1

∑

|β|=s

a jβξ j yβ
)]

− 1

∣∣∣∣
|Ω(y)|
|y|n dy

≤ C(2sk|Lsξ|)

for 1 ≤ s ≤ m and k ∈ Z. Write

σ̂s,k(ξ) =

∫

Sn−1

Is,k(ξ, y)Ω(y) dσ(y),

where

Is,k(ξ, y) =

∫ 1

1/2

exp
[

i
(

2sk|Lsξ|Qsξ(y)t s + lower powers in t
)]

t−1 dt

with

Qsξ(y) = |Lsξ|−1
∑

|β|=s

(Lsξ)β yβ .

Then by van der Corput’s lemma,

(18) |Is,k(ξ, y)| ≤ C
[

2sk|Lsξ| |Qsξ(y)|
]−1/s

.

By combining (18) with the trivial inequality |Is,k(ξ, y)| ≤ 1 we obtain that

(19) |Is,k(ξ, y)| ≤ C
[

log+(2sk|Lsξ|)
]−(1+α)

(
s + α + log

1

|Qsξ(y)|

) 1+α

.
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Since Qsξ ∈ V (n, s), ‖Qsξ‖ = 1, and Ω ∈ F(n, s, α) for 1 ≤ s ≤ m, by (5) and (19)

we obtain

|σ̂s,k(ξ)| ≤ C
[

log+(2sk|Lsξ|)
]−(1+α)

for 1 ≤ s ≤ m, k ∈ Z and ξ ∈ R
d. It follows from Lemma 2.2 and (16) that TΩ,P is

bounded on Lp(R
d) for p ∈ ( 2+2α

1+2α , 2 + 2α) with a bound on ‖TΩ,P‖p,p independent

of the coefficients of the P j ’s. The proof of Theorem 2 is now complete.

We now show that Fα(S1) ⊆ F(2,m, α) for m ∈ N.

Lemma 3.1 Let m ∈ N, a0, a1, . . . , am ∈ C and g(z) = a0 + a1z + · · · + amzm for

z ∈ C. If z1, . . . , zl are the roots of g(z) which lie in {z ∈ C : |z| ≤ 2}, then

|g(z)| ≥ 6−m
(

sup
|z|=1

|g(z)|
) l∏

s=1

|z − zs|

holds for |z| ≤ 1.

Proof Without loss of generality we may assume that am = 1. Let zl+1, . . . , zm denote

the roots of g(z) which lie in {z ∈ C : |z| > 2}. By

g(z) =

m∏

s=1

(z − zs),

we have

|a j | ≤
∑

1≤k1<···<km− j≤m

|zk1
· · · zkm− j

| ≤ (2m− j m!)|zl+1| · · · |zm|
j! (m − j)!

for j = 0, 1, . . . ,m, which implies that

m∏

s=l+1

|zs| ≥ 3−m
( m∑

j=0

|a j |
)
.

Thus, for |z| ≤ 1,

|g(z)| ≥
( l∏

s=1

|z − zs|
)( m∏

s=l+1

|zs|
2

)
≥ 6−m

( m∑

j=0

|a j |
)( l∏

s=1

|z − zs|
)

≥ 6−m
(

sup
|z|=1

|g(z)|
)( l∏

s=1

|z − zs|
)
.

Lemma 3.1 is proved.

Corollary 3 follows from Theorem 2 and the following lemma:

Lemma 3.2
⋂∞

m=1 F(2,m, α) = Fα(S1).

https://doi.org/10.4153/CMB-2004-001-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-001-8


Singular Integrals With Rough Kernels 9

Proof It suffices to show that Fα(S1) ⊆ F(2,m, α) for m ∈ N. Let Ω ∈ Fα(S1). Then

it follows from [7] that

(20) sup
ζ∈S1

∫

S1

|Ω(y)|
(

log+ 1

|y − ζ|

) 1+α

dσ(y) = CΩ <∞.

For a fixed m ∈ N, there exists a λm > 0 such that

sup
y∈S1

|P(y)| ≥ λm‖P‖

holds for every P ∈ V (2,m).

Let

P(y) = P(y1, y2) =

∑

j+k=m

a jk y
j
1 yk

2 ∈ V (2,m)

and ‖P‖ = 1. Define g = gP on C by

g(z) = 2−m
∑

j+k=m

(−i)ka jk(z2 + 1) j(z2 − 1)k.

Then |P(y1, y2)| = |g(y1 + y2i)| for (y1, y2) ∈ S1. Let z1, . . . , zl denote the roots of

g(z) in {0 < |z| ≤ 2}. By Lemma 3.1, for y = (y1, y2) ∈ S1,

|P(y)| ≥ 6−2mλm

l∏

s=1

|(y1 + y2i) − zs|

≥ (12)−2mλm

l∏

s=1

∣∣∣∣ (y1 + y2i) − zs

|zs|

∣∣∣∣ .

Thus, by (20),

∫

S1

|Ω(y)|
(

log
1

|P(y)|

) 1+α

dσ(y) ≤ C(‖Ω‖L1(S1) + CΩ),

which implies that Fα(S1) ⊆ F(2,m, α) for m ∈ N. Lemma 3.2 is proved.

There is no analogue of Lemma 3.1 when n ≥ 3. We shall illustrate this with the

following example for n = 3:

Example For y = (y1, y2, y3) ∈ S2, let

Ω(y) =

y3χ[
√

2/2,
√

3/2](|y3|)
|y3| |y2

1 + y2
2 − y2

3| log(100|y2
1 + y2

2 − y2
3|−1){log[log(100|y2

1 + y2
2 − y2

3|−1)]}2
.
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Clearly ∫

S2

Ω(y) dσ(y) = 0.

For α > 0, ϕ ∈ [ π
6
, π

4
] ∪ [ 3π

4
, 5π

6
] = E, and ξ ∈ S2, let

Jα(ϕ, ξ) =

∫ 2π

0

(
log

1

|ξ1 sinϕ cos θ + ξ2 sinϕ sin θ + ξ3 cosϕ|

)α+1

dθ.

Then there exists a C > 0 such that

| Jα(ϕ, ξ)| ≤ C

for α > 0, ξ ∈ S2 and ϕ ∈ E. Thus

∫

S2

|Ω(y)|
(

log
1

|〈ξ, y〉|

) 1+α

dσ(y)

≤
∫

E

(sinϕ) Jα(ϕ, ξ) dϕ

| cos 2ϕ|(log | 100
cos 2ϕ |)[log(log | 100

cos 2ϕ |)]2
<∞

for α > 0 and ξ ∈ S2. Thus Ω ∈ Fα(S2) for every α > 0.

On the other hand, if we take P(y) = (y2
1 + y2

2 − y2
3)/

√
3 ∈ V (3, 2), then

∫

S2

|Ω(y)|
(

log
1

|P(y)|

) 1+α

dσ(y) = ∞

for α > 0, which implies that Ω 6∈ F(3, 2, α) for any α > 0.

4 Additional Results

Let Ω and P be given as in Section 1. Define the maximal truncated singular integral

operator T∗
Ω,P by

(21) (T∗
Ω,P f )(x) = sup

ε>0

∣∣∣∣
∫

|y|>ε
f
(

x − P(y)
) Ω(y)

|y|n dy

∣∣∣∣ .

We have the following results:

Theorem 4 Let n ≥ 2, m, d ∈ N and P = (P1, . . . , Pd) ∈
(
A(n,m)

) d
. Let Ω satisfy

(2) and Ω ∈
⋂m

s=1 F(n, s, α) for some α > 1/2. Then the operator T∗
Ω,P is bounded on

Lp(R
d) for p ∈ ( 1+2α

2α , 1 + 2α). Moreover, the bound for the operator norm ‖T∗
Ω,P‖p,p is

independent of the coefficients of the polynomials {P j}.

Corollary 5 Let d ∈ N, P = (P1, . . . , Pd) where P j : R
2 → R is a polynomial for 1 ≤

j ≤ d. If Ω ∈ Fα(S1) for some α > 1/2 and satisfies (2), then, for p ∈ ( 1+2α
2α , 1 + 2α),

there exists a C p > 0 such that

‖T∗
Ω,P f ‖Lp(Rd) ≤ C p‖ f ‖Lp(Rd)

for f ∈ Lp(R
d). The constant C p may depend on deg(P) = max1≤ j≤m deg(P j), but it

is independent of the coefficients of the polynomials P1, . . . , Pd.
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One may construct a proof for Theorem 4 by using the arguments in Section 3,

[4] and [6] (see also [3] and [7]). We omit the details.
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