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1. Introduction

Let X be a Hilbert space. The topological support of a Radon proba-
bility measure P on X is the least closed subset M of X that carries the
total measure 1. A closed subset M of X is called a linear subvariety if

2,y € M implies z + (1 — &)y € M for every « € R!,
or equivalently if M =a+ Y for some a=X and some closed linear subspace
Y of X. A Radon probability measure P on X is called a Gauss measure
if for every a € X, the image measure of P by the map

fol®)=(a,2): X—> R*

is a Gauss measure on R

The purpose of this note is to prove

THEOREM. Let P be a Gauss measure on a Hilbert space X.  Then the
topological support S(P) of P is a linear subvariety of X.

This fact is obvious in case X 1is finite dimensional but we need a
small trick to discuss the infinite dimensional case as we shall see below.

2. Proof of the theorem.

Since P is a Gauss measure, its characteristic functional
Cle) = e P(dz)
is expressed as

Cle) = exp {i (5, m) — = S onlz, &7}
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where {e;} is an orthonormal sequence (finite or countable) and

ZEX, Uk>0 ;vk<00.

By the translation & —> x + m, we can assume that m = 0, namely that

C(z) = exp {— % vi(2, ek)2].

o1

Let Y be the closed linear subspace spanned by {e}. If z_1 Y, then
Ble=) = C(te) = 1, E(f(v)) =| _f(a)P(da),

for every ¢t € R'. Therefore we get
P(L)=1, L,={x:(z,2)=0}.

Since Y= n L,, we obtain
z

1) PY)=1,

because L, is closed and P is Radon.
Now we will prove that Y =S(P). For this purpose it is enough to
prove that

Plre X:||lx —al|<r}>0

for every aeY and every r>0. Suppose to the contrary that we have
acY and 7 >0 such that

Plze X:||z—all<r}=0.
Then we have
(2)  Ele—cle=alr/2) < g=o72/2, a >0,
On the other hand we have by (1)
E(e~eli—al?/?) = E(e—X(—a/?), x, = (2, er), @ = (a,ex).
Since
E(eiZtase) = exp {— 2hv422/2), n=1,2, -+ -,

#, k=1,2, -+ are independent and each =z, is N(0,vy)-distributed on the
probability space (X,P). Thus we have
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@) E(e-slr—al/2)

Il

II E(e ~c(xk—ak)2/2)
k

1l

_ aa; ~1/2
IkI exp 5 — va) (1 4+ vea)~172,

Comparing (2) with (3) we have

aia
(4) 11:[ exXp 3 ¥ —-

= por?
Wiy (1 + vex) = eo”?,

Writing /; and I, for the products corresponding to k<N and k>N
respectively, we have

2
Iz < 1II eaﬁaevka = ea kEN(Uk-i-ak).
k>N

Since v, and Yla? are both finite, we have
(B) I,=<e="%/2
for some large N which is independent of a. Fix such N. From (4) and

(5) we have

N
I exp _ G (1 + vye) = =72
k=1 1 + VX
namely
T (1 + o)
14+ 0
N 2 k
apo . k=1
;El exp T+ o Py =1.

Letting a 1t o, we have

N
I est/v.0=1,
k=1

which is a contradiction. This completes the proof.
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