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SHARP ERROR BOUNDS FOR NEWTON-LIKE
METHODS UNDER WEAK SMOOTHNESS ASSUMPTIONS
IoanNIs K. ARGYROS

We provide sufficient convergence conditions as well as sharp error bounds for
Newton-like iterations which generalise a wide class of known methods for solving
nonlinear equations in Banach space.

1. INTRODUCTION

Let F be a nonlinear operator defined on a convex subset Es of a Banach space
E, with values in a Banach space E;. A lot of methods for solving the equation

(1) F(z) =0
can be written in the Newton-like form
(2) Tns1 = Tn — A(zn) ' F(24), n20

where for each n > 0, A(z,.)_1 is a bounded linear operator from E, into E; (that
is, A(zn)"" € L(E,, E1)). Obviously the linear operator A(z,) must be a consistent
approximation to the Fréchet-detivative F' of F. The best known method of type
(2) are Newton’s methods, where A(z,) = F'(z,), and the secant method, where
A(z,) = 6F(zp, zn—1), n = 0, 6F being a consistent approximation of the Fréchet-
derivative of F. Other authors (see, for example (1, 2, 3, 6, 7, 8, 9] and the references
therein) in order to find an approximate solution z* of equation (1) have imposed
various conditions such as

3 [N F @ + ty - 2)) - A@))|| < wlllz - zoll + tlly - =],

(4) | 4(z0) 7 (4(2) - Az0))| < wolllz — 2o”)

for all z,y € Ey and some p,t € [0, 1], where zo € Es. Here w, wy denote non-
decreasing continuous functions from |R* into |R* with w(0) = we(0) = 0. Denote
by N the class of all such functions. However these conditions do not provide sharp
error estimates for Newton-like methods when 0 < p < 1 (see for example [1, 2, 3, 6,
7, 8, 9]. In the elegant paper by Galperin and Waksman [4] sharp error bounds were
found for Newton’s method using the notion of a w-regularly continuous operator. Here
we use a generalised notion of the above definition and provide sharp error bounds for
Newton-like methods. Our results can be compared favourably with results already in
the literature for various choices of the linear operator A(z).
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2. CONVERGENCE RESULTS

Given an operator G: E; C E; — E,, and a linear operator A(z) : Es — E;, we
say that G is w, A-continuous at a point z € Ej if the function w belongs to the class

M(G, 2, Es) := {w € N | Vy € Es | A(20) 7 (G(v) - A=)|| < w(lz -y},
and that G is w, A-continuous on Eg if w belongs to
M(G, Bs) i= {w € N | Va2, y € Es | 4(20) 7 (G(z) - 4®))]| < w(ll= — yI)}

All functions of M(G, z, Es) are called local continuity moduli of G(at z), whereas
those of M(G, Es) are called {global) continuity moduli of G (on Ej3) [3, 6].

Let N* denote the subclass of N consisting of all w € N that are concave. Denote

’ l

Given w € N*, we say that G is w, A-regularly continuous on Ej, if

H(z, y) = min {”A(zo)_lG(z)

A=) AW)|} = v € Bs.

) v (H(z, 2 + Uy — 2)) + || A(20) (G2 + Uy - 2)) - A(2)))
—w(H(z,  + t{y - 2))) < llz0 ~ 2| + t[ly — =]

for all z,y € E3 and t € [0, 1].

Here w™!(s) stands for the least root of the equation w(t) = s. Clearly, w™! is
an increasing convex function defined on [0, w(c0)). Because of w™! convexity, the
above inequality implies w € M(G, E3). As in [4] we can show that the converse is not
always true. For zy, z, y € Es, assume A(zg) is invertible and define the numbers a,
r, 8, @,b, ¢ qby

[4Gzo) 7 F(zo)|| < o 7 = 12— 9ll, 7 = w* (|| A(20) " 4(2)]),
o e ([ ) 5= (e )

c=|lz— =l ,g=7a —b,
the functions ¢(s, t), R*, B, C, D by
4(s, t) = min{t, 5 — t}, R* = max{R, 0},

B(a,a’b,c,r) = /o" [w (min{a,(a' - q(a,t))+} +ec+ t) - w(min{a,(a,' - q(a,t))+})] dt,
C(r) = B(a(r), d'(r), b(r), 7, 7),
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with (for each fixed r > 0)

a=a(r) =w (1 -wo(r)), b=b(r) = w (1 — wo(r) — w(r)) —r,
d =ad'(r) =w (1 - wo(r) — w(r))
Cc(r)

a.nd D(‘I‘) =Qa + m.

Finally, define the iteration {t,}, n >0, by ty =0, {; = & and

B(a(t,,_H - tn), a'(t,,+1 - t,.,), b(tn+1 — tn), tn, tn+1 - tn) n
’

= 0.
1-— ‘U)o(tn)

thiz =tny1 +

We can now state and prove the main result:

THEOREM. Let F: EsC E, > E;, and we N*

Assume:
(i) Thereexist o € Es and a positive number a such that A(zo) is invertible
A(zo)—‘F(zo)” <e.

(i) There exists a minimum positive number r* € (0, wy ' (1)) such that

and

(6) D(r) < r and 1 —wo(r) —w(r) >0 for all f € (0,r"].

(i) U=U(zo,r*)={z € E; ||z —=o| <r*}CEs.
(iv) Given A(z) € L(U, E;) satisfying (4) for p=1 for all z € U, let F be
Fréchet differentiable on U and F' be w — A regularly continuous on U.

Then,
(1) the function B does not increase in each of its first three arguments and
increases in the other two;
(2) the iteration {t,}, n 2 0 is increasing and bounded above by r* with
t* = lim t, <r*;
n—oo
(3) the operator A(z) is invertible on U ;
(4) the Newton-like iterations (2) are well defined, remain in U(zg, t*) and
converge to a solution z* of equation (1);
(5) =z* is the unique solution of equation (1) in U(zo, 7*);
(6) the following estimates are true:
(M [Zn+1 — zall < tn41 —ta
(8) lzn —2*|| < t* —t, foralln > 0
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(9
l[2n — ="
< Blalllzn = 2n-all)ya'(llz =7 = 2a—1l1) Mllzn = Zn-1ll)s 2n-1 = 2o]l, [12a = 2n—1]])
1 —wo(||z* — =ol|)

foralln>1
(10)
Za+1 = 2all < [l2n — 2*||
4 Bla(llz" = zall) a'(ll2" = zall), b(l|z" =~ 2n}), ll2n = 20|, [|2" — 2a]l)

1 —wo(]|zn — 2o|)

forall n >0
(7) the convergence condition (6) and the estimates (7)-(9) are sharp.

PRroOF: (1) The proof of this part is similar to the corresponding one in [4, Lemma
2.1] and so is omitted.

(2) The first two members of the iteration {t,}, n > 0 are such that ¢t < t; <r
Therefore the denominator of the fraction appearing in the definition of the sequence
is positive. That is, £; < ¢ (since the numerator is obviously nonnegative). Let us
assume that 2 < tx41, £ =0,1,2,...,n. Then by the definition of the sequence,
{tn}, n 20, tey1 < try2. Thatis, t,4; < a4z for n =k + 1. So far we have shown
that the scalar sequence {¢,} is increasing for all n > 0. We will show that ¢, < r
for all n 2 0. For n = 0,1 this is true by hypothesis. For n = 2, t < »*, since

£ D(r*) < r*. Let us assume that ¢, <r*, k=0,1,2,...,n; then

C(ty —to)+C(tz —t1) + ... + Cte+1 — te) € C(trt1 — to) < C(te41) < C(r*),

since the function w is increasing and (¢; — o)+ (¢2 — t1)+...+ (k41 — tx) = tet1—20.
Hence tg+1 < C(r*) < r*, which completes the induction. Therefore the sequence {t,},
n 2 0 is increasing and bounded above by * and as such it converges to some ¢* such
that 0 <t* < r*.

(3) Let us observe that the linear operator A(u) is invertible for all
u € U(zo, wy *(1)). Indeed we obtain

| 4¢z0) ™ (A4w) — AGzo))|| < wolllu - 2ol)) < 1,
so that according to Banach’s lemma A(u) is invertible and
(11) | 4Gw) ™ AGo) || < (1 = wolllu - zol) ™

Note also that since ”A(zo)_lA(u)” . ||A(u)_1A(zo)|| > 1, then “A(zo)-lA(u)” 2

1 — wo(Jlu — 2o|)-
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(4)—(6) It now follows that if (2) is well defined for n =1, 2,3, ..., k and if (7)
holds for n < k then

[[o — zall S tn —te < t* — 1y for n < k.

This shows that (7) is satisfied for u = z; with i < k. Thus (2) is well defined for
n=k+1 too. Also from |zg — zx|| < tx — to < t* we obtain z; € U(zo, t*).

We now observe that (7) is true for n = 0. Assume that it is true for k& =
0,1,2,...,n. Then by (2)
(12)
lzk+2 — Zea]l = A(zk+1)_lF(zk+1)”

=[|4(@141) 7 (F(za42) = F(21) - Al )(@rsa - 20))|

= [[4G@e+2) " Az0)|| - | Al20) 7 (Flor42) — For) — Alzi)@rss — 20|

= [ 4Cer)Aen)] - [460)* | ' Fl(en+ Fleas — 20)) - Ao (zuss - 20)a].

We now apply (11) for u = 2441, (5) for 2 = 2, y = k41, G = F’' to obtain
(13)
lzxc+2 — zx4all

1 1
< l—w—o(tk)/; [w(w™ (H(zx, 2k + Uzrsr — 22)) + |26 — o]l + l|l2k+1 — [ 1))

—w(w™ (H(zk, 2k + t{zksr — 2¢))))] [[241 — 22| dt
< Bla(trsr — tr), a'(tesr — ta), b(tess — i), thy thts — i)
= 1- ‘IDo(tk)

=trt2 — tkta-

This shows (7) for n = k + 1. Hence, {z,}, n > 0 is a Cauchy sequence in a Banach
space and as such it converges to a point z* € U. By (12) and (13) we observe that

the numerator of (13) is an upper bound for ”A(zo)_lF(zkH)” which tends to 0 as
k — oo. Hence, by continuity, F(z*) = 0. The estimate (8) now follows easily from
(7).

To show uniqueness, let us assume that there exist two solutions z* and y*
in U(zo, r*) and consider the estimate F(z*) — F(y*) = L*(z* —y*) with L* =
Jo F'(y" +t(=* —y*))dt.

Then as before (see (11)) we can show ||I— A(zo) ' L*

invertible, which shows z* = y*.

< 1. That is, L* is
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Set L = fol F'(z* + t(z, — z*))dt and use (11), and the estimates

llzn —2*|| <

‘(A(zo)—lL) ‘1” . “A(%)-lF(zn)“ ’
21 = zall = (2" = 20) + (A(z0) ™ Alzn))
[A(zo)—l (F(zt) — F(z) - A(::,,)_l(z‘ _ zn))]

to obtain (9) and (10) respectively.

(7) This follows exactly as in part (5) Theorem 2.1 in [4], which completes the
proof of the theorem.

It can easily be seen that if w(t) = 4t, wo(t) = Bt for some B,y > 0 and the
sequence ||z* — z,|| is monotone then (9) and (10) can provide an upper and a lower
bound on [[z* —~ z,|| respectively expressed in terms of the rest of the norms. Moreover
define the numbers r1, 73, 3, A and the intervals I, I, I by

. 1 . 1+af—VA 14+af+VA

= -, = T =)
TRy P 37+ 28 s 3y + 28

with A =(1+aB)’ —2a(3v+28), L =(0,m), I, =[rz, rs],and I= L, N I,.

Assume:
A >0 and I # 0 and set Iy = [rz, min(ry, r3)).

It can easily be seen then that condition (6) is satisfied for all r € I.

Similar conditions can be obtained when wy(t) = BtP, w(t) = ytP for p€ [0,1). In
the latter case the results in [3, 5, 7, 8, 9] cannot apply (since p =1 there). Moreover
it can easily be seen that our results compare favourably with the ones in {1, 2, 3, 6]
in this case.

Finally, consider the equation

(14) F(z)+Q(z) =0

where F is as before and @ is a nonlinear operator defined on Es; with values on E,
such that

(15) | 4(20)7(Q(2) - Q))|| < willle - yl)) for all 2,y € B

for some nondecreasing real function w; defined on Rt with w;(0) = 0. Note that the
differentiability of @ is not assumed. Define the function D,(r) by

Ci(r)

Dl(‘l‘) =a+ T_—wm,

Ci(r) = C(r) + wi(r)
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and the iteration {sp,}, n > 0,by 8o =0, 8y = a and

8n+2 = Sn+41
+ B(a(8nt+1 — 8n),a'(8n41 — 8n), b(8n41 — 8n),8n,8n41 — Sn) + w1(8nt1 — Sn)
1 —wo(sn)

n2=0.

Then with the rest of the notation as before we can immediately state and prove
a theorem for approximating a solution z* of equation (14) similar to the one above.
Just replace D(r) by D;(r) and {t.} by {sn}, n 2> 0, in the above theorem and take
into account hypothesis (15).

Note that the iteration (2) will become

Znt1l = Zn — A(z,.)_l(F(z,.) + Q(zn)), 20 € Es, n > 0.

The new theorem will cover the case when the operator appearing in equation (1)
is not Fréchet-differentiable but it can be decomposed into one that is and one that is

not (see also [2] and the references therein). a0
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