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SHARP ERROR BOUNDS FOR NEWTON-LIKE
METHODS UNDER WEAK SMOOTHNESS ASSUMPTIONS

lOANNIS K. ARGYROS

We provide sufficient convergence conditions as well as sharp error bounds for
Newton-like iterations which generalise a wide class of known methods for solving
nonlinear equations in Banach space.

1. INTRODUCTION

Let F be a nonlinear operator defined on a convex subset Es of a Banach space
Ei with values in a Banach space E2 • A lot of methods for solving the equation

(1) F(x) = 0

can be written in the Newton-like form

(2) x n + 1 = x n - A { x n y 1 F { x n ) , n^O

where for each n ^ 0, A(xn)~ is a bounded linear operator from Ei into E\ (that
is, ^(a;,,)" G L(Ei, E\)). Obviously the linear operator A(xn) must be a consistent
approximation to the Frechet-detivative F' of F. The best known method of type

(2) are Newton's methods, where A(xn) — F'(xn), and the secant method, where
A(xn) = 6F(xn, a;n_i), n ^ 0, SF being a consistent approximation of the Frechet-
derivative of F. Other authors (see, for example [1, 2, 3, 6, 7, 8, 9] and the references
therein) in order to find an approximate solution x* of equation (1) have imposed
various conditions such as

(3) \\A(xo)-\F'(x + t(y - x)) - A(x))\\ ^ w[(\\x -xo\\+t \\y - x\\)p),

(4) \\A{xo)-\A(x) - A(xo))\\ *S wo(\\x - xoW)

for all x, y £ E3 and some p, t G [0, 1], where x0 E Es. Here w, w0 denote non-
decreasing continuous functions from |R+ into |R + with to(0) = wo{O) = 0. Denote
by N the class of all such functions. However these conditions do not provide sharp
error estimates for Newton-like methods when 0 < p < 1 (see for example [1, 2, 3, 6,
7, 8, 9]. In the elegant paper by Galperin and Waksman [4] sharp error bounds were
found for Newton's method using the notion of a to-regularly continuous operator. Here
we use a generalised notion of the above definition and provide sharp error bounds for
Newton-like methods. Our results can be compared favourably with results already in
the literature for various choices of the linear operator A(x).
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2. CONVERGENCE RESULTS

Given an operator G: E3 C E\ —> E2, and a linear operator A(x) : E3 —• Ei, we

say that G is w, A-continuous at a point x £ E3 if the function w belongs to the class

M{G, x, E3) := {w E N | Vy £ E3 | i4(*0)"1(G(y) - ^(*)) | | ^ ID(||Z - y\\)},

and that G is w, A-continuous on E3 if w belongs to

M(G, E3) :={wEN\Vx,yE E3 ^(xo)-1 (G(z) - A(y))\\ ^ w{\\x - y\\)}.

All functions of M(G, x, E3) are called local continuity moduli of G(at x), whereas

those of M(G, E3) are called (global) continuity moduli of G (on E3) [3, 6].

Let N* denote the subclass of N consisting of all w E N that are concave. Denote

H(x, y) = min {lAfco)""1^*)! , ||̂ 4-C*o>~*-A<af)||} . x, y e E3.

Given w E N*, we say that G is w, j4-regularly continuous on E3, if

{x, x+t(y- x)) + \\A(xo)-\G(x + t(y - x)) - A(xw
1 , x+t(y- x))) < ||z0 ~x\\+i \\y - x

for all x,y E E3 and t E [0, 1].

Here w~1(a) stands for the least root of the equation w(t) = s. Clearly, w~1 is

an increasing convex function defined on [0, u;(oo)). Because of w-1 convexity, the

above inequality implies w £ M(G, E3). As in [4] we can show that the converse is not

always true. For XQ, X, y £ E3, assume A(x0) is invertible and define the numbers a ,

r , a, o ' , b, c, q by

a, r = II* - y||, o = •^ooll),
of = w- ( I ( o )

c = | | x -

the functions q{a, t), R+, B, C, D by

q(s, t) = min{<, s - t}, R+ = max{R, 0},

B{a,a'b,c,r) = j [iz,(min{a,(a( - q(s,t)f} + c + «) - w (min{a, (a' - «(J ,<)) + })] dt,

C(r) = B(a(r), a'(r), b(r), r, r),
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with (for each fixed r ^ 0)

a = a(r) = w~1(l — wo(r)), b = 6(r) = u>-1(l — wo(r) — w(r)) — r,

a' = a'(r) = t u ^ l - wo(r) - w{r))

and D(r) = a + C{r)

l - ioo( r )

Finally, define the iteration {<„}, n ^ 0, by to — 0, <i = a and

, , , B(a(tn+1 - tn), a'(tn+1 - tn), b(tn+1 - tn), tn, tn+1 - tn)

We can now state and prove the main result:

THEOREM. Let F: E3 C E-i -> E2 and w G N*

Assume:

(i) There exist xo G E3 and a positive number a such that A(XQ) isinvertible

and l^xo)"1^^)! <a-
(ii) Tiiere exists a minimum positive number r* G (0, w^ (1)) such that

(6) D(r) ^ r and 1 - wo(r) - w(r) ^ 0 for ali / G (0, r*].

(iii) U = U{x0, r*) = {x E E1 | | | s - co l l ^r*}cE3.
(iv) Given A(x) G L(U, E2) satisfying (4) forp=l for all x G U, let F be

Frechet differentiable on U and F' be w — A regularly continuous on U.

Then,

(1) the function B does not increase in each of its first three arguments and

increases in the other two;

(2) t ie iteration { t n } , n ^ 0 is increasing and bounded above by r* with

t* = lim tn < r*;
n—>oo

(3) the operator A(x) is invertible on U;
(4) the Newton-Hke iterations (2) are well defined, remain in U(XQ, <*) and

converge to a solution x* of equation (1);
(5) x* is the unique solution of equation (1) in U(x0, r*);
(6) the following estimates are true:

(7)
(8)
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(9)

Tl(n(\\™ •*. l l \ nUW— « •*. l l \ J./'ll— /> l l \ II . . •» II II— — \\\
^. D\a\\y''n *n—1||/» a \\\x — •* xn—l\\)i°\\\xn — ̂ n—1||^> H^n—1 * 0 | | > | |*n — zn—1| |^
^ i 7T\ * in

1 — wo(||x* — xo| | ;

for all n ^ 1

(10) No- , , — r II < Ha- — 9-*ll| |X n + l X n | | *i \\Xn — X ||
Rla(\\r* — r \\\ a.'(\\r*—r \\\ h(\\r*—r \\\ \\r — a-JI \\r* — r Ih. •D l° l l l a B r n | | , J > « * U | X — Xn\\),0(\\X — Xn\\),\\Xn — XQ\\ ,\\X Xn\\)

for all n ^ 0.

(7) the convergence condition (6) and the estimates (T)-(9) are sharp.

PROOF: (1) The proof of this part is similar to the corresponding one in [4, Lemma
2.1] and so is omitted.

(2) The first two members of the iteration {<„}, n ^ 0 are such that t0 < 11 < r* .
Therefore the denominator of the fraction appearing in the definition of the sequence
is positive. That is, ti ^ <2 (since the numerator is obviously nonnegative). Let us
assume that tk ^ tk+i, k = 0, 1,2, ..., n. Then by the definition of the sequence,
{<„}, n ^ 0, ifc+i ^ tt+2 • That is, tn+i ^ tn+2 for n = k + 1. So far we have shown
that the scalar sequence {tn} is increasing for all n ^ 0. We will show that tn ^ r*
for all n ^ 0. For n — 0, 1 this is true by hypothesis. For n — 2, <2 ^ r*, since
t2 ^ D(r*) ̂  T* . Let us assume that tk ^ r* , k = 0, 1,2, ..., n; then

- to) + C{t2 -t1) + ... + C(tk+i - tk) ^ C{tk+i - to) < C(tt+1) < C(r*),

since the function w is increasing and (ti — to) + (t2 — <i) + .. - + (tk+i — tk) = tk+i —to •
Hence tk+i ^ C(r*) ^ r* > which completes the induction. Therefore the sequence {<„},
n ^ 0 is increasing and bounded above by r* and as such it converges to some t* such
that 0 < t* < r*.

(3) Let us observe that the linear operator A{u) is invertible for all
u G ?7(xo» wo~1O-)) • Indeed we obtain

l l ^ ) ^ ) - i4(*0))| ^ wo(||« ~ xo\\) < 1,

so that according to Banach's lemma A(u) is invertible and

(11) l ^ u ) - 1 ^ ^ ) ! < (1 - i».(||« - soil))"1-

Note also that since j[̂ 4.(as0)~
a-A(xt)II • |U(u)"1A(z0)|| ^ 1, then
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(4)-(6) It now follows that if (2) is well defined for n = 1, 2, 3, . . . , k and if (7)
holds for n ^ k then

11*0 - xn\\ < tn - t0 < t* - to for n < *.

This shows that (7) is satisfied for u = Xi with i ^ k. Thus (2) is well defined for
n = Jb + 1 too. Also from ||xo — **|| ^ tk — to ^ t* we obtain xk G U(XQ, t*).

We now observe that (7) is true for n = 0. Assume that it is true for k =

0, 1, 2, . . . , n . Then by (2)
(12)

- F(xh) - A(xk)(xk+1 - xk

(xo)-\F(xk+1) - F(xh) - A(xk)(xk+1 - xk))\\

(xo)-1 \j F'(xh + F(xk+1 - xk)) - A{xk)] (xk+1 - xk)dt

We now apply (11) for u = xk+i, (5) for x = xk, y = z/t+i, G = F' to obtain
(13)

xk + t(xk+i - xk)) + \\xk - xo|| + ||**+i - *k\\ t))
1 f1

1 — wo(tk) Jo

- w(w-\H(xk, xk + t(xk+1 - xk))))] \\xh+i - xk\\ dt

^ B(a(tk+1 - tk), a'(tk+1 - tk), b{tk+1 - tk), tk, tk+1 - tk)
^ i m =

This shows (7) for n = k + 1. Hence, {xn}, n ^ 0 is a Cauchy sequence in a Banach
space and as such it converges to a point x* G U. By (12) and (13) we observe that
the numerator of (13) is an upper bound for L4(xo)~ ^(^i+i) which tends to 0 as
k —> co. Hence, by continuity, F(x*) — 0. The estimate (8) now follows easily from
(7)-

To show uniqueness, let us assume that there exist two solutions x* and y*
in U(xo,r") and consider the estimate F(x*) - F(y") = L*(x* - y*) with L* =
Jo F V + i(x'-»•))*.

Then as before (see (11)) we can show | / -Afco)" 1 !* ] ! < 1. That is, L* is
invertible, which shows x* = y* .
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Set L = /„ F'(x* + t{xn - x*))dt and use (11), and the estimates

n«»-«

1 (F(x*) - F(xn) - A{xn)-\x' - xn))}

to obtain (9) and (10) respectively.

(7) This follows exactly as in part (5) Theorem 2.1 in [4], which completes the

proof of the theorem.

It can easily be seen that if w(t) = -ft, wo(t) = fit for some /3, y > 0 and the
sequence ||x* — xn\\ is monotone then (9) and (10) can provide an upper and a lower
bound on ||x* — zn| | respectively expressed in terms of the rest of the norms. Moreover
define the numbers r\ , r2 , r3 , A and the intervals 7i, I2 , I by

1 1 + a/3 - y/A 1 + a/3 + -\/A

with A = (1 + a/3)2 - 2a(37 + 2/3), h = (0, n ) , I2 = [r2, r3], and / = h n h.

Assume:

A > 0 and 7 ^ 0 and set I3 = [r2, min(r i , r3)] .

It can easily be seen then that condition (6) is satisfied for all r G I3.

Similar conditions can be obtained when wo(t) = fif, w(t) — ytp for p € [0, 1). In
the latter case the results in [3, 5, 7, 8, 9] cannot apply (since p = 1 there). Moreover
it can easily be seen that our results compare favourably with the ones in [1, 2, 3, 6]
in this case.

Finally, consider the equation

(14) F(x)+Q(x) = 0

where F is as before and Q is a nonlinear operator defined on E3 with values on E2

such that

(15) \A(xo)-\Q(x) - Q(y))\\ < Wl(\\x - y\\) for all x, y € £3

for some nondecreasing real function w\ denned on R+ with t«i(0) = 0. Note that the

differentiability of Q is not assumed. Define the function D\{r) by
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and the iteration { a n } , n ^ 0, by SQ — 0, ai = a and

B{a(sn+1 - sn),a'(8n+i - sn),b(sn+i -sn),sn,8n+i - 8 n ) + Wi(an+1 - sn)
l-wo(sn)

Then with the rest of the notation as before we can immediately state and prove

a theorem for approximating a solution x* of equation (14) similar to the one above.

Just replace D{T) by D\(r) and {<„} by {*„}, n ^ 0, in the above theorem and take

into account hypothesis (15).

Note that the iteration (2) will become

*n+i = *n - A(a^)"1 (!?(«„) + Q{zn)), z0 eEi,n^ 0.

The new theorem will cover the case when the operator appearing in equation (1)

is not Frechet-differentiable but it can be decomposed into one that is and one that is

not (see also [2] and the references therein). D
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