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Abstract

Improvements in computational and experimental capabilities are rapidly increasing the amount of scientific data that
are routinely generated. In applications that are constrained by memory and computational intensity, excessively large
datasets may hinder scientific discovery, making data reduction a critical component of data-driven methods. Datasets
are growing in two directions: the number of data points and their dimensionality. Whereas dimension reduction
typically aims at describing each data sample on lower-dimensional space, the focus here is on reducing the number of
data points. A strategy is proposed to select data points such that they uniformly span the phase-space of the data. The
algorithm proposed relies on estimating the probability map of the data and using it to construct an acceptance
probability. An iterative method is used to accurately estimate the probability of the rare data points when only a small
subset of the dataset is used to construct the probability map. Instead of binning the phase-space to estimate the
probability map, its functional form is approximated with a normalizing flow. Therefore, the method naturally extends
to high-dimensional datasets. The proposed framework is demonstrated as a viable pathway to enable data-efficient
machine learning when abundant data are available.

Impact Statement

Uniform-in-phase-space sampling is achieved by selecting data points according to an acceptance probability
constructed with the probability density function (PDF) of the data. Here, the functional form of the PDF (rather than
a discretized form) is computed via normalizing flows, which can easily handle high-dimensional configurations.
With large number of instances, the data PDF can be computed iteratively by first roughly estimating the PDF and
then correcting it. This strategy efficiently learns the data PDF, even in presence of large number of instances. The
method is beneficial for ML tasks on a memory and computational budget. The sampling strategy allows
constructing more robust models in the sense, where the trained models perform well in a wide variety of situations.

1. Introduction

Advances in high-performance computing (HPC) and experimental diagnostics have led to the generation
of ever-growing datasets. Scientific applications have since successfully embraced the era of Big Data
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(Baker et al., 2019; Duraisamy et al., 2019; Brunton et al., 2020) but are now struggling to handle very
large datasets. For example, numerical simulations of combustion or fusion can generate hundreds of
petabytes per day, thereby heavily stressing storage and network resources (Klasky et al., 2021).
Likewise, experimental facilities generate measurements with ever-higher spatial and temporal resolution
(Barwey et al., 2019; Stohr et al., 2019). In this context, data reduction is becoming a critical part of
scientific machine learning (ML; Peterka et al., 2020).

A scientific dataset can be thought of as an element of , where N is the number of data points
and D is the dimension of a data point. Data reduction can first be achieved by recognizing that,
although the data are D-dimensional, it may in effect lie on a low-dimensional manifold of size d<D.
With an appropriate d-dimensional decomposition, the full dataset will be well approximated. This
approach is commonly termed dimension reduction and has received extensive attention (Sirovich,
1987; Hinton and Salakhutdinov, 2006; Oseledets, 2011; Brunton et al., 2020). The dimension
reduction strategy is also at the heart of projection-based reduced-order models (Gouasmi et al.,
2017; Akram et al., 2022).

Another approach consists of discarding some data points from the dataset, that is, representing the
dataset with n<N data points, which is commonly termed instance selection (IS; Jankowski and
Grochowski, 2004), data-sampling (Woodring et al., 2011; Biswas et al., 2018), or data-pruning
(Saseendran et al., 2019). Other data compression methods such as tensor-decomposition do not
distinguish between data dimensions and adopt a holistic approach (Ballard et al., 2020). Although
there are well-established concepts that ensure that minimal information is lost during dimension
reduction, data reconstruction may still be necessary when disseminating data or performing
scientific tasks. For example, dimension reduction techniques alone do not ease the visualization
of large datasets. In contrast, IS does not require reconstruction and naturally eases scientific tasks.
Note that if data reconstruction is not needed, IS can be used in conjunction with dimension reduction
for more aggressive data reduction. In this paper, a new method for IS is proposed for large N and
large D.

IS can be an attractive method for improving the accuracy of a model that uses a given dataset. For
example, in the case of classification tasks, if one class is over-represented compared to another (class
imbalance), it may be advantageous to remove some data points from the majority class. Several
techniques have been successful, including random removal of majority class samples (Leevy et al.,
2018). More advanced techniques have proposed removing noisy data points (instance editing; Wilson,
1972; Tomek, 1976; Angelova et al., 2005), removing data points located away from the decision
boundary (instance condensation; Hart, 1968), or using a hybrid of both approaches (Batista et al.,
2004). Alternatively, the pruned dataset can be constructed iteratively by testing its classification
accuracy (Skalak, 1994; Garcia and Herrera, 2009; Lopez et al., 2014). These approaches are particu-
larly well suited for nearest-neighbor classification, which exhibits degrading performance with
increasing training dataset size (Wilson and Martinez, 2000; Garcia et al., 2012). In natural language
processing, IS has also been shown to be useful for improving the accuracy of predictive models
(Mudrakarta et al., 2018). Despite the existence of a wide variety of approaches, the aforementioned
pruning techniques often do not scale linearly with the number of data points in the original dataset and
may not be appropriate to address Big Data in scientific applications (Jankowski and Grochowski,
2004; Triguero et al., 2016).

In some situations, IS may simply be unavoidable—for instance, when so much data are being
generated that some needs be discarded due to storage constraints. In particular, although parallel
visualization tools are available, they may be cumbersome and intensive for computing and network
resources. Besides, for very large datasets, input/output time may become the bottleneck of numerical
simulations (Woodring et al., 2011). To address this issue, researchers have proposed various methods
for spatially downselecting data points while maintaining the relevant visual features. Woodring et al.
(2011) proposed a stratified sampling method for astronomical particle data such that the down-
selected dataset maintains the original spatial distribution of particles. A variant of adaptive mesh
refinement for data was also proposed to guide downsampling, where the refinement criterion is
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user-defined (Nouanesengsy et al., 2014). For the visualization of scatter plots, a perceptual loss was
proposed to assess whether the scatter plot of downselected data was consistent with the original
dataset (Park et al., 2016). Methods similar to the one proposed here have been proposed in the past
(Biswas et al., 2018; Rapp et al., 2019), but either do not scale with the number of dimensions (D) or
instances (N). Rapp et al. (2019) proposed a method to display a multidimensional scatter plot by
transforming the distribution into an arbitrary one. However, this method may not scale well with the
dimensionality of the data, as it requires a neighbor search for the density estimation. In addition, the
authors show that the method can become unreasonably slow for very large datasets. In the same vein,
Biswas et al. (2018) proposed performing spatial downsampling by achieving uniform sampling of
scalar quantities. They first estimate the probability density function (PDF) of the scalar values and
then use it to downselect data points. The method was later extended to include the scalar gradients to
ensure visual smoothness (Biswas et al., 2020). This technique requires binning the phase-space to
construct the PDF, which poses two main issues. First, the choice of the number of bins can affect the
quality of the results (Biswas et al., 2020). Second, binning high-dimensional spaces can become
intractable in terms of computational intensity and memory, which makes extension to uniform
sampling in higher scalar dimensions nontrivial (Dutta et al., 2019).

Besides visualization, IS may also be needed for other scientific tasks in power and memory-
constrained environments, which may become ubiquitous with the rise of the Internet of Things
(Raman and Hassanaly, 2019). In a practical edge computing case, data may simply be randomly
discarded to reduce memory and power requirements. This is especially true for streaming data, as
newer data are typically retained, whereas old data are discarded to adapt to drift in the observations
(Hulten etal., 2001; Krawczyk and Wozniak, 2015; Ramirez-Gallego et al., 2017). In such cases, the IS
method adopted is critical for the performance of the device trained with the streaming data (Du et al.,
2014). Finally, memory requirements that make IS unavoidable do not solely exist for edge devices,
but can also occur in supercomputing environments. Consider the example of ML applied to
turbulence modeling. Typically, high-fidelity data—such as direct numerical simulation (DNS)—is
used to train ML-based closure models. For this application, each location in physical space is a new
data point. Given that a single DNS snapshot nowadays comprises 0(109) data points, multiple
snapshots can easily amount to 0(101 1) training data points. With this number of data points, training
time may become unreasonable, and data may need to be discarded. Data are often randomly
discarded, but more elaborate methods have recently been proposed, such as clustering the data and
randomly selecting data from each cluster (Lloyd, 1982; Nguyen et al., 2021; Yellapantula et al.,
2021). This technique enables the efficient elimination of redundant data points from quiescent or
otherwise unimportant regions when the phenomenon of interest is intermittent, effectively attempting
an approximate phase-space sampling like the one proposed in the present work. However, IS via
clustering is sensitive to the choice of the number of clusters, and there is no systematic way of
deciding on an appropriate number of clusters (Barwey et al., 2019; Barwey et al., 2020; Hassanaly
et al., 2021b). Furthermore, in practice, clustering tends to underrepresent rare data points (see
Appendix A). In separate studies, researchers have proposed clustering the dataset and training a
separate model for each cluster. This technique is beneficial not only for a priori (Barwey et al., 2021)
but also a posteriori analyses (Nguyen et al., 2021), suggesting that a proper downsampling technique
could help with the deployment of ML models.

In this work, a novel method for IS in large and high-dimensional datasets is proposed. Redundant
samples are pruned based on their similarity in the original D-dimensional space. This is achieved by
first estimating a probability map of the original dataset and then using it to uniformly sample phase-
space. The proposed solution estimates the probability map with a normalizing flow, which has been
shown to perform well in high-dimensional systems. In addition, an iterative method is proposed for
the probability map estimation, thereby efficiently and accurately estimating the probability map
without processing the full dataset. As such, the computational cost may be drastically reduced
compared to methods that process the full dataset. The proposed algorithm is described at length in
Section 2. In Section 3, the uniformity of the pruned dataset is assessed and the scaling of the
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computational cost with respect to the number of data points and their dimension is evaluated. The
effect of the uniform sampling on ML tasks is also compared to other sampling methods in Section 4.
Section 5 provides conclusions and perspectives for extending the proposed approach.

2. Instance Selection Method
2.1. Problem statement and justification

Consider a dataset X € RV*P, where N is the number of instances (or data points) and D is the number of
dimensions (or features) of the dataset. The objective is to create a smaller dataset Y € R™P, where
n<N, and where every instance of VY is included in X. In other words, Y does not contain new data points.
In addition, during the downselection process, the redundant samples should be pruned first. Redundancy
is defined as proximity in the D-dimensional phase-space. The objective is that all regions of phase-space
should have the same density of data points, that is, the distribution of M/ should be as uniform as possible
in phase-space.

Compared to a random sampling approach, uniform sampling of the phase-space emphasizes rare
events in the reduced dataset. In contrast, random downsampling will almost always discard rare
events from the dataset. The motivation behind preserving rare data points is twofold. First, scientific
discovery often stems from rare events. For example, state transitions may occur rarely, but observing
them is critical for prediction, causality inference, and control (Barwey et al., 2019; Hassanaly and
Raman, 2021). If a dataset is reduced without appropriate treatment, scientific interpretation may be
hindered. Second, to ensure that data-driven models are robust, they need to be exposed to a dataset
that is as diverse as possible. Although the average training error may only be mildly affected, the
model may still incur large errors in rare parts of phase-space. In some applications, accurate
prediction of rare events is crucial when the model is deployed. For example, in non-premixed
rotating detonation engines, detonations are heavily influenced by triple points and fuel mixing
ahead of the detonation (Rankin et al., 2017; Barwey et al., 2021; Sato et al., 2021), which are very
localized phenomena. For other combustion applications, the lack of data in some parts of phase-
space has even required the addition of synthetic data (Wan et al., 2020). The proposed sampling
objective has also been noted to maximize the information content of the subsampled dataset (Biswas
etal., 2018).

2.2. Method overview

To perform the downsampling task, the first step is to estimate the PDF of the dataset in phase-space.
Once this probability map has been constructed, it is used to construct an acceptance probability. The
acceptance probability determines whether a given data point should be selected or not. In practice, the
acceptance probability is used as follows. For each data point, a random number is drawn from the
uniform distribution 2/(0,1). If this number falls below the acceptance probability, the point is
integrated into the downsampled dataset. The acceptance probability varies for each data point and
depends on the likelihood of observing such data. In regions of high data density, the acceptance
probability is low, but in regions of low data density (rare regions), the acceptance probability is high.
The link between data PDF and the appropriate acceptance probability is illustrated hereafter for a
simple example.

Consider two events, A and B, observed, respectively, a and b times, where b < a. Suppose that one
wants to select ¢ samples such that ¢ <2b < a+ b. In that case, the acceptance probability s(A) of every
event A (or s(B) of every event B) should be such that the expected number of event A (or B) in the
downsampled dataset is ¢/2. In other words, s(A) xa = ¢/2 (or s(B) xb = ¢/2). Therefore, the
acceptance probability should be proportional to the inverse of the PDF, with the proportionality factor
controlled by the desired size of the downsampled set. The specific data points selected depend on the
random number drawn from 2/(0, 1) for each of the data points. This is a source of randomness in the
proposed algorithm that is studied in Section 4.
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Figure 1. Illustration of the proposed method for a canonical example. (Left) Histogram of the original
distribution. (Middle) Acceptance probability plotted against the random variable value when down-
sampling to n =100 data points (—) and n= 1,000 data points (—). (Right) Distribution of the down-
sampled dataset when downsampling to n =100 data points (—) and n= 1,000 data points (—).

In the event, where 2b < ¢ <a+b, all B events should be selected. Although the resulting down-
sampled dataset is imbalanced, it is as close as possible to a uniform distribution. To accommaodate for this
case, the acceptance probability s(x) for the data point x can be simply constructed as

s(x) = min (U%Q ()

where x is an observation, p(x) is the PDF of the dataset evaluated in x, and « is a proportionality factor constant
for the whole dataset constructed such that the expected number of selected data points equals c, that is,

N

Zs(xi) =c )

i=1
where x; is the ith observation and c is the desired number of samples. Using a constant proportionality
parameter « for the full dataset ensures that the relative importance of every event is maintained. The
method extends to continuous distributions, as only the local PDF values are needed to construct the
acceptance probability. Figure 1 shows an application of the method for selecting 100 and 1,000 data
points from 10,000 samples distributed according to a standard normal distribution N (0, 1). Here, the
exact PDF is used to construct the acceptance probability. Then, the acceptance probability is adjusted
to satisfy Eq. (2). The downsampled distributions are obtained by repeating the sampling algorithm
100 times. As can be seen in the figure, the distribution of samples approaches a uniform distribution in
the high-probability region. For a large number of samples, the tail of the PDF for the downselected
dataset is underrepresented due to the low data availability. In those regions, the acceptance probability
is maximal and all the samples are selected. Note that to obtain exactly 1,000 samples (compared to
100 samples), a larger part of the dataset needs to be selected with maximal acceptance probability.
Despite achieving uniform sampling where possible, the method cannot ensure a perfect balance
between all events in the dataset. Because the acceptance probability is clipped at unity (i.e., the
method does not create new data), rare events can be underrepresented in the reduced dataset if ¢ is
large. The larger c is the more imbalance can be expected in the dataset. Addressing the imbalance in the
reduced dataset would require generating new data points and is out of the scope of this paper. In the
case where uniform sampling needs to be achieved, reducing the number of data points in the final
dataset will help extending the volume of phase-space over which data are uniformly distributed. This
effect can be observed in Figure 1 (right) where using a lower n value extends the range over which
uniform sampling is achieved.

2.3. Practical implementation

Practical implementation of the method requires overcoming several numerical challenges, which are
outlined below. In particular, because the objective is to tackle the issues associated with very large

https://doi.org/10.1017/dce.2023.4 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2023.4

ell-6 Malik Hassanaly et al.

datasets, scalability with the number of instances and dimensions is necessary. A predictor procedure and
an predictor—corrector procedure are proposed.

2.3.1. Probability map estimation

The main hurdle to overcome is the estimation of the PDF of the dataset in phase-space, which is
ultimately used to compute the acceptance probability. Different solutions have been proposed,
including kernel methods (Rapp et al., 2019) and binning (Biswas et al., 2018). Although the binning
strategy is scalable with respect to the number of data points, the quality of the estimation may be
dependent on the number of bins used (Biswas et al., 2020). Kernel methods offer a more continuous
description of the PDF but tend to generate spurious modes in high-dimension Wang and Scott (2019).
In addition, the PDF may be sensitive to the choice of the smoothing parameter Tabak and Turner
(2013). Finally, as local density value requires knowledge of the relative locations of all data points,
specific treatments are needed such as using compact kernels, but in this case, the neighborhood of
every point needs to be identified, which can be problematic with many dimensions (Rapp et al.,
2019).

To estimate the density of the dataset, it is proposed to use normalizing flows, which are primarily
applied to generative modeling (Dinh et al., 2015, 2016; Kingma et al., 2016; Papamakarios et al.,
2017; Durkan et al., 2019; Miiller et al., 2019) and are increasingly being used for scientific
applications (Bothmann et al., 2020; Verheyen and Stienen, 2020). Given a dataset, generative
modeling attempts to create new data points that were previously unseen but are distributed like
the original dataset. Some notable applications of generative modeling include semi-supervised
learning (Salimans et al., 2016), sampling of high-dimensional PDFs (Hassanaly et al., 2022a,
2022b), and closure modeling (Bode et al., 2021). Normalizing flows are types of neural networks
that generate new data by simultaneously learning the PDF of the dataset and generating data
points with maximum likelihood (or minimum negative log-likelihood). The likelihood of the data
is computed by using a transformation G to map from a known random variable z onto a
random variable x that is distributed like the dataset. The likelihood of the generated data can be
computed as

dG™!
o) = plerden(“5). ®

The peculiarity of normalizing flows lies in their attempt to directly evaluate the right-hand side of
Eq. (3) allowing to evaluate p(x). Normalizing flows build a mapping G such that det (%) is
tractable, even in high dimensions. In general, evaluating the determinant in high dimensions scales
at least quadratically with the matrix dimension. Normalizing flows adopt structures that make the
determinant of the Jacobian of the inverse of G easy to compute. For instance, if the Jacobian is
triangular, the cost of the determinant calculation scales linearly with data dimension (Dinh et al.,
2015,2016). The attention given to scaling with data dimension has allowed normalizing flows to be
used for image generation, which shows that they can learn PDFs in a ~ 10°-dimensional phase-
space. Recent types of normalizing flows typically attempt to find a balance between neural network
expressiveness and the tractability of the right-hand side of Eq. (3) (Dinh et al., 2015, 2016;
Durkan et al., 2019). Among them, neural spline flows are chosen here, as they have been shown
to capture complex multimodal distributions with a small number of trainable parameters (Durkan
et al., 2019). Importantly, the method proposed here may be easily adapted to future other density
estimation methods that may tackle high-dimensions or handle large numbers of data points more
efficiently.

2.3.2. Predictor algorithm
Instead of using a normalizing flow to generate new samples, it is proposed here to leverage its density
estimation capabilities to construct an appropriate acceptance probability. Given N instances of the
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dataset, training a normalizing flow requires processing all N instances at every epoch. This approach is
computationally expensive and therefore unacceptable, especially when the ultimate goal is to downselect
data to efficiently develop an ML-based model. It is proposed to train a normalizing flow on a random
subset of the data, thereby greatly accelerating the PDF estimation process. The algorithm is summarized
in Algorithm 1.

Algorithm 1. Predictor instance selection of n data points.

1: Shuffle dataset X € RV,
2: Create a working dataset & €

RY*d where M<N, by randomly probing X.

Compute acceptance probability s

3: Train a normalizing flow with working dataset to learn the probability map p. (Step 1)
4: for x; € X do

5:  Evaluate p(x;) and acceptance probability S(x;) = 1/p(x;). (Step 2a)

6: end for

Select n data points (Step 2b)

7: Find a such that S°V_ | min(max(as(x;),0),1) = n.

8: numberSelectedDataPoints = 0

9:fori = 1,N do

10:  Draw a random number r from the uniform distribution 2/(0, 1).

11:  if r < min(max(as(x;),0), 1) and numberSelectedDataPoints < n then

12: Append the data point to the selected instances.
13: numberSelectedDataPoints + = 1.

14:  endif

15: end for

The outcome of the base algorithm is illustrated in Figure 2. The dataset considered here is a bivariate
normal distribution of mean [1, 1] and diagonal covariance matrix diag([1,2]) that contains 10° samples.
For computational efficiency, the probability map is learned with M = 10° data points that are randomly
selected (sensitivity to the choice of M is assessed in Section 3.5). A scatter plot of the randomly selected
data is shown in Figure 2 for 10* and 10* selected data points. Compared to a random sampling method
(left), Algorithm 1 provides better coverage of phase-space, no matter the value of n. However, a
nonuniform distribution of the data points can be observed, especially in low-probability regions. This
problem is addressed in the next section.

2.3.3. Accommodating for rare observations: the predictor—corrector algorithm

The downside of accelerating the normalizing flow calculation by using a random subsample of the
dataset when learning its PDF is that the probability of rare events is not well approximated, simply
because too few rare events are shown to the normalizing flow. However, one can recognize that the
wrongly downsampled data shown in Figure 2 is an image of the error in the density estimation obtained
from the normalizing flow. By computing the density of the downsampled data itself, one can apply a
correction to the original density estimate such that, if Algorithm 1 is used again, the resulting data
distribution is close to being uniform. The underlying idea that motivates the algorithm is that is it easier to
learn a correction to the density than the full density itself. Similar methods have been developed in the
context of multifidelity methods (De et al., 2023). The predictor—corrector is summarized in Algorithm 2.
In the predictor—corrector algorithm, the normalizing flow is trained nFlowlter times, where
nFlowlter € N* — {1}. The procedure is used on the same dataset as in Section 2.3.2, and the results
are shown in Figure 3.
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Algorithm 2. Predictor—corrector instance selection of n data points.

1: Shuffle dataset X € RV*?,
2: Create a working dataset & € RM*“, where M < N, by randomly probing X.
3: for flowIter = 1,nFlowlIter do

4:  Compute acceptance probability Sz (lines 3—6 of Algorithm 1).
5: if flowlter==1 then

6: Select M data points (lines 7-15 of Algorithm 1).

7: Replace working dataset with downselected dataset

8: else

9: Stlowlter = Sflowlter X Sflowlter—1-

10: if flowlter==nFlowlter then

11: Select n data points (lines 7-15 of Algorithm 1).
12: else

13: Select M data points (lines 7—15 of Algorithm 1).
14: Replace working dataset with downselected dataset
15: end if

16: end if

17: end for

For the specific case considered here, because the exact PDF is known, the true acceptance probability
can be computed and compared to the sampling probability obtained at every iteration of the algorithm.
Figure 4 shows the relative error in the acceptance probability after different numbers of iterations. It can
be seen that, as expected, iterating decreases errors for rare points (high acceptance probabilities). In
addition, although errors decrease after the first iteration, they remain stagnant. Error stagnation can be
explained by the fact that iterating is not expected to decrease the modeling errors of the normalizing flow
—only the statistical errors associated with estimating rare event probabilities.

Finally, some important properties for the predictor—corrector algorithm are described hereafter. First,
after every iteration, the loss function (the negative log-likelihood) of the converged normalizing flow
should increase. This can be understood by computing the exact negative log-likelihood of a normal
distribution with increasing standard deviation (left-hand side panel of Figure 5). As the standard
deviation increases, the negative log-likelihood increases as well. Compared to random sampling, the
first iteration of the method should spread the data distribution. If that is the case, the second iteration of

nSample = 1000 nSample = 1000
T T T
75 — flowIter = 0 — flowlter = i
i = flowlter =1 wsH— flowlter = 1 /_
1.50 flowIter =2 | | flowlter =2
flowIter =3 flowlter =3
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Figure 4. Effect of iterations on accuracy of acceptance probability. (Left) Conditional mean of relative
error in the acceptance probability plotted against the exact acceptance probability. (Right) Conditional
mean of absolute error in the acceptance probability plotted against the exact acceptance probability.
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the predictor—corrector algorithm should result in a loss (negative log-likelihood) larger than at the first
iteration. This behavior can be observed for the bivariate normal case (right-hand side panel of Figure 5).

Second, the PDF corrected with the iterative procedure will not approach the true PDF, but rather the PDF
needed to obtain a uniform sampling of the data. This principle can be understood with a simple bimodal
case such as the one in Section 2.2. In the case where ¢ > 2b, the downsampled distribution simply cannot be
exactly uniform. While iterating, even with an exact estimation of the data density at the first iteration, the
density correction at the next iteration will be nonzero, because a uniform distribution of data is not possible
(see discussion at the end of Section 2.2). However, the rescaling factor a will ensure that the density
estimate corrections do not affect the downsampled distribution, which is what matters here.

2.3.4. Sampling probability adjustment

When computing the proportionality factor a that satisfies Eq. (2), it is necessary to perform summations and
probability clipping (Eq. (1)) over the entire dataset. When there are a large number of instances (V), the cost of
this step may approach the cost of density estimation. However, a can be computed with only a subset of all the
acceptance probabilities. To see this, recall that the normalizing constant o must satisfy Zf\': 08(x;) = n,
where x; is the ith data point. Since a does not depend on the data point considered, the problem simplifies to
estimating 3; SV s(x;). Since the data points are shuffled, the choice of the first N data points where N'< N

can be considered as N’ random draw of the random variable s(x). Using the central limit theorem,
1 N
N i=15

o/ V/N', where o is the standard deviation of the random variable 5(x). The probability of making a large error
in the estimation of ﬁ va: 18(x;) depends on ¢ and the number of samples N'. The decision on the value of N’
is therefore case dependent. Note, however, that since Vi,0 < s(x;) <1, o < 1/2 following Popoviciu’s
inequality. Therefore, the number of required N to achieve a given accuracy can be computed a priori and does
not increase with N. Using N'<< N acceptance probability values, the constraint used to compute o becomes

Zf’; 15(x;) is a sample of a normal distribution centered on 3> (x;) and with a standard deviation

N

ING
Ni:l

s(x) = c. “)

With this approximation, and the ability to compute the probability map with a subset of the full dataset,
the only task of Algorithm 2 that scales with the number of data points is the evaluation of the probability
with the normalizing flow. In Section 3.6, a parallel strategy is described to further reduce the cost of the
procedure.

During the selection process—when the acceptance probability is used to decide which data point to keep
in the downsampled dataset—the order of the data points can matter. For instance, if the most rare data points
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are seen first, then those data points will be downselected before a sufficient amount of high-probability
points are observed. To avoid this issue, it is crucial to randomly shuffle the dataset (first step of Algorithms 1
and 2). Finally, since the selection process is probabilistic, the probability adjustment only guarantees that n
data points is the expected number of data points to be selected. In practice, the number of data points
selected may vary. If more than n data points are selected, the first #n data points can be kept. If less than n data
points are selected, then another pass through the data can be done to complete the dataset.

3. Numerical Experiments

In this section, the proposed method is tested on a real scientific dataset. The sensitivities of the proposed
algorithm to the main hyperparameters (number of flow iterations and size of dataset chosen to train the
normalizing flow) are assessed. The performance of the algorithm in high dimensions is evaluated. The
computational cost of the method and the efficiency of parallelization strategies are studied.

3.1. Dataset

The dataset considered here is the one used by Yellapantula et al. (2021) in a turbulent combustion
modeling application. In particular, the data was used to learn a model for the filtered dissipation rate of a
reaction progress variable C in large eddy simulations of turbulent premixed combustion systems.

Dissipation rate is an unclosed term in the transport equation of the progress variable variance C"?,
which is useful to estimate the filtered progress variable source term. The dataset was constructed by
aggregating the data from multiple DNS datasets under different operating conditions. For computational
tractability, the DNS was reduced with a stratified sampling approach, but it still exhibits a multimodal

aspect, as can be seen in Figure 6. The features of the dataset are {Z‘, C’ ’2,)?,65, a,p, y}, where Cis a filtered

progress variable, C"? is the subfilter variance of the progress variable, ¥,,, = 2D¢ | Vaz is the resolved
dissipation rate, D¢ is the progress variable diffusivity, and a, f, and y are the principal rates of strain.
Additional details about the definitions of the dimensions are available in Yellapantula et al. (2021). For
every dimension D considered, the phase-space contains the first D features mentioned above. The
number of data points is N = 8 x 10°. Each physical feature is rescaled in the dataset. In the present work,
the distribution of the data points is altered in the downsampled dataset. However, this alteration does not
affect the progress variable statistics since they are assembled prior to the downsampling process. An
illustration of the two-dimensional version of the dataset is shown in Figure 6.

g

=

Rescaled C"?

10

0.5 0.0 0.5 1.0
Rescaled C

Figure 6. Scatter plot of the full dataset with D = 2.
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3.2. Quantitative criterion

3.2.1. Definition

Evaluation of the performance of Algorithm 2 was done visually in Section 2, which is possible in at most
two dimensions. To quantitatively evaluate the quality of the downsampled dataset, an intuitive approach
is to ensure that the distance of every data point to its closest neighbor is large. This method emphasizes
coverage of the phase-space and evaluates whether there exist clusters of data points. In practice, the
average distance of each point to its closest neighbor is used, and the distance criterion is expressed as

. . 1<
distance criterion = lel |1 — Xt |5, 5)
where x; is the ith data point of the reduced dataset and x,; is the nearest neighbor of the ith data point. This
metric is referred to as the distance criterion in the rest of the manuscript.

3.2.2. Suitability of the distance metric

Starting from an arbitrarily distributed dataset, the objective of the method described in Section 2 is to
downselect data points to obtain a uniform distribution in phase-space. In this section, the focus is on
assessing whether the samples are distributed as expected. For a two-dimensional phase-space, a visual
assessment can be used as in Sections 2.3.2 and 2.3.3. In higher dimensions, such an assessment is not
possible, and quantitative metrics become necessary. Here, it is proposed to compute the average distance
of every data point to its closest neighbor. To make distances along each dimension equivalent, the metric
is computed on arescaled dataset such that each dimension spans the interval [—4,4]. The suitability of the
metric is assessed with a canonical bivariate normal distribution N([0,0],diag([0.1,0.1])). The starting
dataset comprises 10* samples and is reduced to 10? in the final dataset. Three strategies for selecting the
reduced dataset are compared to evaluate whether the criterion chosen coincides with a uniform
distribution of data. A random set of samples is shown in Figure 7 (left) and results in a distance criterion
of 0.1894. The result of a brute force search in the set of 10 data points that maximizes the criterion is
shown in Figure 7 (middle). The brute force search is conducted by repeating a random selection of 10?

criterion = 0.1894 criterion = 0.3185 criterion = 0.3686

.
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Figure 7. (Top) Comparison of selection schemes for 100 samples (-) out of 10° data points distributed
according to N([0,0],diag([0.1,0.1])) (2). (Bottom) PDF of the distance to nearest neighbor in the
downselected dataset. (Left) Random selection scheme. (Middle) Brute force optimization of distance
criterion. (Right) Algorithm 2.
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samples at each iteration (107 iterations are used) and selecting the set that maximizes the distance
criterion. This procedure results in a distance criterion of 0.3185, and the set of downselected points
obtained offers better coverage of phase-space than the random search. Samples obtained from Algorithm
2 (Figure 7, right) give a distance criterion of 0.3686. There again, the criterion improved, which
qualitatively coincides with a uniform distribution of the downselected points. In this section, it is not
claimed that Algorithm 2 converges to the dataset that optimizes the distance criterion value. However, it
is claimed that improving the distance criterion coincides with uniformly distributing the data points and
that the performance of Algorithm 2 can be assessed quantitatively using the proposed criterion.

3.3. Effect of the number of flow iterations

The proposed distance criterion is used to illustrate the effect of the number of iterations. The results are
shown in Table 1. The mean and standard deviation of the distance criterion values obtained with five
independent runs using M = 10° are shown. Sampling quality dramatically increases after the first
iteration and then stagnates. This result is in line with Figure 4, where a conditional error on the sampling
probability was shown to not improve after two iterations. A consequence of this result is that Algorithm 2
increases the computational cost only twofold. Another valuable result is that the standard deviation of the
distance criterion decreases when using more than one iteration, which suggests that iterating improves
the robustness of the method.

The results were compared with random IS and stratified sampling (Nguyen et al., 2021; Yellapantula
etal.,2021), where each stratum is a cluster obtained from the k&~-means algorithm (Lloyd, 1982). Different
numbers of clusters were tested in the range [20, 160]. The best results are shown in Table 1 and were
obtained with 40 clusters. Overall, Algorithms 1 and 2 are superior to random and stratified sampling.
Visual inspection of the results (see Appendix A) confirms that using more than two iterations does not
help with the sampling quality and that the sampling quality of the proposed method exceeds that of the
random and stratified sampling. Appendix B shows the application of Algorithm 2 to a different dataset.
Two iterations appears to also suffice in this case, which suggests that the aforementioned findings might
be applicable to a wide variety of datasets.

Table 2 shows the results when using a binning strategy for the computation of the PDF, as well as the
method of Biswas et al. (2018), where the PDF is computed with all the available data with a binning

Table 1. Dependence of the distance criterion value on the number of iterations and instances
selected (n).

Algorithm 2 Algorithm 2
Normalizing flow  Algorithm 1 (2 iterations) (3 iterations) Random Stratified
n=1,000 0.064+0.014 0.098 +0.003 0.096+0.003 0.046 0.067
n=10,000 0.022+0.0033 0.030+0.0002 0.029+0.0006 0.014 0.021

Note. Larger distance criterion value is better. Normalizing flow is used for the PDF estimation. Bold entries denote best performances.

Table 2. Dependence of the distance criterion value on the number of iterations and instances
selected (n).

Algorithm 2 Algorithm 2
Binning Algorithm 1 (2 iterations) (3 iterations) Biswas et al. (2018)
n=1,000 0.069 £ 0.0005 0.091 £0.0099 0.099 +0.0023 0.09740.0011
n=10,000 0.019+£0.0001 0.030 £ 0.0002 0.030£0.0003 0.031£0.0002

Note. Larger distance criterion value is better. Binning is used for the PDF estimation. Bold entries denote best performances.
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Figure 8. Sensitivity of distance criterion to the number of flow iterations, normalized by the distance
criterion after the first flow iteration. Symbols represent the mean distance criterion. Results are shown
forD=2 (@) and D=4 (M), forn=10° (—), n=10* (—), and n=10° ().

strategy. Since the full dataset is used compute the PDF, no iterative procedure is needed. The sampling is
done by discretizing each dimension with 100 equidistant bins. The binning strategy with M = 10’ does
exhibit similar results as the one with normalizing flow. The iterative procedure does improve the
computation of the PDF which demonstrate that the predictor—corrector strategy is applicable to other
density estimation methods. Finally, the method of Biswas et al. (2018) does perform as well as the
proposed method, albeit requiring to compute the density with the full dataset. Visualization of the effect
of iteration with the binning strategy are shown in Appendix A.

In high dimensions, the same conclusions can be obtained. Figure 8 shows the average distance
criterion obtained over five independent runs, for D varying in the set {2,4} and n varying in the set
{ 10%,10*,10° } The distance criterion is normalized by the value reached at the first iteration to quantify
the benefit of iterating. For D = 2 and D = 4, the quality of the downsampled dataset dramatically
improves after two iterations and then ceases to improve. It also appears that iterating mostly benefits
aggressive data reduction (small 7) and cases with more dimensions.

3.4. Sampling quality in high dimension

Here, the distance criterion is used to assess the sampling quality in higher dimensions. The distance
criterion obtained with Algorithm 2 is shown for different phase-space dimensions using M = 10°.
Random sampling and stratified sampling are used to compare the obtained sampling quality. The
stratified sampling procedure was performed with the optimal number of clusters found in Section 3.3.
The sampling results are shown in Table 3.

As can be seen in Table 3, the proposed sampling technique also performs better than traditional
methods in more than two dimensions. To further verify this conclusion, a two-dimensional projection of
the data along every dimension pair is shown for the three methods for D = 4andn = 10,000 in Figure 9.
Visually, the proposed method better covers the phase-space. The data points selected by Algorithm 2
cover the phase-space differently than when only the first two features are considered (Figure 9, right).
This observation can be explained by the other two-dimensional projections; variations iny,,, a, and f in

the dataset are mostly observed at low C”? values.

Similar to the two dimension case, Table 4 shows that the binning strategy also benefits from the
predictor—corrector algorithm, which further suggests that Algorithm 2 can benefit density estimation
methods in general. For the case D = 3, the binning strategy with M = 10> outperforms normalizing
flows. After further investigation, it appeared that using M = 4 x 10° significantly improved the case
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Table 3. Distance criterion values for different numbers of instances selected (n) and data

dimensions (D).

Algorithm 2
Norm. flow Algorithm 1 (M = 10°, 2 iterations) Random Stratified
n=1,000D=3 0.094+£0.0161 0.109+£0.0132 0.065+0.0012  0.09540.0030
(0.136+0.0032)
n=1,000 D=4 0.159+£0.0267 0.223+0.0129 0.106+£0.0048  0.13740.0034
n=1,000 D=5 0.282£0.0244 0.330£0.0036 0.133+£0.0031  0.1884+0.0064
n=10,000 D=3  0.03440.0083 0.041£0.0044 0.026£0.0003  0.038£0.0005
(0.0574+0.0006)
n=10,000 D=4  0.084+0.0028 0.098 + 0.0064 0.049+0.0004  0.0654+0.0014
n=10,000 D=5 0.166+0.0073 0.173+0.0061 0.068 £0.0009  0.094+0.0059

Note. Larger distance criterion value is better. Normalizing flow is used for the PDF estimation. Data in parenthesis are results with M =4 x 10°. Bold

entries denote best performances.
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Figure 9. Two-dimensional projection of n = 10,000 selected data points (=) out of an original four-
dimensional dataset (). (Left) Random sampling. (Middle) Stratified sampling. (Right) Algorithm 2.

Table 4. Distance criterion values for different numbers of instances selected (n) and data
dimensions (D).

Algorithm 2
Binning Algorithm 1 (M =107, 2 iterations) Biswas et al. (2018)
n=1,000D=3 0.124+0.0038 0.1334+0.0021 0.1514+0.0015
n=1,000D=4 0.183+0.0023 0.206 £ 0.0004 0.233+0.0019
n=1,000 D=5 Out of memory Out of memory Out of memory
n=10,000 D=3 0.04740.0001 0.046 +£0.001 0.063+0.0003

n=10,000 D=4
n=10,000 D=5

0.083 £0.0005
Out of memory

0.096 +0.0006
Out of memory

0.112 +0.0004
Out of memory

Note. Larger distance criterion value is better. Binning is used for the PDF estimation. Bold entries denote best performances.

D = 3 with normalizing flow (the distance criterion values are shown in parenthesis in Table 3). The
sensitivity analysis with M shown in Figure 10 also suggests that the case D = 3 gives poor results with
M < 4 x 10°. Note that for other higher dimensions, similar considerations also apply but have a lesser
impact than for D = 3. The method of Biswas et al. (2018) outperforms the present method for D < 5, at
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Figure 10. Sensitivity of distance criterion to M normalized by the distance criterion at M = 10°. Symbols
represent the mean distance criterion. Results are shown for D=2 (@), D=3 (-&-), and D =4 (‘B), for
n=10% (—), n=10* (—), and n=10° ().

the expense of higher memory requirements and computing the PDF with the full dataset. For D>5, all
binning strategies fail due to too large memory requirements.

3.5. Data size limits

To construct the probability map efficiently, it is proposed in Section 2 training a normalizing flow on a
subset of the full dataset. In addition, to account for rare realizations, it was proposed to estimate the
probability map iteratively (Section 2.3.3). In this section, it is investigated how large the data subset
needs to be to still obtain a uniform-in-phase-space reduced -dataset. In other words, the sensitivity of
Algorithm 2 to M is evaluated. The dataset presented in Section 2.3.2 is considered. Algorithm 2 is used
with two iterations with a feature space of dimension D in the set {2,3,4}. The original dataset
(N = 8 x 10°) is downsampled to n data points in the set {103 ,10%,10° } For each case, M is varied
in the set {103,5 x 103,10%,5 x 10%,10°,5 x 10°,10°,5 x 106}. Each data reduction is performed five
times, and the ensemble averages of the distance criterion are shown in Figure 10. The number of training
steps is fixed at 12,000 (the number of epochs varies between 6 and 12,000) to ensure that larger M values
do not result in worse convergence of the normalizing flow.

Figure 10 shows that Algorithm 2 does not favor small or high n values and that varying M equally
affects cases with small or large n. The value of M only affects the accuracy of the probability map, which
has equal implications for all sizes of downsampled data.

In the limit case where M is small, the distance criterion is, across the board, lower than the optimal
value. This can be understood by considering an asymptotic scenario where M = 1. In that case, the best
possible probability map will be a delta distribution centered on the data point used. At the next flow
iteration, the probability map will be corrected with another delta distribution. A very small value of M
inherently limits the expressiveness of the normalizing flow, that is, the complexity of the probability map
that can be approximated, thereby adversely affecting the reduced dataset. M needs to be sufficiently high
to formulate a first reasonable approximation of the probability map that can be accurately corrected at the
next flow iteration.

As M increases, the distance criterion ceases to improve, which confirms that a subset of the full dataset
can be used to train the normalizing flow. The higher the phase-space dimension D, the higher the smallest
M value required to achieve uniform-in-phase-space sampling. As the dimension increases, the prob-
ability map becomes more difficult to approximate, requiring a larger dataset size.

For very large M (close to the size of the full dataset V), the performance of the algorithm degrades
across the board. This effect can be explained by again considering the asymptotic limit (M = N). In the
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ideal case, the probability map is already approximated at the first iteration. At the second iteration, a
correction is applied if the true probability map is not uniform, which is the case for most datasets.

If the optimal M value depends on the complexity of the probability map to be approximated, it also
depends on the particular dataset considered. Because the performances of the method vary smoothly with
M, it would be possible, in practice, to try multiple M values until an optimum is reached.

3.6. Computational cost

Compared to random or stratified sampling, Algorithm 2 is more expensive, as a probability needs to be
estimated and evaluated for every data point. The computational cost of the method and its scale-up with
the number of data points and dimensions is described here.

The computational cost of the proposed method can be divided into three separate components. These
components (referred to as steps) are the building blocks of Algorithm 1, which is itself the building block
of Algorithm 2. First, the predictive model for the probability of the data points as a function of the
location in phase-space is trained (Step 1). Second, the predictive model is evaluated for each data point in
the dataset (Step 2a). Third, the acceptance probability for each data point is constructed, and the data
points of the reduced dataset are selected (Step 2b). The computational cost study is done with the dataset
D, (Lapointe et al., 2015; Savard and Blanquart, 2017) used in Yellapantula et al. (2021), which is
different than the dataset considered in Section 3.1 in that it contains more data points (N = 4.8 x 107).
The larger number of data points allows to clearly distinguish regimes where the cost of Step 1 or Step 2a
dominates. The scaling with respect to N is obtained with D = 2. The scaling with respect to D is obtained
with N = 4.8 x 10. The breakdown of the computational cost of Algorithm 2 is shown in Figure 11 as a
function of N (Figure 11, left) and D (Figure 11, right).

The computational cost of Step 1 mainly depends on the number of data points used to train the model.
As seen in Section 2, a subsample of the full dataset can be used to train the model. No matter how many
data points are in the original dataset, the predictor—corrector algorithm (Algorithm 2) allows the model to
be efficiently trained with a small number of data points. Therefore, as can be observed in Figure 11 (left),
the computational cost of Step 1 does not depend on the total number of data points N. The complexity of
Step 1 is difficult to rigorously define as it depends of the convergence of the optimization. Typically, it
will scale linearly with M if the number of epochs is kept constant for different M values. The number of
dimensions D influences the number of parameters in the network as the input space and the output space
depend on D. In turn, the training time linearly varies with the number of trainable parameters. In the
present case, the number of parameters increased as D'/*. In our case, the time complexity of Step 1 can be

estimated as O(MD'/*).
3
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Figure 11. Scaling of computational cost against the number of data points N in the full dataset (left) and
the dimension D (vight). The computational cost is divided into the probability map estimation (1),
called Step 1; the construction of acceptance probability (@), called Step 2a; and the data selection (-A-),
called Step 2b. The total computational cost is also indicated for both scaling plots (- -).
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Figure 12. (Left) Scaling of Step 2a (-@-) overlaid with linear scaling (- -). (Right) Weak scaling of Step 2b
(‘@) overlaid with linear scaling (- -).

The computational cost of Step 2a linearly scales with N as the probability model needs to be evaluated
for every data point. The computational cost also linearly scales with the number of trainable parameters
used in the normalizing flow as each probability evaluation requires a neural-network inference. The
complexity of Step 2a can be estimated as O(NDI/ 4.

Finally, Step 2b scales as O(N), but its contribution to the total computational cost is negligible
compared with Step 2a.

In Figure 11, it can be observed that for large datasets, the total cost mainly depends on Step 2a. However,
since Step 2a solely consists of probability density evaluations, it is embarrassingly parallelizable. With a
simple MPI-parallelization, the computational time of Step 2a can be considerably decreased. The weak
scaling plot of Step 2a is shown in Figure 12. Here, memory requirements are driven by the data points stored
in memory, rather than by the probability density model (as would be the case if one stored it as a high-
dimensional histogram). Therefore, the MPI-parallelization also decreases the memory requirements, which
is beneficial for very large datasets. In addition, although Step 2b (adjustment of the acceptance probability
to reach the desired data reduction) is not embarrassingly parallel, the global summation of acceptance
probability can easily be parallelized by partitioning the data (see Figure 12, right). The parallelized
implementation of Steps 2a and 2b is also made available in the companion repository.

In conclusion, the cost of the procedure linearly scales with the number of data points and can be
significantly driven down if executed on a parallel architecture. Steps 2a and 2b can be accelerated via
MPI-parallelization. Step 1 can be accelerated by a judicious choice of the number of data points used to
train the normalizing flow. In addition, because Step 1 consists of training a neural net, it can benefit from
GPU-acceleration for large batches or networks (which is also implemented in the companion repository).

4. Application: Data-Efficient ML

In this section, the effect of the uniform selection of data in phase-space is assessed for the training of data-
driven models. This data selection method is compared to random sampling and stratified sampling on a
realistic scientific dataset. The input—output mapping in this dataset is noisy because the input dimensions
are insufficient to perfectly model the output. Thus, a synthetic dataset where the noise level can be
controlled is considered to understand the resilience of the method to noise.

4.1. Example of closure modeling

Typically, combustion problems require solving partial differential equations for the transport of species
mass fractions or some representative manifold variables, such as the progress variable (Pierce and Moin,
2004). In large eddy simulations of turbulent combustion problems, a closure model is required for the
filtered reaction rate of such variables. One strategy consists of using data available via DNS to formulate

https://doi.org/10.1017/dce.2023.4 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2023.4

Data-Centric Engineering ell-19

50
£ 4
0 Fa
si;z". 5 L3
L 30 F
=
-
EZU-—
&
10 4+—
‘J -

0.5
Rescaled C

Figure 13. Illustration of the combustion dataset. The dots are colored by progress variable source term o.

a data-driven model for the unclosed terms. For example, in premixed flames, it may be useful to transport

a filtered progress variable C and its variance C"2, and to model the source term of the progress variable

transport equation @ as a function of C and C"?. The functional form of the model would be obtained from
an existing dataset. In this section, the objective is to learn such a model. The model is trained on the
reduced versions of the dataset used in Section 3.4. The full dataset is illustrated in Figure 13. From this
figure, it is apparent that the output quantity is a noisy function of the inputs, indicating that any model
formulated will be affected by aleatoric errors.

The IS algorithm proposed in Section 2 can, in principle, be applied for any data-driven model. Two
approaches are used here: a Gaussian process (Pedregosa et al., 2011) and a feed-forward neural network
(Abadi et al., 2016) with two hidden layers of 32 units each. The learning rate is initially set at 10~ and
exponentially decays to 107>, The batch size is fixed at 100 and the number of epochs is 400. The
Gaussian process kernel consists of white noise superimposed with a radial basis function (RBF), where
the length scale of the RBF and the standard deviation of the noise are optimized at every realization. The
length scale of the RBF is optimized in the interval [10~3, 1] and the noise level is optimized in the interval
[107?, 10°]. The results shown can be reproduced with the code available in the companion repository.
The original dataset contains about N = 8 x 10° data points. The model training is done on reduced
datasets that contain n = 1,000 or n = 10,000 data points. The data reduction is done with either
Algorithm 2 (M = 10° and two flow iterations), random sampling, or stratified sampling. For compu-
tational tractability of the Gaussian process, only cases with n = 1,000 are shown. For every case, the
sampling and training are done five times to collect the metric statistics. Two metrics are used here: the
mean absolute error and the maximal error over the full dataset (N data points).

The training results for the Gaussian process and the feed-forward neural network are shown in Figure 14.
Despite covering the phase-space better than the stratified and random sampling, the maximal error obtained
by using Algorithm 2 is only slightly better than other methods (about 1% improvement compared to
stratified sampling and 2% compared to random sampling). Furthermore, the average absolute error
obtained via Algorithm 2 can be slightly larger (by about 6%) than when using plain random sampling.

To further investigate how the effect of phase-space coverage on the training results, the conditional
error obtained with the different sampling procedures is plotted against the sampling probability
computed for the n = 10,000 for five training realizations with all three sampling and training techniques
(Figure 15). As a reminder, sampling probability is inversely proportional to data density; thus, low
sampling probabilities denote high data density regions, and high sampling probabilities denote rare
events. For all cases, Algorithm 2 induces the lowest errors in rare regions of phase-space (high sampling
probability). Stratified sampling, which increases the occurrence of rare events compared with random
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Figure 14. Statistics of the mean (left) and maximal error (vight) obtained over five repetitions of
downselection and training of a neural network and Gaussian process on the combustion dataset for
random sampling (—), stratified sampling (—), and Algorithm 2 (—). Bar height shows ensemble mean
and error bar shows standard deviation. Bar and error bar size are rescaled by the ensemble mean
obtained with Algorithm 2.
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(Middle) Feed-forward neural network with n = 10°. (Right) Feed-forward neural network with n = 10*,

sampling, also reduces errors compared to random sampling, albeit to a smaller extent than Algorithm 2.
However, in high-probability regions of phase-space (small sampling probability), Algorithm 2 induces
the largest errors (see inset), especially for low values of n. Interestingly, Algorithm 2 also leads to the least
amount of variation when repeating training runs, which indicates robustness to randomness in the
construction of the dataset. For metrics such as the mean-squared error, errors in high-probability regions
of phase-space dominate, which explains the poor performance of Algorithm 2 observed in Figure 14.
Another explanation for the marginal improvement shown in Figure 14 is the presence of noise. The
core assumption of Algorithm 2 is that data points close in phase-space are redundant. However, in
presence of noise, redundancy is necessary to correctly approximate the optimal estimator that is being
sought. The lower performance of Algorithm 2 in high-probability regions compared to random and
stratified sampling indicates that the high-probability region of phase-space is also noisy, and thereby
benefits from methods that oversample data. The effect of noise is investigated in the next section.

4.2. Synthetic dataset

To better understand the effect of noise on the performance of Algorithm 2, a synthetic dataset is
considered. The variables of the phase-space are kept the same, but the variable to learn is replaced by
two-dimensional sinusoids shown in Figure 16. The advantage of the synthetic dataset is that one can
control the amount of noise to evaluate its effect on the training results. Here, the two-dimensional
sinusoids are superimposed with a randomly distributed noise of standard deviation ¢ in the set
{0,1,2,3,4}. The functional form of the data is

10cos(fwy, ) sin(frwy, ) +1, (6)
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Figure 16. Illustration of the synthetic datasets. Noise level increases from left to right.

where f| denotes the first feature direction, f, denotes the second feature direction, wy, is chosen such that
2.5 oscillation periods span the first feature direction, and wy, is chosen such that 1.5 oscillation periods
span the second feature direction, and 7 is the additive noise.

Figure 17 shows the results obtained with the Gaussian process. For different levels of noise, the
optimal mean absolute error is %a, and the optimal maximal error is obtained by computing the expected
value of the maximum of a random normal variable out of N samples. In absence of noise, Algorithm 2
(M = 10°, two iterations) offers the lowest maximal error and outperforms the other sampling methods
by several orders of magnitude. In turn, the mean absolute error is also the lowest, albeit by a smaller
margin than the maximal error. For the neural network case (Figure 18), the maximal error is lower by
nearly an order of magnitude, but the average error is larger than the random and stratified sampling. This
result also highlights how good coverage of the phase-space improves the robustness of the model.
However, robustness is not well described by common metrics like mean absolute error, which is biased
toward high-probability data points.

For the neural network and the Gaussian process, Algorithm 2 exhibits the lowest maximal absolute
error (close to the optimal value) for low levels of noise (0 < & < 2), but the mean absolute error is the
largest out of all the methods. In particular, in the case of the Gaussian process, while the mean error was
the lowest in absence of noise, it is the highest even at low noise levels. However, it should be noted that
the mean error remains close to the optimal value with Algorithm 2, with the mean error penalty relative to
the other approaches being small in comparison to the unavoidable error due to noise in the data. In
contrast, the other sampling approaches can result in maximal absolute errors that are significantly larger
than the optimal value. These results could be explained by the reduced ability of a uniform phase-space
sampling to correctly estimate the conditional mean of a noisy variable. In other words, because uniform
phase-space sampling eliminates redundancy by design, it cannot benefit from redundancy when
estimating a conditional average when there is nonzero conditional variance. As the level of noise
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Figure 17. Statistics of the mean (left) and maximal error (right) obtained over five repetitions of
downselection and training of a Gaussian process on the synthetic dataset for random sampling (—),
stratified sampling (—), and Algorithm 2 (—). Bar height shows ensemble mean and error bar shows

standard deviation. Bar and error bar size are rescaled by the ensemble mean obtained with Algorithm 2.
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Figure 18. Statistics of the mean (left) and maximal error (right) obtained over five repetitions of
downselection and training of a neural network on the synthetic dataset for random sampling (—),
stratified sampling (—), and Algorithm 2 (—). Bar height shows ensemble mean and error bar shows

standard deviation. Bar and error bar size are rescaled by the ensemble mean obtained with
Algorithm 2.

increases, reducing statistical error in estimating the conditional average for high-probability regions
becomes more beneficial than exploring new regions of phase-space to provide better predictions for rare
points. This benefits random sampling over Algorithm 2, leading to the observed performance trends as
noise levels increase (Figures 17 and 18).

This analysis confirms that the results shown in Figure 14 can also be explained by the presence of a
low level of noise for . Although the maximal error is lowest with Algorithm 2, it is outperformed by
other methods in terms of the mean absolute error because these methods emphasize accuracy for high-
probability events and allow redundancy to counteract noise.

5. Conclusions

A novel data reduction scheme was introduced in the form of an IS method. The method enables
uniformly covering the phase-space of a dataset with an arbitrarily low number of data points.
Uniform sampling is implemented by constructing an acceptance probability for each data point that
depends on its probability of appearing in the full dataset. To obtain the probability map of the dataset,
anormalizing flow is trained on a subsample of the full dataset. Iterative estimation of the probability
map allows efficient treatment of rare events in the dataset. The advantage of the present method lies
in its efficient parameterization of the probability map, which holds even for high dimensions.

The IS method can serve several purposes, including efficient visualization, data dissemination, and
data-efficient model training. For the latter, the performance of the IS method was compared to other
common methods. In the absence of noise, uniform phase-space sampling offers better robustness.
However, the lack of redundancy of data can induce error in approximating the optimal estimator of a
variable if it is noisy.

Allowing targeted redundancy in the data could be implemented in the same framework by biasing
the acceptance probability of the data points toward noisy regions of the phase-space. Likewise, a
refined description of the phase-space could be obtained by allocating more points in regions of
large gradients. These extensions are currently being pursued and will be investigated in future
publications.
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Appendix A. Visual Evaluation of the Effect of Iterations

The effect of using more than two iterations is illustrated in this section. As can be seen in Figure A1, using more than two

iterations does not significantly improve the uniformity of the distribution of samples. This observation holds for 1,000

(Figure A1, left) and 10,000 (Figure A1, right) samples. This is consistent with the results suggested by the distance criterion
shown in Table 1.

¢ ¢ 3]

z -1 -1

1 1 -1

.5 0.0 1].§ 10 -0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0
Rescaled C Rescaled C Rescaled C
O 3 03 O 3
z z b1
5
0.5 0.0 05 1.0 0.5 0.0 05 1.0 05 0.0 05 L0
Rescaled C

Rescaled C Rescaled C

Figure Al lllustration of the effect of using more than two iterations to select n = 1,000 (top) and n =

10,000 (bottom) data points with one iteration (left), two iterations (middle), and three iterations (right) of
Algorithm 2.

50 50
40 40
O 30 O 30
= =
S S
g g
B in
10 10
0 R DU IRT, T SR N 0 :
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0
Rescaled C Rescaled C
50 50
40 40
N N
O 30 O 30
= =
< <
= =
2 2
g g2
10 10
0 G 0
-0.5 0.0 0.5 1.0 —0.5 0.0 0.5 1.0
Rescaled C

Rescaled C

Figure A2. lllustration of random (left) and stratified (right) selection schemes of n= 1,000 (top) and
n=10,000 (bottom) data points.
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Figure A3. Illlustration of the effect of using more than two iterations to select n =1,000 (top) and n =

10,000 (bottom) data points with one iteration (left), two iterations (middle), and three iterations (right) of
Algorithm 2, using a binning method for the density estimation.

The results should be compared to random and stratified sampling for reference, shown in Figure A2. It can be observed that the
relative improvement obtained by using three iterations instead of two is minimal compared to random or stratified sampling.
Using a binning strategy for the density estimation leads to results similar to using normalizing flow as shown in Figure A3.

While the first iteration oversamples rare data points, the next iterations lead to more uniform distribution of the downsampled data
points.

Appendix B. Downsampling in a Different Dataset

The algorithm for uniform-in-phase-space data selection is generally suitable for large N, moderate D datasets and is not limited to
the turbulent combustion and synthetic datasets described in this work. To demonstrate this, the algorithm is applied to sensor data
relating to building power consumption on the campus of the National Renewable Energy Laboratory (NREL) in Golden,
CO. NREL maintains instrumentation to track and record a wide array of data regarding power consumption in its buildings and
weather conditions on campus to enable research into the integration of renewable energy and building efficiency technologies.
Here, a dataset containing four streams of data corresponding to net power consumption in kW at NREL facilities taken at 1-min
intervals for the period from January 1, 2017 to November 30, 2022 is considered. The particular facilities selected were chosen to
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Figure B1. Two-dimensional projection of n = 10,000 selected data points () out of an original four-

dimensional building power consumption dataset (). (Left) Random sampling. (Middle) Algorithm 2 (two
iterations). (Right) Algorithm 2 (three iterations).

https://doi.org/10.1017/dce.2023.4 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2023.4

ell-28 Malik Hassanaly et al.

Table B1. Dependence of the distance criterion value on the number of iterations and instances
selected (n) for the building power consumption dataset.

Algorithm 2 Algorithm 2
Norm. flow Algorithm 1 (2 iterations) (3 iterations) Random
n=1,000 0.412+0.024 0.507+0.010 0.491+0.008 0.280+0.008
n=10,000 0.225+£0.004 0.247+0.001 0.248+0.001 0.144 £0.002

Note. Larger distance criterion value is better. Bold entries denote best performances.

minimize the number of sampled time instances with missing data from any of the considered sensors; after discarding all time
instances with missing data this results in a dataset with N = 2.7 x 10% and D = 4. In the present use case and for energy systems in
general, a data-driven model must be available to maintain a high reliability. Therefore, a reduced dataset must contain rarely
observed conditions to ensure they are accounted for. This problem is prototypical of a broader class of problems where streaming
data from a limited set of sensors may be available over a long period of time and robustness to rare events is important.

The sampled data points using Algorithm 2 and random sampling are compared in Figure B1. As was observed for the turbulent
combustion dataset in Figure 9, Algorithm 2 leads to substantially more frequent sampling of points in the sparser regions of phase
space. Notably, the character of the distribution of this dataset is very different than the previously considered dataset; in this case, the
density of data points is strongly multimodal, with data concentrated in bands around particular power consumption values for each
facility. Despite this multimodal character, the iterative procedure using normalizing flows to estimate the probability distribution
works similarly as before. Algorithm 2 yields similar results with two and three iterations, indicating that the conclusion that two
iterations are sufficient may generalize across different datasets. This is quantitatively confirmed by the data shown in Table B1. The
distance criterion values are similar with two and three iterations, while both are substantially improved relative to the non-iterative
Algorithm 1 and random sampling.

Cite this article: Hassanaly M, Perry BA, Mueller ME and Yellapantula S (2023). Uniform-in-phase-space data selection with
iterative normalizing flows. Data-Centric Engineering, 4, el1l. doi:10.1017/dce.2023.4
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