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§ 1. Introduction

The purpose of this note is to study regular actions of simple alge-
braic groups on projective threefolds as an application of the theory of
algebraic threefolds, especially Mori Theory and the theory of Fano
threefolds (cf. Mori [11], Iskovskih [7, 8]). The motivation for this study
is as follows. In a series of papers, Umemura, in part jointly with Mukai,
has classified maximal connected algebraic subgroups of the Cremona
group of three variables and also constructed minimal rational threefolds
which correspond to such subgroups (cf. Umemura [16-19], Mukai-Ume-
mura [12]). In particular, Umemura and Mukai studied in [12] the
SL(29 C)-equivariant smooth projectivization of SL(2, C)/G, where G is a
binary icosahedral or octahedral subgroup of SL(2, C). The study of
equivariant smooth projectivization of SL(2, C)/G for any finite subgroup
G has been completed along their lines in Nakano [14]. The main trick
of these studies is the investigation of equivariant contraction maps of
extremal rays in the context of Mori Theory [11]. In this note, we apply
a similar idea to projective threefolds with a regular action of a simple
algebraic group and determine which simple algebraic groups can act
regularly and nontrivially on projective threefolds and in which fashion.
We also need some standard (but difficult) facts from the theory of Fano
threefolds. For the precise statement, see Theorem 1 in the main text.
For the proof of this theorem, we need a classification of closed subgroups
of simple algebraic groups of codimension 1 and 2, which could be derived
easily from the classical work of Dynkin [4]. However, we shall give a
geometric proof independent of [4] which leads up directly to the proof
of Theorem 1. On the whole, we shall establish by geometric methods
the scarcity of closed subgroups of small codimension in simple algebraic
groups, which is implied in Dynkin [4]. In the following, all the algebraic
varieties and algebraic groups are assumed to be defined over a fixed
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algebraically closed field k of characteristic zero.
I am grateful to Professor T. Kambayashi for critically reading the

manuscript of the present paper and offering useful pieces of advice for
improvement. The contents of this paper constitute the second part of
the author's doctoral dissertation, written under Professor Kambayashi's
direction and submitted to Tokyo Denki University in 1988. The first
part is contained in [14].

§ 2 Statement and proof of the main result

Let G be a simple algebraic group and suppose that G acts on a
projective threefold X regularly and nontrivially. If π: G—>G is the uni-
versal covering map of G, then G acts regularly and nontrivially on X
through π. Hence we may and shall always assume that the acting simple
algebraic group is simply-connected without losing generality. Our main
result is as follows.

THEOREM 1. Let G be a simply-connected, simple algebraic group.

Then the following assertions hold:

(1) There exists a projective threefold X on which G acts regularly

and nontrivially if and only if G — SL{i) (i = 2, 3, 4) or SO(5).

(2) If G = *SX(4), then X is isomorphίc to the projective 3-space F3. //

G = SO(5), then X is isomorphic to P 3 or to a smooth quadric threefold Q2

in P\

Remark 2. (i) In the case G = SL(2), the classification of such X's
has been made complete under the additional hypothesis that X has an
open dense orbit; see Mukai-Umemura [12] and Nakano [14]. As for the
case G = SL(S), Mabuchi has classified completely the smooth projective
threefolds with a nontrivial regular £L(3, C)-action (see [10]). (Actually,
he classified more generally the smooth projective n-folds with a nontrivial
regular SL(n, C)-action.)

(ii) In statement (2) of the theorem above, the G-actions on X are
quite natural ones. Specifics will be given in the proof below.

Proof of Theorem 1. We will prove two lemmas first. Although parts
of the results of these lemmas are contained in the classical work of
Dynkin [4], we shall give self-contained, geometric proofs that lead them-
selves directly to the proof of Theorem 1.
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LEMMA 3. Let G be a simply-connected, simple algebraic group. Then

the following assertions hold:

(1) There exists a closed subgroup H dG of codimension 1 if and only

if G = SL(2).

(2) If G = 51,(2), B: = ίΓ® -Λl α e £ x , bekl is the unique closed

subgroup of codimension 1 up to conjugation.

Proof. We will prove the "only if" part of (1) first. Let H be a

closed subgroup of G such that codimG(ϋ") = 1. Then G/H is an irreducible

smooth quasi-projective curve (cf. Hochschild [6; Chapter XII, pp. 178]).

Let X be the smooth projectivization of GjH. Considering the induced

G-action on the function field of G/H, we find that G acts on X regularly

and G/H is an open dense orbit of X.

Now, since G/H is rational (cf. Mukai-Umemura [12; Lemma (1.15), pp.

503]), X is isomorphic to P1. Let ψ: G -> Aut(Z) ~ PGL(2) be the homo-

morphism induced by the G-action on 1 = P1. If (dim(G) > dim {PGL (2))

= 3, then G acts on X = P1 trivially, contradicting the fact that X has

an open orbit. So dim(G) < 3 and G must be SL(2) if we count the

dimensions of simple algebraic groups.

Next, if G = SL(2), clearly B as above is a closed subgroup of codi-

mension 1. Let H be any such subgroup. Then the argument in (1) shows

that G/H is the open orbit of P 1 equipped with a nontrivial iSZ(2)-action.

But the standard action of SL(2) on P 1 is the only nontrivial *SX(2)-action

on P1, ε n i the isotropy group of a point with respect to this action is

conjugate to B. Q.E.D.

LEMMA 4. Let G be a simply-connected, simple algebraic group. Then

the following assertions hold:

(1) There exists a closed subgroup H C G of codimension 2 if and

only if G = SL(2) or SL(β).

(2) If G = SL(2), then H is conjugate to one and only one of the

following closed subgroups:
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(3) If G — SL(S), then H is conjugate to one and only one of the

following closed subgroups:

H+ = {(aί)1^ί>j^\a21 = α81 = 0},

H_ = (atJ) I α 3 2 α 1 3 - α 1 2 α 3 3 = 0, α 1 2 α 2 3 - α ^ g = 0 } .

Proof. The "if" part of assertion (1) is clear in view of the subgroups

explicitly listed in (2) and (3). Next, we will prove the "only if" part of

(1). Let H be a closed subgroup of G of codimension 2. Then G/H is

a smooth quasi-projective surface. Hence, by Sumihiro [15], there exists

a G-equivariant projective completion i: G/H^—>XQ, where Xo is a pro-

jective surface with a regular G-action and i is a G-equivariant open

immersion. Let /: Xx -> Xo be the normalization of Xo. Then G acts on

Xj in such a way that / is G-equivariant. The singular loci of Xx is a

finite set {Pl9 P2, , Pr] and each Pό is a fixed point of the given action.

We blow-up {Pί, , Pr) and let π\ X2 -*XX be the blowing-up. Then G

acts on X2 so that π is G-equivariant. In this way, we repeat normaliza-

tions and blowing-ups of the singular loci until we finally get a smooth

projective surface X in finitely many steps (this is Zariski's way of resolu-

tion of surface singularities). Thus, we get a smooth projective G-equi-

variant completion j : G/H <=—> X.

Now, we will consider G-equivariant contractions of extremal rays of

X (cf. Mori [11], Mukai-Umemura [12]).

Since GJH is rational (cf. Mukai-Umemura [12; Lemma (1.15)]), X is

also rational and the canonical bundle of X is not numerically effective.

Hence, there exist an extremal ray R and a resulting contraction map

contff, which turns out to be G-equivariant (cf. Mukai-Umemura [12; §5,

pp.513]). The structure of / : = cont β := X—• Y is classified into 3 cases

(cf. Mori [11; Theorem (2.1), pp.141]). If / is a G-equivariant P^bundle

over a smooth curve Y, or X ~ P2 and Y = Spec (A), then we stop. Note

that in the former case, Y ~ Px because Y has an open dense orbit which

is rational. If /: X -> Y is a G-equivariant blowing-up of a smooth

projective surface Y, then Y is again rational and Y has an extremal

rational curve. Applying the same process to Y, we finally get a G-

equivariant morphism of X onto P 2 or P1. Since G acts on P 2 or P 1

nontrivially, we get dim G < dim Aut(P2) = 8. Therefore G must be SL{2)

or SL(S) if we count the dimensions of simple algebraic groups.

Let us now prove (2) and (3). Assume G = *SZ(3). In this case, the
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proof of the "only if" part of (1) shows that GjH has P2 as a G-equivariant

completion. Now, let a+: SL(S) -»GX(3) be the natural 3-dimensional

representation of SL(S) and set <%_:= ((a+Y)~\ the contragradient repre-

sentation of a+. Then, as is well-known, a+ and #_ are all and only

inequivalent 3-dimensional nontrivial representations of SL(3). Let P\

(resp. Pi) be the P2 with an induced 5rL(3)-action from a+ (resp. α_). P\

and P i are all the nontrivial 5Z(3)-actions on P 2 up to 5Z(3)-equivariant

isomorphisms. Now, P\ and P i are homogeneous spaces of $L(3, C) and

P\ ~ SL(3, C)IH+ and P i ~ 51(3, C)IH_. Hence H is conjugate to either

H+ or H_.

Assume G = 5L(2). Then the proof of the "only if" part of (1) shows

that GjH has either P 2 or the Hirzebruch surface Fn: = P{Θpi®Θpi{ — n))

(n > 0) as a G-equivariant completion. An easy analysis of the SL(2)~

actions on these surfaces gives the result. We omit the details since we

do not need this part in the proof of Theorem 1. Q.E.D.

We now turn to the proof of statements (1) and (2) of Theorem 1.

The "if" part of (1) is clear. In fact, if G = SL(ΐ) (i = 2, 3, 4) or SO(6),

then it is easy to see that G can act nontrivially on P3. Let us prove

the "only if" part of (1) and (2) at the same time. Let G be a simply-

connected, simple algebraic group and suppose that G acts on a projective

threefold X regularly and nontrivially. We assume G ψ SL(2), SL($) from

now on.

Let π: X-+X be a resolution of singularities by Hironaka [5]. From

Lemma 3 and Lemma 4, we know that every point of Sing(X) ( : = t h e

singular locus of X) is a fixed point since Sing(X) is a G-stable subset.

Therefore, in the resolution process of X, the center of each blowing-up

is G-stable. Hence we have a regular nontrivial action of G on X such

that π is G-equivariant. Now, we have the following lemma, whose proof

has been simplified to its present form owing to a suggestion of Spencer

Bloch. (A similar argument is found in Bialynicki-Birula [1].)

LEMMA 5. Let G be a simply-connected, simple algebraic group which

is different from SL(2) and SL(S). Assume that G acts regularly on a

projective threefold Z and that xeZ is a fixed point of G. If Z is smooth

at x, then this action is trivial.

Proof. We consider the induced linear representation of G on the

3-dimensional vector space mjml, where mx is the maximal ideal of the
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local ring Θx of germs of regular functions near x. Since G Φ SL(ί)

(i = 2, 3) and άimGL(mJmx) = 9, G acts on mjml trivially. Consider the

following exact sequence:

0 > mjml > Θjml • Θjnιs • 0.

G acts on mjml and Θjmx ~ k trivially so acts trivially on Θjml too,
since G is linearly reductive. Next, we consider the following exact
sequence:

0 • mi/mi > Θjml > Θjml > 0.

Since G acts trivially on m'/m^ d S2(mx/m*) and (jymj, G acts on 0,/mί

trivially. By induction, we find that G acts on Θjml trivially for all

n > 0. So, G acts on the completion Θx of ί^ trivially, hence trivially

on Θx. But this implies that G acts on Z itself trivially. Q.E.D.

Resuming the proof of Theorem 1, we now find X to be G-homogeneous,

since X has no 1-dimensional or 2-dimensional orbits by Lemma 3 and

Lemma 4, and has no fixed points by Lemma 5. Since the exceptional

locus E of π(dX) is G-stable, E must be empty and π is an isomorphism.

Thus, we conclude that X itself is smooth and G-homogeneous.

Now, we will consider the G-equivariant contraction maps of X. By

the same reasoning as in Lemma 4, X has an extremal ray R. If /: =

cont^: X-+ Y is birational, then the exceptional set of / consists of an

irreducible divisor D (cf. Mori [11; Theorem (3.3), pp.146]). Since / is

G-equivariant, D is G-stable which contradicts the G-homogeneity of X

If dim(Y) = l or 2, then Y is also G-homogeneous which contradicts

Lemmas 3 and 4. Hence, we conclude that Y = Spec (k) and X is a Fano

threefold of the first kind. [At this point, noting that X is simply-

connected (cf. Iskovskih [7, [8]), we could apply the classification theory

of Kahler C-spaces ( = simply-connected compact Kahler homogeneous

manifolds) with b2 = 1, and be done with the proof, assuming k = C (cf.

Kobayashi-Ochiai [9]). In this note, however, we persist in the algebro-

geometric approach and give a simple proof which depends on the standard

properties of Fano threefolds of the first kind.]

Let us, therefore, study the G-homogeneous Fano threefolds X of the

first kind, i.e., the ones with Picard number p(X) = 1. Referring the

reader to Iskovskih's papers [7, 8] for basic facts and definitions about

Fano threefolds, we shall show that for such X the index, denoted ind(X),
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cannot equal 1 or 2. Then, ind(X) = 4 (which means X ~ P3) and ind(X)

= 3 (which means X ~ Q2) are the only possible cases.

First, assume that ind(X) = 2. We use the notations of Table (6.5)

in Iskovskih [8; §6, pp. 505], and in the following HePic(X) stands for

the ample generator of Pie(X) ~ Z. It is easy to see that H is a G-

linearizable line bundle (cf. Mumford-Fogarty [13; Chapter 1, §3, pp.30]).

Now, in the case (3) of Iskovskih's table, the linear system |£Γ| has a

unique base point which must be a fixed point of G, a contradiction. In

the case (4), \H\ has no base points and the associated morphism h\ —

ΦlH\' X->PS is a double covering with a smooth quartic ramification S.

Since h is G-equivariant, S is G-stable. But P3 is also G-homogeneous,

a contradiction. In the case (5), X is a cubic threefold which is not

rational (cf. Clemens-Griffiths [3]), a contradiction. In the case (6) (resp.

(7)), h:= φ{H[: X - > P 5 (resp. Pβ) is a G-equivariant closed embedding.

Consider T: = {lines in P5 (resp, P6) contained in X}. It is known that

T = an abelian surface in the case (6) and T ~ P2 in the case (7) (cf.

Iskovskih [7; §5, Remark (5.4), pp.508]). It is easy to check that G acts

on T regularly. Now, from Lemmas 3 and 4, we know that G acts on

T trivially. Hence G fixes every line on X, a contradiction.

Next, let us assume that ind(X) = 1. Then |if| is base-point free

and h:= φιH] is described as in one of the following three cases:

(a) h: X - > P 3 is a double covering with a sextic ramification.

(b) h: X->Q2 (CZP4) is a double covering with a ramification in a

surface of degree 8.

(c) h: X-+Pg+1 is a closed embedding (3 < g < 12, g Φ 11).

In cases (a) and (b), the same argument as the one in the case (4) with

ind(X) = 2 gives a contradiction. In the case (c), it is known that there

is a 1-parameter family of lines on X (cf. Iskovskih [7; §3]), so that the

same argument as in cases (6), (7) with vcA{X) — 2 gives a contradiction.

We can now conclude that X ~ P 3 or Q2 d P\

Now, since dim Aut(P3) = dim PGL (4) = 15 and dim Aut(Q2) < dim

Aut (P4) = 24, the dimension counting of simple algebraic groups leaves

only the following possibilities:

G = A3, A4, C3, -B2, JB3, G2.

(Here we are using the standard notations of the corresponding simple

Lie algebras.)
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But we can immediately eliminate C3, B3 and G2 because the minimum

dimension of their irreducible representations is 6, 7 and 7 respectively

(cf. Varadarajan [20; Chap. 4, Exercises]).

Finally, let us eliminate A4. Assume G = SL(5), and G must then

act on Q2 nontrivially, but not on P3. Then, as one can readily ascertain,

this G-action on Q2 is the restriction of its action on P\ which is induced

by the natural 5-dimensional representation <p+ or φ_\— (φ^)'1. In either

case, P 4 is a G-homogeneous space and does not have any G-stable subset

other than itself, a contradiction.

Therefore G must be SL(4) or SO(5). In the case G = SO(5), there

are a unique 4-dimensional irreducible representation Γ4 and a unique 5-

dimensional irreducible representation Γ5 up to conjugation (cf. Varadarajan

[20; Chapter 4, pp. 394]). We consider P 3 equipped with the £Ό(5)-action

induced by r4. This is the unique ιSO(5)-action on P 3 up to SO(5)-equi-

variant isomorphisms. The other representation T5 is simply the natural

5-dimensional representation SO (5) ->GX(5) and, by definition, this action

makes a nondegenerate symmetric quadratic form q invariant. We set

Q2 = [q = 0} and this 5Ό(5)-action on Q2 is the unique ιSO(5)-action on

In the case G = *SL(4), let β+: SL{4) ->GX(4) be the natural 4-dimen-

sional representation of SL(4) and set /L: = (J3+)"1- Then β+ and /3_ are all

and only (mutually inequivalent) 4-dimensional irreducible representations

of SL(4). We denote the P 3 equipped with an 5X(4)-action induced by β+

(resp, /L) by P3

+ (resp. P3_). Then P3

+ and P3_ are all the nonisomorphic

5L(4)-actions on P3. It is easy to see that SL(4) cannot act nontrivially

on Q2. Q.E.D.

Our Lemmas 3 and 4 above describe all possible closed subgroups of

codimension 1 or 2 up to conjugation in simple algebraic groups. At

codimension 3 level, combining Theorem 1 with Klein's results contained

in Blichfeldt [2] as well as Mabuchi's results [10], we have a complete

classification as follows:

COROLLARY 6. Let G be a simply-connected, simple algebraic group.

Then the following assertions hold:

(1) There exists a closed subgroup H c G of codimension 3 if and

only if G = SL(ΐ) (2 < i < 4) or G = 5O(5).

(2) The following table gives a complete classification of the closed
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subgroups H c G of codίmensίon 3, up to conjugation (or, in other words,

the 3'dimensίonal homogeneous spaces GjH up to G-equiυariant isomor-

phisms) :

G

SL(2)

SL(S)

SL(4)

SO(S)

description of H (or G/H)

5 types of finite subgroups [2]

the dense open orbits of the

following quasi-homogeneous

threefolds of £1,(3):

± Proj(0 p a ® 0p9(-m)) (m> 1),

±Pro j (T p 2 ) .

F3

+, PI

P\ Q2

# of conjugacy classes

oo

oo

2

2

Remark 7. In the above table, Tp2 denotes the tangent bundle of F2,

and the signature ± of P r o j ( 0 P 2 0 0p2(—m)) and Proi(TP2) in the case

G — SL(S) means the same as in the case G = SL(4) (cf. proof of Theorem

1). For the details, see Mabuchi [10] and in the case G = SL(2), see

Blichfeldt [2].
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