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Abstract

We show that Matui’s HK conjecture holds for groupoids of unstable equivalence relations and their
corresponding C∗-algebras on one-dimensional solenoids.
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1. Introduction

After Crainic and Moerdijk [2] introduced homology theory for étale groupoids,
Matui [7, 8] began to study the homology of étale, minimal, topologically principal
groupoids with totally disconnected unit space. He later proposed a conjecture, called
the HK conjecture [9], that if G is an étale, minimal, topologically principal groupoid
with a compact unit space, then K0(C∗r (G)) is isomorphic to the direct sum of the
even homology groups of G and K1(C∗r (G)) is isomorphic to the direct sum of the odd
homology groups of G.

The HK conjecture was confirmed for many important cases. In [7], Matui proved
the conjecture for AF groupoids, groupoids associated with subshifts of finite type
(SFT) and transformation groupoids of Cantor minimal systems. He also showed in [9]
that the HK conjecture holds for all finite products of groupoids of SFT. Groupoids of
k-graphs were shown to satisfy the conjecture for k = 1 with the row-finite condition by
Hazrat and Li [5] and for k = 1 or 2 by Farsi, Kumjian, Pask and Sims [4]. Ortega [10]
verified the HK conjecture for Katsura–Exel–Pardo groupoids of certain self-similar
graph actions.

In this paper, we study Matui’s HK conjecture for groupoids associated to
equivalence relations on one-dimensional solenoids. Introduced by Williams [15],
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106 I. Yi [2]

one-dimensional solenoids are a one-dimensional generalisation of SFTs and the K-
groups of the related C∗-algebras are already known [17]. Thus it is natural to expect
that the HK conjecture holds for groupoids on one-dimensional solenoids. Since one-
dimensional solenoids are Smale spaces, there are six different groupoids for each
one-dimensional solenoid. Among them, we use the groupoids Gu and Gu o Z defined
by an unstable equivalence relation on a one-dimensional solenoid and their groupoid
algebras U and Ru, respectively. Instead of the spectral sequence used in [4, 5, 7–9],
we use the chain complex of skew-products developed by Ortega [10, Lemma 1.4].
The spectral sequence method is useful when the skew-product of the groupoid of
interest is an AF-groupoid. In the one-dimensional solenoid case, the skew-product
of Gu o Z is similar to Gu, that is, not an AF-groupoid. We show that Gu satisfies the
HK conjecture because Gu is equivalent to the transformation groupoid of a Cantor
minimal system and that the conjecture also holds for Gu o Z using the chain complex
of Ortega.

Remark 1.1. We have learned that Scarparo [14] showed that the transformation
groupoids associated with certain (Z o Z2)-odometers are counterexamples to the
general HK conjecture.

2. One-dimensional solenoids and homology

We review the definition of one-dimensional solenoids of Williams [15–17] and
homology theory of groupoids [2, 7].

One-dimensional solenoids. Let X be a directed graph with vertex set V and edge
set E and let f : X→ X be a continuous map. We define additional axioms that may be
satisfied by (X, f ):

(1) (X, f ) is indecomposable;
(2) all points of X are nonwandering under f ;
(3) (Flattening Axiom) there is k ≥ 1 such that for every x ∈ X there is an open

neighbourhood U of x such that f k(U) is homeomorphic to (−ε, ε);
(4) there are a metric d compatible with the topology and positive constants C and

λ with λ > 1 such that for all n > 0 and all points x, y on a common edge of X, if
f n maps the interval [x, y] into an edge, then d( f nx, f ny) ≥ Cλnd(x, y);

(5) f n|X−V is locally one-to-one for every positive integer n;
(6) f (V) ⊆ V.

Let X be the inverse limit space

X = X
f
←− X

f
←− · · · =

{
(x0, x1, x2, . . . ) ∈

∞∏
0

X | f (xn+1) = xn

}
and f : X → X the induced homeomorphism defined by

(x0, x1, x2, . . . ) 7→ ( f (x0), f (x1), f (x2), . . . ) = ( f (x0), x0, x1, . . . ).
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Suppose that Y is a topological space and g : Y → Y a homeomorphism. We call (Y, g)
a one-dimensional solenoid and g a solenoid map if there exist a directed graph X
and a continuous map f : X → X such that (X, f ) satisfies all six axioms and (X, f )
is topologically conjugate to (Y, g). Here (X, f ) is called a presentation of Y . If we
can choose the direction of each edge in X so that the connection map f : X → X is
orientation preserving, then we call (X, f ) an oriented presentation and Y an orientable
solenoid. We call a point x ∈ X a nonbranch point if x has an open neighbourhood that
is homeomorphic to an open interval, and a branch point otherwise. An elementary
presentation (X, f ) of a one-dimensional solenoid is such that X is a wedge of circles
and f leaves the unique branch point of X fixed.

Theorem 2.1 [15]. Suppose that (X, f ) is a presentation of a one-dimensional solenoid.

(1) The inverse limit spaces of (X, f ) and (X, f n) are homeomorphic for every
positive integer n.

(2) There exists an integer m such that (X, f m) has an elementary presentation.

Hence there is no loss of generality in replacing (X, f ) by (X, f n) where n = m · k is
a positive integer such that (X, f m) has an elementary presentation (Z, h) and for every
z ∈ Z there is an open set Uz such that hk(Uz) is an open interval by the Flattening
Axiom. Thus we can assume that every point x ∈ X has a neighbourhood Ux such that
f (Ux) is an interval.

Standing Assumption. In this paper, we always assume that (X, f ) is an orientable
elementary presentation such that all six axioms are satisfied and that every point
x ∈ X has a neighbourhood Ux such that f (Ux) is an interval.

Suppose that (X, f ) is a presentation of a one-dimensional solenoid with the edge
set E. We observe that, for an edge e ∈ E, f (e) is a path e1 · · · en in X such that ei ∈ E.
Then the adjacency matrix M = MX, f of the one-dimensional solenoid (X, f ) is an
n × n matrix given by

M(i, j) = #{e j appearing in f (ei)}.

Dimension groups. The dimension group ∆M of an n × n nonnegative integer matrix
M is the direct limit group

lim
−→
M

Zn = {(v, k) | v ∈ Zn, k ∈ N}/ ∼

with (v, k) ∼ (v′, k′) if there exist i, j ∈ N such that i + k = j + k′ and vMi = v′M j. The
dimension group automorphism δM is the restriction of M to ∆M so that δM is defined
by δM[v, k] = [vM, k]. See [3] for more details.
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Smale spaces. We will omit a formal definition of Smale spaces given by the
[ , ]-operation and refer to [11–13] for details.

Suppose that (Ω, g) is a Smale space where Ω is a compact metric space with a
metric d and that g : Ω→ Ω is a homeomorphism. Two points x and y in Ω are said to
be stably equivalent and unstably equivalent if

lim
n→+∞

d(gn(x), gn(y)) = 0 and lim
n→−∞

d(gn(x), gn(y)) = 0, respectively.

We denote the stable and unstable equivalence classes of x by Ωs(x) and Ωu(x).
Let Gu = {(x, y) ∈ Ω ×Ω : d(gn(x), gn(y))→ 0 as n→ −∞} and

Gu o Z = {(x, n, y) ∈ Ω × Z ×Ω : (gn(x), y) ∈ Gu}.

It is not difficult to verify that Gu is a principal groupoid of the unstable equivalence
relation. Each (g × g)n(Gu,0) is given the relative topology of Ω × Ω and Gu is given
the inductive limit topology. Then Gu is a second countable locally compact Hausdorff
principal groupoid. The Haar system {µx

u | x ∈ Ω} for Gu is described in [12, 3.c].
The product topology of Gu × Z is transferred to Gu o Z via the map ((x, y), n) 7→
(x, n, gn(y)). Then Gu o Z is a second countable locally compact Hausdorff groupoid
with a Haar system. The groupoid C∗-algebras of Gu and Gu o Z are denoted U(Ω, g)
and Ru(Ω, g), respectively. We call U(Ω, g) and Ru(Ω, g) the unstable algebra and
unstable Ruelle algebra, respectively, for (Ω, g). We summarise some facts for one-
dimensional solenoids.

Remark 2.2. Suppose that (X, f ) is a one-dimensional solenoid with an adjacency
matrix M.

(1) Every one-dimensional solenoid is a mixing Smale space [17].
(2) For x = (x0, x1, . . . ) and y = (y0, y1, . . . ) in X, x is stably equivalent to y if and

only if there is a nonnegative integer n such that f n(x0) = f n(y0).
(3) Let T = {x̄ = (x0, x1, . . . ) ∈ X

s
(v̄) : f (x0) = v}, where X

s
(v̄) is the stable

equivalence class of a fixed point v̄ = (v, v, . . . ), and define

Gu(T ) = {(x, y) ∈ Gu : x, y ∈ T }
Gu(T ) o Z = {(x, n, y) ∈ Gu o Z : x, y ∈ T }.

Then Gu and Gu o Z are equivalent to Gu(T ) and Gu(T ) o Z, respectively, in the
sense of Muhly–Renault–Williams [13].

(4) Gu(T ) o Z is an amenable, étale, effective, minimal, second countable, Hausdorff
groupoid whose unit space is T , a Cantor set [13].

(5) From [17],

K0(U(X, f )) � ∆M ,

K1(U(X, f )) � Z,

K0(Ru(X, f )) � Z ⊕ {∆M/Im(Id − δM)} � Z ⊕ Coker(Id − δM),

and

K1(Ru(X, f )) � Z ⊕ Ker(Id − δM).
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Groupoid homology. We briefly review the homology theory of groupoids. See [2,
4, 7, 10] for more details.

For a local homeomorphism π : X → Y between locally compact Hausdorff spaces,
we define π∗ : Cc(X,Z)→ Cc(Y,Z) by g 7→ π∗(g) such that

π∗(g)(y) =
∑
π(x)=y

g(x).

Suppose that G is an étale groupoid. For every n ∈ N, we let

G(n) = {(g1, . . . , gn) ∈ Gn : s(gi) = r(gi+1) for i = 1, . . . , n − 1}.

For n = 1, we let d0,d1 : G(1)→G(0) be the source map and the range map, respectively.
When n ≥ 2 and i = 0, 1, . . . , n, we define di : G(n) → G(n−1) by

di(g1, . . . , gn) =


(g2, . . . , gn) for i = 0,
(g1, . . . , gigi+1, . . . , gn) for 1 ≤ i ≤ n − 1,
(g1, . . . , gn−1) for i = n.

Then we define the boundary operator δn : Cc(G(n),Z)→ Cc(G(n−1),Z) by

δn =

n∑
i=0

(−1)ndi∗.

So we have a chain complex

0←− Cc(G(0),Z)
δ1
←− Cc(G(1),Z)

δ2
←− Cc(G(2),Z)

δ3
←− · · · .

Definition 2.3 [2, 7]. Let Hn(G) be the homology group of the above chain complex,
that is, Hn(G) = Ker δn/Im δn+1.

Remark 2.4. Suppose (X, f ) is a one-dimensional solenoid and Gu, Gu(T ), Gu o Z
and Gu(T ) o Z are as in Remark 2.2. Then [4, Lemma 4.3] implies that Hn(Gu) �
Hn(Gu(T )) and Hn(Gu o Z) � Hn(Gu(T ) o Z) for every nonnegative integer n.

Matui posed the following conjecture in [9, Conjecture 2.6].

HK Conjecture. Suppose that G is a minimal topologically principal étale groupoid
such that G(0) is homeomorphic to a Cantor set. Then

Ki(C∗r (G)) �
∞⊕

n=0

H2n+i(G) for i = 0, 1.

3. HK conjecture for one-dimensional solenoids

Suppose that (X, f ) is a one-dimensional solenoid with its adjacency matrix M,
unstable groupoids Gu and Gu o Z, and corresponding unstable C∗-algebra U(X, f )
and unstable Ruelle algebra Ru(X, f ).
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Definition 3.1 [1]. A closed subset T of a phase space Y of a flow ϕ is called a cross
section if the mapping ϕ : T ×R→ Y defined by (p, s) 7→ ps is a local homeomorphism
onto Y . The first return map rT : T → T of a cross section K is defined by x 7→ y = xsx

where x ∈ K and sx is the smallest positive number such that xsx = y ∈ K.

Proposition 3.2. The HK conjecture holds for Gu, and

H0(Gu) � K0(U(X, f )) � ∆M ,

H1(Gu) � K1(U(X, f )) � Z,

and

Hn(Gu) = 0 for every n ≥ 2.

Proof. By [18, Theorem 3.9], X is the phase space of a flow ϕ : X × R→ X without
a rest point so that Gu is topologically isomorphic to the transformation groupoid
X ×ϕ R. Then, by [18, Proposition 3.14],

T = {x̄ = (x0, x1, . . . ) ∈ X
s
(v̄) : f (x0) = v}

is a cross section of X with the first return map rT induced from ϕ such that Gu(T )
is topologically isomorphic to the transformation groupoid T × Z by the rT -action
on T . So the HK conjecture holds for Gu(T ) and Hn(Gu(T )) = 0 for every n ≥ 2 by
[4, Theorem 6.7]. The conclusions for Gu follow from Remarks 2.2 and 2.4. �

For Gu o Z and the unstable Ruelle algebra of a one-dimensional solenoid, we
use the skew-product of groupoids. Suppose that G is an étale groupoid and that
ρ : G→ Z is a groupoid homomorphism. Then the skew-product G ×ρ Z is G × Z with
the following groupoid structure: (g, n) and (h,m) are composable if and only if g and
h are composable and n + ρ(g) = m, and

(g, n) · (h, n + ρ(g)) = (gh, n) and (g, n)−1 = (g−1, n + ρ(g)).

See [7, 10] for more details.

Definition 3.3 [7, Definition 3.4]. Let G and H be étale groupoids.

(1) Two homomorphisms α, β from G to H are said to be similar if there is a
continuous map θ : G(0) → H such that

θ(r(g))α(g) = β(g)θ(s(g))

for every g ∈ G.
(2) Two groupoids G and H are said to be homologically similar if there are étale

homomorphisms α : G→ H and β : H → G such that β ◦ α is similar to idG and
α ◦ β is similar to idH .

Lemma 3.4 [7, 10]. Let G be an étale groupoid with G(0) a Cantor set and ρ : G→ Z a
groupoid homomorphism. Then
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(1) G ×ρ Z is homologically similar to Ker ρ; and
(2) there is a long exact sequence

0←− H0(G)←− H0(G ×ρ Z)
I−ρ̂1

∗

←−−− H0(G ×ρ Z)←− H1(G)←− · · ·

· · · ←− Hn(G)←− Hn(G ×ρ Z)
I−ρ̂1

∗

←−−− Hn(G ×ρ Z)←− Hn+1(G)←− · · ·

where ρ̂1 : G ×ρ Z→ G ×ρ Z is given by (g, n) 7→ (g, n + 1).

We consider Gu(T ) o Z instead of Gu o Z as they are equivalent groupoids by
Remark 2.2. Define a groupoid homomorphism

ρ : Gu(T ) o Z→ Z given by (x, n, y) 7→ n.

Trivially, Ker ρ = Gu(T ) so that (Gu(T ) o Z) ×ρ Z is homologically similar to Gu(T ) by
Lemma 3.4. Hence Hn((Gu(T ) o Z) ×ρ Z) � Hn(Gu(T )) for every nonnegative integer
n by [7, Proposition 3.5].

Lemma 3.5. Homological similarity between (Gu(T ) o Z) ×ρ Z and Gu(T ) is given by
the following maps:

α : (Gu(T ) o Z) ×ρ Z→ Gu(T ) by ((x, n, y),m) 7→ ( f
−m

(x), f
−m−n

(y)),
β : Gu(T )→ (Gu(T ) o Z) ×ρ Z by (u, v) 7→ ((u, 0, v), 0),

θ : ((Gu(T ) o Z) ×ρ Z)(0) → (Gu(T ) o Z) ×ρ Z

by ((x, 0, x),m) 7→ (x,−m, f
−m

(x),m), and

ψ : (Gu(T ))(0) → Gu(T ) by (u, u) 7→ (u, u).

Proof. It is routine to check that α and β are local homeomorphisms because f is a
homeomorphism, β ◦ α is similar to id(Gu(T )oZ)×ρZ by θ and α ◦ β is similar to idGu(T )
by ψ. �

We note that idGu(T )∗ = (α ◦ β)∗ = α∗ ◦ β∗ and β∗ ◦ α∗ are identity maps on
Hn(Gu(T )) and Hn((Gu(T ) o Z) ×ρ Z), respectively. So the following lemma is trivial.

Lemma 3.6. Let α and β be as above. Then the induced homomorphisms

α∗ : Hn((Gu(T ) o Z) ×ρ Z)→ Hn(Gu(T ))
β∗ : Hn(Gu(T ))→ Hn((Gu(T ) o Z) ×ρ Z)

are isomorphisms with α∗−1 = β∗ for every nonnegative integer n.

Combining Proposition 3.2 and Lemma 3.4, we derive an exact sequence

0←− H0(Gu(T ) o Z)←− ∆M
Id−ρ̄1

∗

←−−−− ∆M

←− H1(Gu(T ) o Z)←− Z
Id−ρ̄1

∗

←−−−− Z←− H2(Gu(T ) o Z)←− 0.
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Here ρ̄1
∗ is the induced map on ∆M and Z from ρ̂1 : (Gu o Z) ×ρ Z→ (Gu o Z) ×ρ Z.

Since H0(Gu(T ) o Z) ←− ∆M and Z ←− H2(Gu(T ) o Z) are epimorphism and
monomorphism, respectively, we have

H0(Gu(T ) o Z) � ∆M/Im(Id − ρ̄1
∗),

H2(Gu(T ) o Z) � Ker(Id − ρ̄1
∗)

and a short exact sequence

0←− Ker(Id − ρ̄1
∗)←− H1(Gu(T ) o Z)←− Z/Im(Id − ρ̄1

∗)←− 0.

Thus, to determine the homology groups of Gu(T ) o Z, we need to describe

ρ̄1
∗ : ∆M → ∆M and ρ̄1

∗ : Z→ Z.

Let α and β be as in Lemma 3.5 and consider

Gu(T ) −−−−−→ Gu(T )

β

y xα
(Gu(T ) o Z) ×ρ Z −−−−−→

ρ̂1
(Gu(T ) o Z) ×ρ Z.

When we define
ρ̃1 : Gu(T )→ Gu(T ) as α ◦ ρ̂1 ◦ β,

we can observe that ρ̃1
∗ = (α ◦ ρ̂1 ◦ β)∗ : Hn(Gu(T ))→ Hn(Gu(T )) is the induced map

of ρ̂1
∗ : Hn((Gu(T ) o Z) ×ρ Z)→ Hn((Gu(T ) o Z) ×ρ Z). Then, for (u, v) ∈ Gu(T ),

ρ̃1(u, v) = ( f
−1

(u), f
−1

(v))

where u = (u0, u1, . . . ) and f
−1

(u) = (u1, u2, . . . ) in X.

Remark 3.7. It is easy to check that ρ̂1 : (Gu(T ) o Z) ×ρ Z→ (Gu(T ) o Z) ×ρ Z is a
groupoid isomorphism. Then the induced maps ρ̂1

∗ on Hn((Gu(T ) o Z) ×ρ Z), ρ̃1
∗ on

Hn(Gu(T )) and ρ̄1
∗ on ∆M and Z are group isomorphisms.

Proposition 3.8. For the groupoid Gu(T ) o Z of a one-dimensional solenoid,

H0(Gu(T ) o Z) � ∆M/Im(Id − ρ̄1
∗),

H1(Gu(T ) o Z) � Z ⊕ Ker(Id − ρ̄1
∗),

H2(Gu(T ) o Z) � Z

and

Hk(Gu(T ) o Z) � {0} for k ≥ 3.
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Proof. We have explained H0 and Hk for k ≥ 3 above. Because ρ̄1
∗ : Z→ Z is an

isomorphism by Remark 3.7, ρ̄1
∗ = Id which implies

H2(Gu(T ) o Z) � Ker(Id − ρ̄1
∗) = Z and Im(Id − ρ̄1

∗) = {0}.

The above short exact sequence becomes

0←− Ker(Id − ρ̄1
∗)←− H1(Gu(T ) o Z)←− Z←− 0.

Since Z is a free group, this sequence splits so that

H1(Gu(T ) o Z) � Z ⊕ Ker(Id − ρ̄1
∗). �

For ρ̄1
∗ : ∆M → ∆M , we recall that Gu(T )(0) is homeomorphic to T so that

C(Gu(T )(0),Z) is identified with C(T,Z).

Lemma 3.9. There is a group epimorphism φ : C(Gu(T )(0),Z)→ ∆M .

Proof. We note that T � Gu(T )(0) is a Cantor set and that the first return time map rT

is a minimal homeomorphism because the orbit under rT of every x ∈ T is dense. So
(T, rT ) is a Cantor minimal system and there is a Bratteli–Vershik system (BT , λT ) that
is topologically conjugate to (T, rT ) [6, Theorem 4.7]. Thus we can identify T with
the infinite path space B∞T of the Bratteli diagram BT . Moreover, the Bratteli diagram
BT is stationary and the incidence matrix of BT is the adjacency matrix M of the one-
dimensional solenoid (X, f ) [18, Proposition 3.14]. We recall that the (i, j)-term of
M is the number of edges from the vertex j in the kth level of BT to vertex i in the
(k + 1)th level (see [3, 6] for details).

For every natural number k, let Bk be the collection of allowed paths of length k in
BT and, for each γ ∈ Bk, define the cylinder set Z(γ) by

Z(γ) = {e1e2 · · · ∈ B∞T : e1, . . . , ek = γ}.

Let
Pk = {Z(γ) : γ ∈ Bk}.

Then every Pk is a finite partition of B∞T satisfying P1 < P2 < · · · . Here Pi < Pi+1 means
that every element of Pi+1 lies in some element of Pi.

We consider γ = e1 · · · ek ∈ Bk and the characteristic function χZ(γ) of Z(γ). Let us
denote the terminal point of γ as t(γ). If t(γ) = t(ek) is the vertex i, we define a map

φk : χZ(γ) 7→ (0, . . . , 1, . . . , 0) ∈ Zn

where 1 appears only at the ith place. On the other hand,

Z(γ) =
⋃
γl=γel

Z(γl)

is a union of elements of Pk+1, so that

χZ(γ) =
∑

χZ(γl).
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Then φk+1 maps each χZ(γl) to (0, . . . , 1, . . . , 0) where 1 appears at the terminal vertex
of el.

Suppose that t(γ) is the vertex i. Then the number of paths γl = γel in the Bratteli
diagram such that t(γl) = j is equal to the number of edges from i in the (k + 1)th level
of BT to vertex j in the (k + 2)th level, that is, the ( j, i)-term of M. So

φk+1(χZ(γ)) =
∑

φk+1(χZ(γl)) = (mi,1, . . . ,mi,n) = φk(χZ(γ))M.

Each cylinder set Z(γ) is a clopen subset of T , and the collection of all cylinder sets
is a countable basis of T . Thus C(T,Z) is generated by the collection of characteristic
functions of cylinder sets and φk extends to C(T,Z). Then it is routine to show that

φ : C(T,Z)→ ∆M given by h 7→ [φk(h), k] = [φk+1(h), k + 1]

is a well-defined group epimorphism. �

Remark 3.10. Note that (x, y) ∈ Gu if and only if d( f
−n

(x), f
−n

(y))→ 0 as n→∞.
So there is a large N such that, for every k ≥ N, xk and yk are contained in the same
circle of X and they are located near to each other. When we consider Gu(B∞T ) = Gu(T )
instead of Gu, where BT is the Bratteli diagram for (T, rT ), the discreteness of B∞T
implies that (x, y) ∈ Gu(B∞T ) if and only if xk = yk for every k ≥ N. Hence the cylinder
sets of Gu(B∞T ) are Z(γ1) × Z(γ2) with the restrictions of γ1, γ2 ∈ Bk and t(γ1) = t(γ2).
Here, t(γ) denotes the terminal vertex of γ. See [18, Section 3] for more details.

Lemma 3.11. The induced map φ∗ : H0(Gu(T ))→ ∆M is an isomorphism.

Proof. We show that Kerφ = Imδ1. Consider χZ(γ1)×Z(γ2) ∈ C(Gu(T ),Z). Then

δ1(χZ(γ1)×Z(γ2)) = r∗(χZ(γ1)×Z(γ2)) − s∗(χZ(γ1)×Z(γ2)) = χZ(γ1) − χZ(γ2)

with the restrictions γ1, γ2 ∈ Bk and t(γ1) = t(γ2) implies

φk ◦ δ1(χZ(γ1)×Z(γ2)) = φk(χZ(γ1)) − φk(χZ(γ2)) = 0.

Hence Kerφ ⊇ Imδ1.
Let h =

∑
aiχZ(γi) ∈ Kerφ. Since we have an ascending chain P1 < P2 < · · · of

partitions, without loss of generality, we can assume that there is a sufficiently large
k ∈ N such that every Z(γi) ∈ Pk and φk(h) = 0. We divide {γi} into the union of n
subclasses ∪n

j=1{γ j,1, . . . , γ j,l( j)} such that t(γ j,1) = j. Then

h =
∑

aiχZ(γi) =

n∑
j=1

l( j)∑
l=1

a j,lχZ(γ j,l) and φk(h) =

( l(1)∑
l=1

a j,l, . . . ,

l(n)∑
l=1

a j,l

)
= (0, . . . , 0).
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Now
∑l( j)

l=1 a j,l = 0 implies

l( j)∑
l=1

a j,lχZ(γ j,l) =
1

l( j)

l( j)∑
l=1

l( j)∑
m=1

a j,l(χZ(γ j,l) − χZ(γ j,m))

=

l( j)∑
l=1

l( j)∑
m=1

a j,l

l( j)
(r∗(χZ(γ j,l)×Z(γ j,m)) − s∗(χZ(γ j,l)×Z(γ j,m)))

=

l( j)∑
l=1

l( j)∑
m=1

a j,l

l( j)
δ1(χZ(γ j,l)×Z(γ j,m)),

and

h =

n∑
j=1

l( j)∑
l=1

a j,lχZ(γ j,l) =

n∑
j=1

l( j)∑
l=1

l( j)∑
m=1

a j,l

l( j)
δ1(χZ(γ j,l)×Z(γ j,m)) ∈ Imδ1.

Thus Kerφ = Imδ1, which implies

C(Gu(T ),Z)/Kerφ = C(Gu(T ),Z)/Imδ1 = H0(Gu(T )).

Therefore the induced map φ∗ : H0(Gu(T ))→ ∆M is an isomorphism. �

Recall that C(Gu(T )(0),Z) is identified with C(T,Z) so that, for any h ∈ C(T,Z) and
its corresponding element [h] ∈ H0(Gu(T )),

ρ̃1
∗[h] = [h ◦ ρ̃1] = [h ◦ α ◦ ρ̂1 ◦ β] = [h ◦ f

−1
].

Lemma 3.12. The following diagram commutes:

H0(Gu(T ))
ρ̃1
∗

−−−−−→ H0(Gu(T ))

φ∗

y yφ∗
∆M −−−−−→

δ−1
M

∆M .

Proof. We consider (ρ̃1
∗)
−1 instead of ρ̃1

∗. Since f : (x0, x1, . . . ) 7→ ( f (x0), x0, x1, . . . ), its
corresponding map on B∞T , which is also denoted by f , maps e1ε2 · · · 7→ e0e1e2 · · · .

For γ = e1e2 · · · en ∈ Bk, we compare χZ(γ) with χZ(γ) ◦ f . Obviously

e ∈ supp(χZ(γ) ◦ f ) ⇐⇒ f (e) ∈ Z(γ) ⇐⇒ e ∈ Z(e2 · · · en)

induces χZ(γ) ◦ f = χZ(e2···en) and

φk−1(χZ(e2···en)) = φk(χZ(γ)) ∈ Zn.

Then we apply φ to χZ(γ) and χZ(γ) ◦ f :

φ(χZ(γ) ◦ f ) = φ(χZ(e2···en)) = [φk−1(χZ(e2···en)), k − 1]
= [φk(χZ(γ)), k − 1] = [φk(χZ(γ))M, k],

φ(χZ(γ)) = [φk(χZ(γ)), k].
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So

φ∗ ◦ (ρ̃1
∗)
−1[χZ(γ)] = φ∗[χZ(γ) ◦ f ] = [φk(χZ(γ))M, k] = δM[φk(χZ(γ)), k] = δM ◦ φ∗[χZ(γ))],

that is, φ∗ ◦ (ρ̃1
∗)
−1 = δM ◦ φ∗. Therefore the diagram commutes. �

Thus we have the following property of ρ̄1
∗ on ∆M .

Proposition 3.13. The induced map ρ̄1
∗ : ∆M → ∆M is given by [v, k] 7→ δ−1

M [v, k] where
δM is the dimension group automorphism determined by M.

Recall that δM is an automorphism on ∆M so that δM ◦ (Id − δ−1
M ) = δM − Id and

Id − δM have the same kernel and cokernel. Combining Propositions 3.8 and 3.13
leads to the following result.

Theorem 3.14. The HK conjecture holds for Gu o Z and

K0(Ru(X, f )) � H0(Gu o Z) ⊕ H2(Gu o Z) � Z ⊕ {∆M/Im(Id − δM)},

K1(Ru(X, f )) � H1(Gu o Z) � Z ⊕ Ker(Id − δM),
Hn(Gu o Z) = 0 for every n ≥ 2.
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