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Abstract

A quantum local time, which is a generalized operator-valued process, is defined for quantum Brownian
motion, and a quantum analogue of the classical Tanaka formula is then established.
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1. Introduction

In classical stochastic analysis, we have the following Tanaka formula for Brownian
motion {B;, t > 0}:

t

t
|B,—a|=|a|+f Sgn(Bs—a)dBS—f—/ 8a(Bg)ds t>0,aeR (1.1)
0 0

where fot 34(By) ds is known as the local time of { By, t > 0} at a € R. It is proved that
the process

'
{Lf :/ 84(Bs)ds,t >0, a ER}
0

is the density of the measure A — fot 14(Bs) ds on (R, B(R)), and a continuous
Markovian process with respect to (¢,a) on R, x R; moreover, Chung and
Williams [2] applied local time to study the Brownian motion with a rejection wall.
Furthermore, the It6 formula was extended to convex functions applying local time.
On the other hand, white noise analysis initiated by Hida [3] is essentially an
infinite-dimensional analogue of Schwartz’s distribution theory, which has important
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applications in many fields, including stochastic analysis and quantum physics [7, 9,
10]. The mathematical framework of white noise analysis is the Gel’fand triple

(E) C (LY C (E)*

over S(R) ¢ L%(R) C §*(R), where (E) and (E)* are known as Hida’s testing and
generalized functional spaces, respectively. Let £ = L[(E), (E)*] be the space of
continuous linear operators from (E) to (E)*. Elements of £ are called generalized
operators (GOs), which are significant generalizations of bounded operators on Hilbert
space (L?).

Quantum Brownian motion, which is an observable of Schwartz class and §-
composable [12, 14], is a very important operator-valued process in white noise
analysis. The quantum It6 formula holds only for the product of two quantum semi-
martingales, hence it is meaningful to investigate the quantum local time and quantum
Tanaka formula of quantum Brownian motion. As we will see, the quantum Tanaka
formula has a similar form to the classical one.

The paper is organized as follows. In Section 2 we recall some notions, notation and
lemmas in white noise analysis. In Section 3 the quantum local time of {Q; | t > 0} is
defined, which is the density of a generalized operator-valued measure (GOVM) from
B(R) to £, and we therefore name it the quantum local time. In the final section, the
Tanaka formula is established.

2. Preliminaries

In this section, we briefly recall some notions, notation and facts in white noise
analysis. For details, see [1, 4-6, 8, 11, 13, 15, 16].

Let H = L*(R, dt; R) be the Hilbert space of real-valued square integrable func-
tions on R with norm | - |p and inner product (-, -). The space E = S(R) (respectively
E* = S*(R)) is the space of Schwartz rapidly decreasing (respectively generalized)
functionals. E is a nuclear space and we have a Gel’fand triple £ C H C E*.
The canonical bilinear form on E* x E denoted by (-, -) coincides with the inner
product of H.

Let 1 be the standard Gaussian measure on E* and let (E*, u) be the white noise
space. By the method of second quantization, we have a complex Gel’fand triple,

(E) C (L*) C (E)*,

which is known as the canonical framework of white noise analysis and (L%) =
L?(E*, u; C). The canonical bilinear form on (E) x (E)* is denoted by (-, -).
DEFINITION 2.1. For x € E(, the Wick product of x is defined inductively as follows:

x®0 =1,

x®l =,

@ = x @ x® (= DT & x® % forn>2

where 7 € E* ® E* satisfies (t, f @ g) = (f. g). f. g € E.
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For & € Ec, the exponential functional ¢¢ associated with & is defined as

+00
1
e (x) = MOTENR N T (o @ g9 x e B
n.
n=0

The set {¢z, & € E{}istotalin (E). For T € L[(E), (E)*], its symbolf (EE X EE —
C is defined as A

The self-adjoint operator from (L?) to (L?) is called an observable.

LEMMA 2.2. Suppose that {X (t),t >0} C L, M € B(R}). If {X (), t = 0} satisfies
the conditions:

(1) forany&,ne€ Ec, )?(3(5, n) : M +— C is measurable;
(2) there exist a constant K, p > 0, and a nonnegative measurable function c(t) in
R integrable in M, such that

IX(D)(E, )| < c@) exp{K(E% + n2)} &1 € Ec,

then for any [, m € N, the integral of quantum white noise of {X (t)} in M with respect
to Wi, (dt) exists, denoted by

/X(t)dwl,m(z)zf X(t)odomdterL
M M
and
/MX(I)Wm(t)(é, n)=/Mf(\t)(S, mE (On™ (1) dt &, 1€ Ec.

REMARK 2.3. :W, ,(dt) = 33" dt is the quantum white noise measure, where
or, 8,* are the annihilation and creation operators.

DEFINITION 2.4. An observable 7 in (L?) is called an observable of Schwartz class
if, for any &, n € E, there exists a function pg n € E¢c such that

<<PT<S)¢5,¢,7>>=/S/>§,7<A) dr, SeB®),

where Pr is the spectral measure of 7. The function ,o?y 0 is called the spectral density
of T corresponding to &, .
LEMMA 2.5. Let T be an observable of Schwartz class with spectral density pg’ 0"

Then for any bounded Borel measurable function f : R — R, we have f(T) € LI(LY]
and

FE ) = (. oL,).
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PROPOSITION 2.6. Let T be an observable of Schwartz class with spectral density

'OST,U’ and let O (&, n) = ,OSTJ](O) for&, ne€ Ec. Then T is §-composable if and only if

1 satisfies the following two conditions:

(1) forany &, &, 0,0 €E, (s,0)>®p(E+s&,n+1n),s, t €R, has an entire
analytic extension to C x C;

(2) there exist constants C, K, p > 0 such that

D7 (5. | < C exp{K (51 + %)} & n e Ec.
In this case, §(T)(&, n) = p[, (0).
Let (£, n)o = (&, 77) for £, n € Hc. The Weyl operator W (1) on (L?) is defined as

2
|u|0

W(u)p: = eXP{—(S, U)o — T}¢E+u-

Obviously W(u) is a unitary operator on (L. For t>0, u; = lLjo,s] € He, let
Us = W(isu;), s € R. Then {U; | s € R} forms a strongly continuous semigroup of
unitary operators. By Stone’s theorem, there exists a self-adjoint operator Q; such
that W (isu;) = €. Then {Q; |t > 0} is called the quantum Brownian motion,
dQ;=(0; +9)dtanddO; - dQ; = dt.

3. Quantum local time

In this section, we define the quantum local time of {Q; | > 0} and show that it is
the density of a measure on the Borel o-field B(R). Let § be the Dirac §-function; then
8 is a Schwartz generalized function.

As the self-adjoint operator, Q; has the spectral decomposition

o =/ AP (d),
R
where P; is the orthogonal projective operator on (L?) corresponding to Q, and

Us = [ e Pi(d)), s € R.

PROPOSITION 3.1. Foranyt >0, Q; is an observable of Schwartz class with spectral
density

1 1
pey () = WorT CXP{(Sa mo — Z()» —(u, §+ 71)0)2}-

Moreover, fé 8(Qs)ds € L and forany &, n € Ec,

r__ _ t 1 1 )
/0 8(Qs) ds(§, ) —/0 ﬁeXp:(g’ mo — g(us, § +n)o} ds.
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PROOF. Let &, n € Ec. Then {(P,()¢z, ¢,) : BR) — C is a Borel measure. For
s e R,

/R M P (dN) . dy) = <</ ’“P(dx>¢s,¢n>>=<<W<isur>¢é’¢’n>>

2

i (. isur)o — '”Z"O
s2t

i & +mn,isu)o— — + (&, n)o}

2
(L= (ur, € + 1)) } a
2t

} (Detisu, dn)

A p—
_/Re \/z—mexp{($9 T])O

which implies

1 (= (us, €+ 1))
WorT exp{@, mo — > } dx,

thus, Q; is an observable of Schwartz class with spectral density

(Pr(dM)oz, ) =

1 1
Pz (M) = WorT eXP{(S, mo — Z()» —(ur, &+ 77)0)2}-

For &, &', n, n’ € E, the function

(8. 7) = Py serpiry P

: I
ET eXp{@ 58 n o — =, &+ 58+ + rn')o)z}

has an entire analytic extension to C x C and

| o} (0>|<#exp E(|s|2+|n|2)
& =~ 2ni NS lp |

Hence by Proposition 2.6, for each ¢ > 0, Q; is §-composable, and §(Q;) € L,

—_— l
500G, m =6, pL.) = pl.,(0) = (& o — 5 (ur € + n)%}.

1
——F ¢X
N p{
By Lemma 2.2, [i 8(Q;) ds € £ with ¢(s) = 1/+/27s, K = 1/2 and

o A
/O 5(Qy) ds(, n) :/(; §(Qs)(E, mds

J— ! 1 1 2
= /0 Nor eXp{(S, o — E(”s, &+ n)o} ds

This concludes the proof. O
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COROLLARY 3.2. For any a € R and t > 0, we have fot 84(Q5) ds € L, and for any
§,n€Ec,

o t 1
84(Q;) ds (&, =
/O (0) ds(€, ) /0 —

1
eXP{(c‘?, no — Z(a — (us, & + 77)0)2} ds.

Next, we define a generalized operator valued measure on (R, B(R)), with GO-
valued density.
THEOREM 3.3. For B e B[R),t >0, fot 15(Qs)ds € L and the map B>
Jo 18(Qy) ds € L from B(R) to L defines a GOVM with density [, 5,(Qy) ds.

PROOF. For any B € B(R), 1p is a bounded Borel function, by Lemma 2.5, 13(Q5) €
L and for &, n € Ec,

e _ s _ 1 A —(us, &+ 77)0)2
(@0 = [ ot,0dn= [ exp{(g, Do — L }dA

which satisfies the conditions in Lemma 2.2, hence fé 15(Qy) ds € L and

t P l/\
/1B<Qx>ds<s, n)=/0 [5(0)(E. n) ds

0
' _ 2
:// 1 exp{(f;‘, n)o—(k (us, & +1no) }dkds
0JB

N2ms 2s
_ ([ (A — (s, & + n)o)?
_/B/O \/mexpi(é, no — s }dsdk.

It is easy to see that the complex-valued function B +— fot lg/(-a) ds(&,n) is
o-additive on B(R). In fact, for any {A,,} C B(R), A, N A, = 0 with n £ m,

t —_—
fo Iy an(0y) ds(&, 1)
r t
- / Iy an (09 €, 1) ds = / / P, () dids
0 0JXZ,A,

' _ 2
:/ / 1 exp{(é, o — (A — (us, § +n)o) }dk s
0 /3,4,

N2ms 2s
< [ I (A — (s, & + 0)o)?
—zn/O /ﬂmexp:(s,mo— > }dxds

o r_
= En/(; 14,(Q5)(, m) ds = Zn/O 14,(Qy) ds(§, n)
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which shows that fot 11(Qs) ds is a GOVM on (R, B(R)), and

t P 4 —
/013<Qs)ds(s, n)=/0 T5(00)(E, n) ds

t 1 A — (us, € +10)0)?
=//Fexp{(§, 77)0—( (u Zf n)o) }d)»ds
(h — (ug, & +1)o)?
//0 FGXP{(é mo — P }d dx
/f 500, n) ds di = //SA(Q ) ds diGe, ),
hence . .
/ 11.’3(Qs)ds=//3A(Qs)dsa')L
0 BJo
and the GOVM B — fé 15(Qy) ds has density f(; 8,(05)ds € L. O

DEFINITION 3.4. Fort > 0 and a € R the generalized operator fot 84(Qy) ds is called
the quantum local time of quantum Brownian motion {Q;, t > 0} at a € R, denoted
by L{. The GO-valued process {L{ |t > 0, a € R} is called the quantum local time
process.

Next, we will interpret the meaning of the quantum local time of L{. For any ¢ > 0,
aeRand§, ne Ec,

— t —
Lo, ) = /0 52(0) ds (. )

AR (a — (us. & +mo)°
= /0 — exp{(s, Mo — R }ds

t a+te _ 2
:/ . 1 exp{(f, 1y O (s € 10) }dm

0 €02 J, ¢ 2s 2s

t 1 ate
_ / im — [ 5000 n) dxds
0 2

e—0 a—e

! 1 rate
:/0 lim _/ (81(Q5) e, ) dX ds

e—~02€ J, ¢

t ) 1 a-+te

= /0 Elgr%) Z«/{;_é 3. (Q5) drde, ¢n>> ds
t 1 a+e S

=/ lim 2—/ 5.(05) di(&, n) ds

—€

! 1
_ / lim = 1(a-cate(Qs) ds(&. n).
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In the sense of GO symbols,

R
Ly :elfb Z/O La—e,a+e)(Qs) ds

and

1!
lim —/ 1(a—e,a+e)(Qs) ds
0

e—0 2¢€

1
=1lim —L{s;s€[0,t], Oy =Al, A€ (a—¢€,a+¢€)}
e—0 2¢€

where L denotes the Lebesgue measure on R.

4. Quantum Tanaka formula

In this section the quantum Tanaka formula for the quantum Brownian motion
{Q; | t > 0} is established; its form is similar to the classical case. In this part all
quantities are to be interpreted in the sense of GO symbols.

PROPOSITION 4.1. Fort >0, fé sgn(Qs)(0s + 9)) ds € L and for any &, n € Ec,
t —_—
/ sgn(Q;)(ds + 95) ds (&, n)
0

t
=/ (5(S)+U(S))/ sgn(d) “.D
0 R

1
V21
(h — (us, & +1)0)?
2s

PROOF. sgn(-) is bounded on R, by Lemma 2.5, sgn(Qj) € £ and for any &, n € Ec,

X exp{(.ﬁ-‘, n)o — } drds.

sen (@&, 1) = [ senant )
N 4.2)

_ 1 O — (us, € +mo)?
= /R sgn(3) %exp{@, "o — > }dx.

It is measurable in s and

Isgn(Q,)(E, )| < explL(EZ + InD));

by Lemma 2.2, sgn(Qy) is integrable in (0, ¢#] with respect to Wy 1(ds) + Wi.0(ds).
Also

t —
/O sen(0,) (0, F 9%) ds (&, n)
i .
_ /0 sgn(05) (@ + 35) ds (&, 1)

t P t e
=/0 sgn(Qy)ds ds(§, n) +/0 sgn(Qy) oy ds(§, n)
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t P t P
Z./o £(s)sgn(Qs) (&, m) dS+/0 n(s)sgn(Qs) (€, n) ds

! 1
= A
fo (&(s) +n(s)) /R sgn( )m
_ 2
X eXp{(é, mo — ( = (45, § + o) } dids.
2s
This concludes the proof. O

COROLLARY 4.2. Fort >0, a € R, we have fot sgn(Qs —al)(9s + 37) ds € L and

t —_—
/0 sgn(Qs —al)(9s + 3¥) ds(&, n)

t
1
= [ EG) +77(S))/ sgn(A —a) 4.3
/0 R & V2ms 3
A — 2
xexp{(é, mo — ( (t5, £ + 1)o) }dkds.
2s

PROOF. The result follows by a simple computation. (N

THEOREM 4.3. Foranyt > 0,

t t
IQrI=/0 Sgn(Qs)(3s+3.f)dS+/o 8(Qs) ds.

PROOF. By Proposition 3.1, Q; is an observable of Schwartz class:
o] :/ AP/(dr) and  Q,(E. ) :/ ok, (d)), & neEc.
R R

Applying Lemma 2.5 for f(x) = |x| we have

101, ) = /R Aok, (1) dA

_ 1 (h = (ur, £ +1)o)?

—/meexp{(s, Mo — 5, }dk
1 22

=/R|«/?x+(uz,é‘+n)olmexp{(5, n)o—;}dk

B 1 22
_/ mexp{(ga 77)0—?}
A

t
X / sgn(+/sA + (ug, & + n)o)<2— +(E(s) + n(s))) ds d
0 \/E
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t )\’ A‘z
Z/Rfo e sen(5h+ (e £ o) exp{(g, n)o_?}ds "

+/ ! ex i(é ) —A—z}
R«/E P1(, Mo )
t
X fo sgn(v/sA + (ug, § + 1)) (E(s) + n(s)) ds d

t 1 )\’2
=—/0 SWorTi ngn(ﬁk+(us,é+n)0)d<exp{(é, 77)0—?}) ds
! 1
+f0 (§(s) +77(S))/ngn()»+ (us, & +n)o)—F—

V2r

)\2
X exp{(é, n)o — 7} drds

1 [t A2
/O /Rexp{@, n)o—7}-28(ﬁx+<us,s+n>o>dxds

- 2 N2ms
! 1
A
+/0 (S(s)—|—r](s))/ngn( )m
(h — (us, & +1)0)?

X exp{(.ﬁ-‘, n)o — s } dirds

s (us, § + 1)
[ ool - 508

t
+ fo (E(s) + 1)) (sgn, pi.,) ds

AR (us, & + )3
- /0 Tﬂexp{(&n)O—T}ds

t —_—
+f0 (&(s) +n(s))sgn(Qs) (&, ) ds

l/\ t e
=/0 5(0,) ds(:, n)+/0 sen(0,)(@ + 97) ds (&, ).

Hence | Q/| = [y sgn(Qs)(3s + 97) ds + [3 8(Qy) ds. O
THEOREM 4.4. Foranyt > 0anda € R,

t

t
Q1 —all= Ia|1+/ sgn(Qs — al)(ds + ;) ds+/ 84(Qs) ds
0 0

where I : (L?) — (L?) is the identity operator.
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PROOF. By the spectral decomposition of Q; € L,

0 —al = fR (= a)P(d) and (O —aD(E n) = /R (= a)pf,, ().
Then

0 —al| = /R . —alPi(d}) and |Q; —al|(E.n) = A@ | — alpt, (dh).

Applying Lemma 2.5 for f(x)=|x —al|, and with a similar computation in
Theorem 4.3, Corollary 3.2 as well as Corollary 4.2, the equality

t t
|Qr —al| = |all +/ sgn(Qs — al)(d; + 9) ds +/ 34(Qy) ds
0 0
holds. |

DEFINITION 4.5. For t > 0 and a € R, the equality in Theorem 4.4,

t

t
IQz—all=Ia|1+/ sgn(Qy —al)(3s+3.f)dS+/ 84(Qys) ds,
0 0

is called the quantum Tanaka formula of {Q; |t > 0} at a.

REMARK 4.6. The last term in the quantum Tanaka formula is the quantum local time
L{ defined in Section 3.

COROLLARY 4.7. Fort > 0anda € R,

t
1
(Qr—aht = / L(a,400)(Q5) (05 + 05) ds + ELQ’
0

! 1
(Qr —al)” = /o 1(—00,a)(Q5) (35 + 05) ds + EL?-
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