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Abstract
The accuracy of several numerical schemes for solving the lifting-line equation is investigated. Circulation is rep-
resented on discrete elements using polynomials of varying degree, and a novel scheme is introduced based on a
discontinuous representation that permits arbitrary polynomial degrees to be used. Satisfying the Helmholtz the-
orems at inter-element boundaries penalises the discontinuities in the circulation distribution, which helps ensure
the solution converges towards the correct, continuous behaviour as the number of elements increases. It is found
that the singular vorticity at the wing tips drives the leading-order error of the solution. With constant panel widths,
numerical schemes exhibit suboptimal accuracy irrespective of the basis degree; however, driving the width of
the tip panel to zero at a rate faster than the domain average enables improved accuracy to be recovered for the
quadratic-strength elements. In all cases considered, higher-order circulation elements exhibit higher accuracy than
their lower-order counterparts for the same total degrees of freedom in the solution. It is also found that the discon-
tinuous quadratic elements are more accurate than their continuous counterparts while also being more flexible for
geometric representation.

Nomenclature
AR aspect ratio
aP amplitude of Pth basis
b wingspan
c local chord
CD drag coefficient
CL lift coefficient
CL,α wing lift-curve slope
cl,α section lift-curve slope
e span efficiency factor, C2

L/(πARCD)

N number of elements
P polynomial degree
S wing planform area
w downwash velocity
y spanwise abscissa

Subscripts
c control point
i induced
j, k element indices
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L, R left- and right-side contributions
tip wingtip

Greek Symbol
α angle-of-attack
α0 zero-lift angle-of-attack
� bound circulation strength
γ trailing vorticity strength, d�/dy
ε wing twist
η isoparametric coordinate
ξ non-dimensional mapping coordinate

1.0 Introduction
Surface-singularity methods are a well-established technique for predicting the inviscid characteris-
tics of an aerodynamic configuration, including lift, pitching moment, and vortex-induced drag. The
methods originate from linear potential flow, which permit exact Green’s function solutions that can be
combined using linear superposition [1]. The resulting composite solution represents an exact solution
to the governing equations (which are themselves an approximation of the Navier-Stokes equations).
While potential flow requires the fluid domain to be irrotational, vorticity is necessary to generate lift.
As such, its influence may be included by confining it to the surface, whereby it emulates the vorticity
contained in the boundary layer, and in the trailing wake. Both regions are formally excluded from the
potential flow domain. The singularities have a global influence on the flow field that decays with dis-
tance, meaning that the full flow field can be found by satisfying only the surface boundary condition. In
other words, the governing equations do not need to be solved off the body as in Euler or Navier-Stokes
computational fluid dynamics methods [1].

Notable early applications of singularity methods for lifting geometries include the well-known
Joukowsky transformation, which describes two-dimensional flow about a class of aerofoils [2], and
the lifting-line model for finite-span wings developed originally by Lanchester [3] and formalised by
Prandtl [4] in which a bound vortex filament of varying strength, and the associated trailing vortex sheet
necessary to satisfy Helmholtz’s circulation conservation theorem, is used to capture the effect of cir-
culatory lift (per Stokes theorem) and predict the vortex-induced drag. Prandtl’s lifting-line formulation
has had an undeniable impact on the field of aerodynamics, and the minimum-induced-drag solutions
[5, 6] remain important benchmarks in aerodynamic design. Analogous vortex-based approaches have
also been applied to screw propellers, such as by Goldstein who used it to find the minimum loss
propeller [7]. The properties of a singular vortex sheet was used by Munk to construct thin-aerofoil
theory by providing a strategy to support a tangential velocity discontinuity across a streamline taken
to be the mean camber line [8]. Exact solutions to this theory are enabled by the Glauert integral [9].
Theodorsen [10] and Wagner [11] extended thin-aerofoil theory to include unsteady dynamics due to har-
monic motion and indicial responses, respectively, with exact expressions available for small-amplitude
motions.

Thin-aerofoil and finite-wing theories may be further generalised into lifting-surface theory in which
the vortex sheet strength varies in both the spanwise and chordwise directions over the planform, while
the strength of the trailing vortex sheet varies only in the spanwise direction [12]. Singularity methods
may be further generalised to include thickness effects using various arrangements of doublets along the
surface [1]. These methods are extensible to flow regimes beyond linear potential flow, such as subsonic
compressible flow and linearised supersonic flow through the Prandtl-Glauert transformation. In two
dimensions this manifests as a simple correction factor based on free-stream Mach number, but in three
dimensions requires a detailed scaling of the geometry and application of Goethert’s rule to find local
pressure coefficients.
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Outside of simple geometries and certain asymptotic limits, closed-form solutions to surface-
singularity representations are generally unavailable. Therefore, numerical approximations are required
to either the governing equations or the enforcement of the boundary conditions. Spectral-like collo-
cation methods1 are available for the lifting-line model applied to planar wings, such as the method of
Multhopp [13]. More flexibility in representation is obtained by using singularity elements with finite
spatial extent (but global influence) and polynomial strength distributions. The flow tangency condition
on the surface is satisfied at a finite number of points on each element. In essence, the discrete surface-
singularity solutions are exact solutions to the governing equation with approximate enforcement of the
surface boundary condition. For lifting-line and lifting-surface methods, it is common to use constant-
strength horseshoe vortex elements and/or vortex rings as the elements [1, 14]. Higher-order (quadratic)
vortex elements have been used by Horstmann for fixed-wing applications [15], and this method has
been extended to force-free wakes by Bramesfeld [16] and rotating systems by Basom [17].

For geometries with thickness, the surface is discretised using a water-tight set of panels (giving the
common name of “panel methods”). Early and well-known panel methods are those Hess and Smith
[18], Hess [19], and Woodward [20] which use low-order basic singularity elements. Later evolutions
of the concept such as PANAIR [21, 22] used by Boeing and the Hess and Friedman method [23] used by
Douglas Aircraft employed higher-order (i.e. non-constant) singularity elements on the panels. Owing
to their low computational cost, lifting-line and lifting-surface methods remain in use for conceptual
design and analysis frameworks for fixed-wing aircraft [24, 25], high-Mach number systems [26], wind
turbines [27], propellers [28], rotorcraft comprehensive analyses [29–32] and real-time flight simulation
[33]. Incorporating additional physics and design considerations remain an open research area, such as
aerostructural optimisaton [34] and unsteady aerodynamics [35, 36].

A necessary consideration in the application of surface-singularity methods is the discretisation error.
That is, the quality of the solution is dependent on the number of elements/panels that are used and the
order of the singularity representation. A notable cautionary tale is found in the low-order lifting-surface
studies of crescent-shaped wings by van Dam in which induced drag values were predicted to be below
Munk’s theoretical minimum [37, 38]. Later studies by Mortara and Maughmer found this to be an arti-
fact of discretisation and suggested the use of a Richardson extrapolation factor to better approximate
the continuum solution [39], but their recommendations are more empirical than theoretical. The vast
majority of extant lifting-line and lifting-surface methods use low-order (i.e. constant) singularity ele-
ments for the simplicity of implementation and fast computation. In contrast, two-dimensional panel
methods for aerofoils that remain in widespread use, such as the XFOIL [40] and PROFIL [41] analysis
and design codes, employ linear and quadratic strength panels, respectively.

By the nature of discretisation error, higher-order representations should provide superior accuracy
for a given number of solution unknowns compared to lower-order methods. However, this has not been
rigorously quantified in the literature to the best of the author’s knowledge. Additionally, existing higher-
order methods have singularity-strength continuity requirements that make their implementation more
cumbersome and, in the case of thin geometries, constrain their applicability to complex topologies. The
objective of the present work is to quantify the errors and formal order of accuracy achieved by higher-
order surface-singularity methods. The focus here is restricted to solutions of the lifting-line problem
for planar wings. This is for two primary reasons: First, there are both exact and spectrally accurate
solutions available for quantifying numerical error. Second, lifting-line methods, and the extension to
lifting-surface methods using the same types of singularity elements, represent the dominant usage case,
thereby providing a practical aspect to the study. A novel higher-order discretisation strategy is presented
in this work that alleviates the inter-element continuity constraints while maintaining consistency to
arbitrary order of accuracy, and shows improved accuracy over schemes that strictly enforce circulation

1In such methods, the solution is represented globally by the partial sum of an otherwise complete, orthogonal basis, such as a
finite-term Fourier series. A numerical solution is then found by satisfying the governing equations at the zeros of the leading-order
truncated term.
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Figure 1. Linearly tapered wing approximated using horseshoe vortices.

continuity between elements. The concepts being investigated and associated lessons learned are readily
extensible to general lifting surfaces.

2.0 Background
Lifting-line theory is the high-aspect-ratio asymptotic limit of lifting-surface theory. In this limit, chord-
wise variations in the bound vorticity, including those due to sweep, are assumed to occur over a length
scale that is much, much smaller than the length scale associated with spanwise variations. This limit
enables the chordwise and spanwise characteristics to be decoupled, allowing each spanwise station
to be modeled as a two-dimensional aerofoil subject to a chordwise-constant downwash field induced
by the trailing vortex sheet. By relating the local circulation strength to the induced angle-of-attack
from the trailing wake, the governing equation for a planar wing,

� = 1

2
U∞ccl,α (α − α0 − ε) − ccl,α

8π

∫ b/2

−b/2

d�

dy0

y − y0

dy0 (1)

may be obtained in which c varies along the span and the aerofoil lift-curve is assumed to be linear. The
integral in the final term of Eq. 1 is a direct result of the trailing vorticity. Through a well-known coor-
dinate transformation and assuming a Fourier sine series expansion of �, the integral may be converted
to a Glauert-type integral [9] for which analytical solutions are available. It is typical for expressions of
the bound circulation to enforce a zero-lift constraint on the wing tips. While physically justified, these
boundary conditions are enforced naturally by the system and do not need to be strictly imposed.

For general chord distributions, exact solutions to Eq. 1 are unavailable, necessitating the use of
numerical methods. The most common methods documented in the literature are all based on approxi-
mation theory in which the lifting-line equation is satisfied at discrete control points along the wingspan.
Although the equation is not satisfied in between the control points, the global error distribution is the
best available approximation of zero error from the discrete approximation of the circulation distribu-
tion. The method of Multhopp [13] takes advantage of this by selecting the Chebyshev zero points on
[−b/2, b/2] to provide the most-uniform zero approximation in conjunction with the analytic solution
of the Glauert integral.

To allow greater flexibility in the representation of the circulation distribution, such as for modeling
non-planar and multiple wings, it is common to express � using piecewise polynomials. One widely
used option is to use constant-strength horseshoe vortices placed along the quarter-chord as illustrated
in Fig. 1. For each horseshoe vortex, there is a single unknown circulation strength, necessitating the
lifting-line equation being satisfied at a number of points equal to the number of horseshoe vortices. The
width of each horseshoe need not be constant, and it is typical for the control point to be placed at the
midpoint of the bound portion of each vortex [14]. Some implementations employ clustering, such as
cosine distributions (e.g. the Chebyshev points) to increase the resolution near geometric discontinuities
such as taper breaks, dihedral breaks, and wingtips.
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Higher-order lifting line methods have been proposed in which the circulation is modelled as varying
quadratically across each vortex element. Between adjacent elements, the strength of both the circula-
tion, �, and trailing vorticity, d�/dy, are required to be continuous, thereby eliminating any singular
velocities away from geometric discontinuities [15, 16]. As such a representation contains 3N unknowns
with 2N − 2 continuity constraints, it is well-closed by requiring � = 0 at both wingtips and that the
lifting line equation is satisfied at a single control point on each element. This strategy, especially its
lifting-surface counterpart [15, 16], have been used with great success in aerodynamic wing design,
particularly for non-planar wings [42–44]. A limitation in this continuous representation is that it lacks
natural handling of complex geometries such as split winglets or lifting struts prevalent on contem-
porary and next-generation high-efficiency aircraft as the inter-element continuity constraints become
underdefined.

In this work, a novel high-order numerical strategy is employed that is based on discontinuous singu-
larity elements. In doing so, arbitrarily high polynomial orders may be consistently used without needing
to find a “sweet spot” in the total number of element control points and continuity constraints equaling
the total number of unknowns as is the case with Horstmann’s method [15].

3.0 Methodology
For the following study, polynomial representations of varying order will be considered for representing
the circulation on each vortex element. The maximum polynomial degree will be represented as “P”,
and the number of control points as “Q”. For example, the aforementioned horseshoe vortices would be
a “P0Q1” discretisation, denoting constant polynomials and a single control/quadrature point for each
element.

3.1 Basic vorticity elements
For the present study, the polynomial circulation distribution on each element is represented as a
Legendre series,

� = a0 + a1η + a2

2

(
3η2 − 1

) + . . . (2)

where η is an isoparametric coordinate defined as

η = y − y0,j

	yj

(3)

that spans [−1, 1] on each element so that the discrete orthogonality relations of the Legendre poly-
nomials hold. While this is not a necessary condition, numerical experimentation has shown it to be
advantageous by improving the condition number of the resulting linear system compared to using a
monomial basis. It is convenient to define the induced velocity due to isolated vortex elements in terms
of influence coefficients,

wi = I0a0 + I1a1 + I2a2 + . . . (4)

For a planar wing where all vortex elements and control points are coplanar, the first three influence
coefficients are defined as

I0 = 1

4π	yj

(
2

1 − η2

)
(5)

I1 = 1

4π	yj

(
2η

1 − η2
− ln

∣∣∣∣1 − η

1 + η

∣∣∣∣
)

(6)
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Figure 2. Approximation of a continuous function (dashed line) using piecewise quadratic elements
satisfying C1 continuity.

and

I2 = I0 + 3

4π	yj

(
η ln

∣∣∣∣1 + η

1 − η

∣∣∣∣ − 2

)
(7)

This study considers up to the P2 representation as the results can be generalised to lifting-surface
methods, but for lifting-line applications it can be extended to arbitrarily high order. Expressions for
non-planar wings may also be derived if desired, and will include both downwash and spanwise velocity
components.

3.2 Enforcement of kinematic conditions
3.2.1 Continuous elements
For P2 (and higher degree) elements, a piecewise C1 representation (i.e. continuous � and γ = d�/dy)
may be obtained by satisfying the lifting-line equation at a number of points on each element equal
to one fewer than the polynomial degree. Quadratic elements, as considered here, would constitute a
P2Q1-C1 scheme. The system of equations for each jth interior vortex element is written as the lifting
line equation defined at the control point of element j,

a0,j + a1,jηc,j + a2,j

2

(
3η2

c,j − 1
) = 1

2
U∞cjcl,α

(
α − α0 − εj

) − cjcl,α

2

N∑
k=1

3∑
p=1

Ip,j,kap,k (8)

in which Ip,j,k denotes the influence coefficient of the pth basis of element k on element j, ηc,j is the non-
dimensional position of the control point on element j, and cj is the wing chord at the control point,
along with the continuity constraints for bound circulation,

a0,j−1 + a1,j−1 + a2,j−1 = a0,j − a1,j + a2,j (9)

and wake strength,
1

	yj

(
a1,j + 3a2,j

) = 1

	yj+1

(
a1,j+1 − 3a2,j+1

)
(10)

At the left wingtip, Eq. 9 is replaced with,

a0,1 − a1,1 + a2,1 = 0 (11)

and at the right wingtip, Eq. 10 is replaced with,

a0,1 + a1,1 + a2,1 = 0 (12)

Unless otherwise specified, the control point for each continuous quadratic panel is taken to the be its
midpoint, ηc,j = 0. This scheme is qualitatively illustrated in Fig. 2.
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Piecewise Constant.

Piecewise Linear.

Piecewise Quadratic.

(a)

(b)

(c)

Figure 3. Discontinuous approximations of a continuous function (dashed line) with Legendre control
points (symbols).

3.2.2 Discontinuous elements
Piecewise polynomials of any degree p may be used if discontinuities in both circulation and wake
strength are permitted between elements, as qualitatively illustrated in Fig. 3. Without any continuity
constraints, the system of equation is closed by evaluating the discrete lifting-line equation at p + 1
control points on each panel, which are chosen to be the Gauss-Legendre quadrature points. In turn, the
leading error term is the next higher Legendre polynomial, and thus the representation on each element
is optimal in a Galerkin least squares sense. Additionally, the Gauss-Legendre points provide the optimal
order of accuracy for integration, which for this case is order 2p + 2, thereby improving the accuracy of
the calculated induced drag.

Jumps in � and dγ between elements are effectively penalised, i.e. discouraged but not explicitly
eliminated in the final solution, by singularities in the induced velocity fields. Discontinuities in � result
in the presence of discrete trailing vortices, and the velocity penalty for a jump at yj+1/2 takes the form,
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wi,	� = �R − �L

y − yj+1/2

(13)

Discontinuities in γ create a jump in the strength of the trailing vorticity sheet, and the penalty is of
the form,

wi,	γ = (γR − γL) ln
(
y − yj+1/2

)
(14)

which is a weaker singularity. In the present formulation, the penalties need not be explicitly imposed
as they are included in the definitions of the influence coefficients.

3.2.3 Overconstrained least-squares solution
For both of the aforementioned strategies, the number of control points on each panel is determined
based on the degree of the polynomial basis so that the resulting solution is unique. Although the dis-
crete solution approximates the lifting-line equation, and the error is orthogonal to the solution (by the
definition of the Legendre basis), they are not guaranteed to be small on a given element. In fact, the
downwash error may be unbounded at specific points while the global, integrated error remains bounded.
To evaluate this effect in the present study, cases are evaluated in which the residual error is overcon-
strained on each element, i.e. a greater number of Legendre control points are used on each element than
are required for a unique solution, to hopefully provide a more uniform approximation of zero error. An
example would be a P2Q4 discretisation, which would have three unknown basis amplitudes, but four
control points per element. While it is impossible to exactly satisfy the lifting-line equation at every
control point due to there being more equations than unknowns, the integrated error over the element is
minimised in a least-squares sense.

4.0 Results
Comparisons of the various schemes are performed using a planar, untwisted, elliptical wing with span
b = 10 and root chord c0 = 1 (AR ≈ 12.7324), and a planar, untwisted rectangular wing with the same
span and root chord (AR = 10). The aerofoil sections are assumed to be ideal with a section lift-curve
slope of cl,α = 2π rad−1 ≈ 0.109662271123 deg−1. The elliptical wing possesses a well-known analyti-
cal solution to the lifting-line equation, which for this case yields a three-dimensional lift curve slope
of CL,α = 0.094775042292695 deg−1 and a span efficiency factor of exactly one. A closed-form analyti-
cal solution for the rectangular wing is not available; however, a highly precise numerical solution can
be constructed using a spectrally accurate method. The resulting wing lift-curve slope and span effi-
ciency factors of CL,α = 0.08808311706 deg−1 and e = 0.9208891958, respectively, and are accurate to
ten significant digits. Solutions for all schemes were sought for up to N = 2560 elements. In some cases,
however, finer resolutions resulted in lost of precision due to very large matrix condition numbers (e.g.
greater than 1 × 109). Nevertheless, asymptotic convergence behaviour is observed.

4.1 Uniform distribution of elements
The accuracy of the P0Q1, P1Q2, P2Q3 and P2Q1-C1 schemes for predicting CL,α and e of the two
planforms have been investigated by dividing the wings into N uniformly distributed elements (i.e. each
element has constant width). Convergence of the numerical solution of the elliptical wing to the analyt-
ical solution with increasing N are shown in Figs. 4 and 5 for the lift-curve slope and span efficiency,
respectively. For each figure, the number of DOFs is equal to the number of unknowns per elements
multiplied by the number of elements (e.g., a P2 discretisation with 10 elements will have 30 DOFs). In
this sense, the error as a function of computational expense, i.e. system matrix size, can be directly com-
pared across the schemes. All discontinuous schemes approach the lift and span efficiency monotonically
from above, whereas the continuous scheme approaches from below. The higher-order schemes show
significantly reduced error for a given expense. Conversely, a given error tolerance may be achieved
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(a) (b)

Figure 4. Convergence of the lift-curve slope of an elliptical wing with uniform element widths.

(a) (b)

Figure 5. Convergence of the span-efficiency factor of an elliptical wing with uniform element widths.

with a significantly reduced computational expense, as a P2 scheme requires O(102) times fewer ele-
ments relative to P0. The continuous P2 scheme is observed to have greater error than its discontinuous
counterpart, but the errors approach one another as the number of DOFs increases. The P0Q1 discreti-
sation exhibits the expected 1st-order accurate behaviour for both functionals; however, the P1Q2 shows
sublinear convergence and the two P2 schemes both show 1st-order convergence. For all higher-order
schemes, the observed order of accuracy is below that of the expected p + 1 order of the schemes as
determined from the polynomial basis.

In an attempt to recover the design order of accuracy of the P1Q2 scheme, the P1Q3 and P1Q4
overconstrained schemes were studied. The resulting lift-curve slope error convergence is shown in
Fig. 6. From these data, it is found that the overconstrained least-squares approach does not mitigate
error in the domain, but rather forces the solution towards an incorrect state with non-zero residual
error.

As an unanticipated reduction in order of accuracy was observed for the elliptical wing, the same
study was repeated with a rectangular wing to evaluate whether or not there is an influence of the chord
distribution and an associated polynomial representation. The results for the rectangular wing are plotted
in Figs. 7 and 8. The convergence of the lift-curve slope is qualitatively similar to that for the elliptical
wing in terms of the schemes approaching the the true answer from above or below, as well as the
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Figure 6. Error convergence of the lift-curve slope with overconstrained P1 schemes.

(a) (b)

Figure 7. Convergence of the lift-curve slope of a rectangular wing with uniform element widths.

observed order of accuracy. The P2Q1-C1 scheme, however, showed improved relative accuracy for
coarser discretisations, and the error was more consistent with P2Q3 across the range of DOFs. For
span-efficiency factor, the discontinuous schemes again showed the same trends as observed before, but
the order of accuracy for the P2Q1-C1 scheme was greater (∼1.2) than for the discontinuous scheme.

Although the elliptical wing has a well-behaved solution to the governing equations, the chord dis-
tribution is not conducive to being represented using a polynomial. The rectangular wing, however,
removes spanwise variation in chord, allowing the solution to be fully focused on representing the
circulation distribution. Nevertheless, general solutions to the lifting-line equation exhibit a singular
behaviour of d�/dy at the wing tips, which is poorly represented by polynomial bases. With the discon-
tinuous schemes, the infinite slope is approximated by non-zero circulation at the tip and the associated
jump penalty. The value of � at the tip does approach zero as the number of elements increases (confirm-
ing some consistency of the schemes), but as is illustrated by the error convergence plotted in Fig. 9 for
the elliptical planform, it converges at a rate of N−1/2 irrespective of the element polynomial order. The
continuous P2Q1-C1 scheme strictly enforces � = 0 at the tip, so it is expected that the discretisation
error is absorbed into the solution in a much different manner. To better understand the behaviour, the
errors in predicted circulation distribution of the elliptical wing with N = 8 is plotted in Fig. 10 for the
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(a) (b)

Figure 8. Convergence of the span-efficiency factor of a rectangular wing with uniform element widths.

Figure 9. Convergence of elliptial-planform wing-tip circulation using discontinuous schemes.

P2Q1-C1 and P2Q3 schemes. The continuous scheme exhibits a strong underprediction of lift towards
the tip due to its finite d�/dy. Because of the continuity constraints, the error propagates inboard as
a low-frequency oscillation. In contrast, the discontinuous, P2Q3 scheme absorbs the tip error more
quickly via the jump penalties at the boundaries of the outboard-most element. The prediction errors in
the tip region of the rectangular wing were also evaluated, and found to follow identical trends to the
elliptical wing. Therefore, those results have been omitted for the sake of brevity.

4.2 Observations on integration error
The influence of the d�/dy wingtip singularity on global order of accuracy is well-illustrated by numer-
ically approximating the area under a semi-circle given by f (x) = √

1 − x2 on [−1, 1] using 1-, 2-, and
3-point Gauss-Legendre quadrature rules, which are 2nd-, 4th-, and 6th-order accurate, respectively. First
considered are constant-width subintervals, which are attainable via a linear mapping function, and the
error convergence is plotted below in Fig. 11. It is observed that the formal order of accuracy of the
integral does not increase as the order of the quadrature rule increases. Rather, all three quadrature rules
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Figure 10. Error in circulation distribution using continuous (red) and discontinuous (black) quadratic
elements with N = 8.

Figure 11. Error convergence for uniformly distributed subintervals.

exhibit an observed order of accuracy of 1.50 rather than their design order. Investigation of the subin-
terval behaviour confirms that the reduction in accuracy is due to the singularities, as the contribution
from the domain interior converges with to the design order.

An improvement on the sub-optimal accuracy is available through the use of non-uniform subinterval
distributions that cluster quadrature points in regions with large slopes. For example, numerous lifting-
line codes, such as AVL [24], employ cosine distributions to reduce the element width at the wingtips.
Such a distribution is a mapping of the form,

y = −b

2
cos(ξπ) (15)

where ξ = [0, 1], and elements are distributed uniformly in ξ , i.e. 	ξ = 1/N. Analysis of the cosine
mapping near the endpoints show that the widths of the first and last elements vanish with 	ξ 2, which
contrasts with the uniform distribution in y for which the endpoint widths vanish linearly in 	ξ . The
cosine mapping may be more broadly interpreted as a sigmoid function that produces symmetric dis-
tributions about the wing centreline. Polynomial-based mappings may also be generated, such as cubic,
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Figure 12. Element/subinterval distribution functions.

y = −b

2
+ b

(
3ξ 2 − 2ξ 3

)
(16)

quintic,

y = −b

2
+ b

(
10ξ 3 − 15ξ 4 + 6ξ 5

)
(17)

and septic,

y = −b

2
+ b

(
35ξ 4 − 84ξ 5 + 70ξ 6 − 20ξ 7

)
(18)

for which the endpoint element widths vanish with 	ξ 2, 	ξ 3, and 	ξ 4, respectively. These distributions
are plotted in Fig. 12, while the effect of the mapping on the error convergence is illustrated in Fig. 13.
With 1-point Gauss-Legendre quadrature, all mappings provide the design 2nd-order accuracy, further
confirming that the endpoints are the cause of reduced accuracy with uniform interval widths. The 2-
point quadrature rule is limited to only 3rd-order accuracy with the cosine and cubic mappings, while it
approaches 4th-order accuracy with the quintic mapping and fully exhibits this accuracy with the septic
mapping. The 3-point rule should exhibit 6th-order accuracy, but it is also limited to 3rd-order with the
cosine and cubic mappings. The quintic mapping shows a significant improvement, though the accuracy
is tending towards only 5th-order, whereas with the septic mapping it recovers design order as the number
of subintervals increases.

It is also observed that the cosine distribution offers a slight improvement over the cubic distribution
for the higher-order quadrature rules. Although small, it is attributed to the 3rd derivative of the cosine
mapping being zero at the endpoints, allowing the asymptotic behaviour of the mapping to be achieved
for smaller N than the cubic mapping.

4.3 Non-uniform distribution of elements
The lessons learned about the influence of the element distribution on the order of accuracy have
been applied back to the solution of the lifting-line problem. Here, an elliptic wing is considered with
cosine, quintic and septic element mapping functions. Convergence plots of CL,α and e are includes as
Figs. 14 - 16. For all element distributions, the P0Q1 scheme exhibits the expected 1st-order accuracy
in both functional quantities. The P2Q3 scheme exhibits 2nd-order accuracy in both quantities for the
cosine distribution, and even higher accuracy for quintic and septic distributions. It is found that the
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(a)

(b)

(c)

Figure 13. Error and order of accuracy for various subinterval distributions and quadrature rules.
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(a) (b)

Figure 14. Error convergence with elements distributed using a cosine mapping.

(a) (b)

Figure 15. Error convergence with elements distributed using a quintic polynomial mapping.

formal accuracy with the quintic distribution is ∼ 2.6, and that the order approaches 3 with the septic
distribution before numerical truncation error begins to obscure the behaviour. The P2Q1-C1 scheme
shows the same order accuracy as the P2Q3 scheme for the lift coefficient; however, it is limited to 2nd-
order accuracy in span efficiency. This is unsurprising as CL is a direct consequence of the polynomial
basis, while span efficiency is calculated using the associated quadrature rule.

An unexpected result is that the P1Q2 scheme exhibits 1st-order accuracy for all non-uniform dis-
tributions, rather than recovering 2nd-order accuracy as implied by the basis. Although the definitive
mechanism behind the reduced accuracy is unknown, one hypothesis is that it is a result of the penal-
isation of solution discontinuities between elements. Value and slope jumps introduce singularities of
strength 1/y and ln y, respectively, that vanish as the number of elements increases. The P1Q2 scheme
has no mechanism for satisfying C1 continuity across the span, whereas the P2Q3 scheme does. The
resulting slope discontinuities for P1Q2 decay slowly as N increases, and the total contribution of the
penalty scales linearly with element width along the whole span. An alternative hypothesis is that this
may be a consequence of even- versus odd-order bases as is known to happen in some discontinuous
Galerkin finite-element schemes [45]. Unfortunately, results with a 3rd-order scheme (P3Q4) could not
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(a) (b)

Figure 16. Error convergence with elements distributed using a septic polynomial mapping.

be obtained without machine precision errors at sufficiently large N to demonstrated formal order of
accuracy and evaluate both hypotheses.

5.0 Conclusion
From the preceding analyses presented in this paper, some important takeaways can be made regarding
the accuracy of numerical solutions to the lifting-line equation. First, the singular nature of d�/dy at the
wing tips is poorly modeled by polynomial bases of any order, which introduces an error proportional
to 	y0.5

tip into the solution. For discretisations with uniform element widths, the tip error dominates the
error of integrated lift and drag coefficients (measured here using the lift-curve slope and span-efficiency
factors). Consequently, the observed order of accuracy is, at most, linear, irrespective of the polynomial
order.

Second, improved order of accuracy may be recovered by clustering the elements near the wing tips
so that the panel widths go to zero faster than N−1 in these regions. The specific rate at which the tip
elements approach zero width affects the observed order of accuracy of a given scheme. For example,
the cosine distribution (	ytip ∼ N−2) allows 2nd-order accuracy to be attained from the schemes with a
quadratic basis, while the quintic (	ytip ∼ N−3) and septic (	ytip ∼ N−4) allow full 3rd-order accuracy
to be recovered. Although clustering near tips and geometric discontinuities is already well known to
improve accuracy and an accepted practice, this study provides new mathematical guidance for how
clustering should be performed to achieve best accuracy for a given discretisation.

Third, the linear basis does not exhibit greater than 1st-order accuracy, regardless of the element-width
mapping function. Although the numerical results are consistent (i.e. they converge to the correct con-
tinuum value, provided the system is not overconstrained), but the net effect of the penalties caused
by jumps in � and d�/dy between elements decays more slowly than anticipated. Nevertheless, it
exhibits improved accuracy over the constant-strength elements for a given number of solution degrees
of freedom.

Finally, the discontinuous quadratic basis (P2Q3 scheme) exhibits both very high accuracy, but with
additional flexibility of discretisation as compared to a continuous quadratic scheme (P2Q1-C1) similar
to the one used by [15]. The P2Q3 scheme shows greatly reduced error compared to the P0 scheme for lift
and drag with the same number of solution degrees of freedom, and with sufficient element clustering,
it exhibits 3rd-order accuracy as opposed to the other schemes’ 1st-order accuracy.

The observations and conclusions drawn from this study are anticipated to be applicable to lifting-
surface methods as well as lifting line. Both methods use the same singularity forms, and are also subject
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to the same tip singularities. The discontinuous methodology should be broadly applicable, though addi-
tional study is likely required before it can be used with relaxed/free wake analyses. The results of this
study also suggest potential benefits from adapting the discretisation/paneling to minimise solution error,
such as for the discretely approximated flow tangency conditions or for output functionals like lift and
induced drag, which may be accomplished using an adjoint-based sensitivity analysis.
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