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Summary

It is well known that the presence of related individuals can affect the inference of population genetic structure
from molecular data. This has been verified, for example, on the unsupervised Bayesian clustering algorithm
implemented in the software STRUCTURE. This methodology assumes, among others, Hardy—Weinberg and
linkage equilibrium within subpopulations. The existence of groups of close relatives, such as full-sib families,
may prevent these assumptions to be fulfilled, causing the algorithm to work suboptimally. The purpose
of this study was to evaluate the effect of the presence of related individuals on a different methodology
(implemented in CLUSTER_DIST) for population genetic structure inference. This approach arranges indivi-
duals to maximize the genetic distance between groups and does not make Hardy—Weinberg and linkage equi-
librium assumptions. We study the robustness of this approach to the presence of close relatives in a sample
using simulated scenarios involving combinations of several factors, including the number of subpopulations,
the level of differentiation between them, the number, size and type (full or half-sibs) of families in a sample,
and the type and number of molecular markers available for clustering analysis. Results indicate that the
methodology that maximizes the genetic distance between subpopulations is less influenced by the presence of
related individuals than the program STRUCTURE. Therefore, the former can be used, in combination with
the program STRUCTURE, to analyse population genetic structure when related individuals are suspected to
be present in a sample.

1. Introduction STRUCTURE) are developed based on population
genetics models and try to infer population genetic
structure by minimizing Hardy—Weinberg and linkage
disequilibrium within the different groups.

However, related individuals or members of the
same family can be present in the same subpopulation.
Such a situation can occur when individuals are sam-
pled from small populations, from populations of
high fecund species, or when sessile individuals are
sampled. Consequently, the lack of Hardy—Weinberg
and linkage equilibrium which may arise from this
situation could lead to a reduction in the accuracy
to detect population structure with the program
STRUCTURE (Pritchard et al., 2009). To our knowl-
edge, three studies (Guinand et al., 2006; Anderson &

Several unsupervised Bayesian clustering approaches
have been proposed to infer population genetic struc-
ture using exclusively molecular marker information
obtained from sampled individuals. These methodo-
logies can be used to determine the number of clusters
(K) and to assign individuals to the inferred clusters
(Pritchard et al., 2000; Dawson & Belkhir, 2001;
Corander et al., 2004; Gao et al., 2007; Huelsenbeck
& Andolfatto, 2007). Loosely speaking, such methods
(e.g. the one implemented in the program
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Dunham, 2008; Rodriguez-Ramilo & Wang, 2012)
have investigated the effects of the presence of close
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relatives on the power of the software STRUCTURE
(Pritchard et al., 2000; Falush et al., 2003) to estimate
K. Using real and simulated data, these studies
showed that the presence of close relatives led to the
false detection of population genetic structure when
it is absent or to the overestimation of the number
of clusters. Rodriguez-Ramilo & Wang (2012) evalu-
ated the improvement achieved by first identifying
and removing all family members but one using a rela-
tedness analysis (Wang, 2004; Wang & Santure, 2009)
before conducting population structure analysis. This
study found better performance of the clustering
method implemented in the software STRUCTURE
(i.e. higher accuracy in terms of estimated number of
clusters) once the samples had been pruned.

Another approach to circumvent the problem of
related individuals when inferring population genetic
structure could be using clustering methodologies
which do not make assumptions about Hardy-
Weinberg and linkage equilibrium. Dupanloup et al.
(2002) proposed a spatial procedure that uses a simu-
lated annealing algorithm to find the arrangement
that maximizes the proportion of total genetic vari-
ance due to differences between groups of popula-
tions. With a similar rationale, Rodriguez-Ramilo
et al. (2009) developed an approach (implemented in
the software CLUSTER_DIST; http:/dl.dropbox.
com/u/5714008/Fernandez.htm) based on the maximi-
zation of the mean genetic distance between inferred
populations (also solved through a simulated anneal-
ing algorithm). This approach was developed based
on the idea that highly differentiated populations
show a large genetic distance between them. This dis-
tance can be calculated from the molecular marker in-
formation without assumptions on Hardy—Weinberg
or linkage equilibrium. In Rodriguez-Ramilo et al.
(2009) the actually implemented distance was the
Nei minimum distance (Nei, 1987), which can be
calculated from the pairwise molecular co-ancestry be-
tween individuals (Caballero & Toro, 2002) or directly
from the allelic frequencies.

In the present study, the algorithm implemented in
CLUSTER_DIST was evaluated in the presence of
related individuals (i.e. full-sib and half-sib families).
The performance of this method, in terms of the num-
ber of estimated clusters, is compared with the perfor-
mance of the software STRUCTURE using simulated
data.

2. Materials and methods
(1) Simulations

The simulated data were the same as in Rodriguez-
Ramilo & Wang (2012). Briefly, the allele frequencies
at a locus for the entire population, p; (i=1, 2,..., L;
where L is the number of genotyped loci), were
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drawn from a uniform Dirichlet distribution, with
all parameters set to a value of 1. From these allele fre-
quencies and the parameter Fgt, the particular allele
frequencies of subpopulation j, p; (=1, 2,..., n;
where n is the number of subpopulations), were then
obtained also from a Dirichlet distribution with para-
meters p; (1—Fst)/Fst. Using the allele frequencies of
each subpopulation, the genotypes of individuals from
a given subpopulation were then randomly generated
for each marker locus. A further generation was simu-
lated to create families of individuals with a given
relationship, with genotypes of each descendant ob-
tained following the rules of Mendelian transmission
independently for each locus. Individuals with a par-
ticular family structure (detailed below) were sampled
from the 2nd generation of each subpopulation for
clustering analysis.

The simulations considered scenarios involving
3 or 5 subpopulations (1) with 50 individuals per
subpopulation and, thus, a total census size of 150
or 250 individuals (N); genetic differentiation level
Fst=0-1 or 0-2; individuals genotyped for 10 (20)
microsatellite-like markers with 20 alleles each or
100 (200) bi-allelic markers (mimicking single nucleo-
tide polymorphisms (SNPs)); 0, 1 or 2 sib families
(in the same subpopulation or in different subpopu-
lations) comprising 4 or 16 siblings per family; and
full-sib or half-sib (only simulated for 10 microsatel-
lites) families simulated. The combination of all
these factors resulted in a huge number of different
scenarios.

(i1) Algorithms

STRUCTURE (Pritchard et al., 2000; Falush et al.,
2003) was run with 5000 sweeps of burn-in and
10000 sweeps of data collection in each replicated
scenario, using the admixture and the correlated allele
frequency models. All other settings were left with
their default values. The range of possible K values
evaluated was from two to the simulated number of
subpopulations plus one (4 or 6). Note that, following
Anderson and Dunham (2008) to reduce computation
time, STRUCTURE was run only one time per repli-
cated scenario, then the estimation of K could not be
done using Evanno et al. (2005) criterion, because it
needs several runs of STRUCTURE for each evalu-
ated K.

However, other alternative criteria have been
proposed to estimate K from the output of
STRUCTURE. One of these alternative criteria
(which does not need several runs of STRUCTURE)
is to estimate K from the proportion of inferred ances-
try (Q). For a given value of K, STRUCTURE pro-
vides the value QF, the proportion of the inferred
ancestry of individual i (i=1,..., N) being from cluster
k (k=1,..., K). For each individual i, the cluster that
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Fig. 1. Proportion of replicates where STRUCTURE (left panels) and CLUSTER_DIST (right panels) infer K=3 when
n=13 in the presence of full-siblings. Dashed and solid lines indicate 10 and 20 microsatellites, respectively. Triangles
represent one family, squares indicate two families in the same subpopulation, and circles represent two families in

different subpopulations.

has the highest Q value is the cluster to which this in-
dividual belongs to (given a particular value of K).
The average of the Q% for all individuals i belonging
to cluster k is symbolized as Q(k). The smallest value
of Q(k) across clusters is denoted as Q(Smc), and this
value indicates to what extent individuals are assigned
unambiguously to the clusters or whether they show
mixed ancestry.

Analyses of many simulated and real data sets
indicated that Q(Smc decreases slowly as the number
of K increases until the true number of subpopulations
is reached (see Anderson & Dunham, 2008;
Rodriguez-Ramilo & Wang, 2012 for more details).
Thereafter, Q(S'm decreases rapidly with an increasing
value of K. According to this, the inferred number
of clusters was determined to be the highest value of
K that has Q(m’c >()-8. This threshold value depends
on the number and polymorphism of the evaluated
molecular markers, and showed a high efficiency in
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the simulations considered in this study (Rodriguez-
Ramilo & Wang, 2012).

CLUSTER_DIST (Rodriguez-Ramilo ez al., 2009)
is based on the idea that highly differentiated popu-
lations show a high genetic distance between them.
This distance can be calculated from molecular mar-
kers without taking into account Hardy—Weinberg
and linkage equilibrium assumptions. Several genetic
distances have been proposed (Laval er al, 2002).
Among those distances, the Nei minimum distance
(Nei, 1987) has the advantage that it can be calculated
through the pairwise molecular co-ancestry between
individuals (Caballero & Toro, 2002).

Notwithstanding, a shortcoming of the method
is that no measure of confidence is obtained for the
final arrangement of clusters. This problem is circum-
vented in the actual implementation of CLUSTER_
DIST by using an allele frequency approach. The
considered configurations, instead of assigning each
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Fig. 2. Proportion of replicates where STRUCTURE (left panels) and CLUSTER_DIST (right panels) infer K=3 when
n=3 in the presence of full-siblings. Dashed and solid lines indicate 100 and 200 SNPs, respectively. Triangles represent
one family, squares indicate two families in the same subpopulation, and circles represent two families in different

subpopulations.

individual to a single cluster, are lists of vectors (one
for each individual) carrying their probability to be-
long to each cluster. Consequently, the sum of posi-
tions (i.e. probabilities) for a particular individual
equals one. In the final (optimal) configuration those
individuals with a probability close to one of belong-
ing to a particular cluster can be assigned with great
confidence. Contrarily, assignment of individuals
with lower probabilities will carry a higher uncertainty,
possibly reflecting the presence of admixture or the
insufficient amount of information to assign this indi-
vidual to a single cluster. Realize that the algorithm
does not explicitly allow for admixture, but tries to
put individuals in completely separated groups.

The implementation of the method within
CLUSTER_DIST uses a simulated annealing algor-
ithm to find the partition that showed the maximal
average genetic distance between subpopulations.
Simulated annealing is an optimization procedure
adequate to deal with many genetic problems
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(e.g. Fernaandez & Toro, 1999). Parameters used to
run the CLUSTER_DIST software in this study in-
cluded 10000 alternative solutions generated per
step, the maximum number of steps (temperatures) is
set to 250, and an initial temperature (7) of 0-00001,
which was reduced for each step by a factor of Z
(cooling factor) equal to 0-9. CLUSTER_DIST was
also run one time per replicated scenario. For each
simulated scenario, the range of possible K values
evaluated with CLUSTER_DIST ranged between
two and six. The number of inferred clusters was esti-
mated with an approach following the same rationale
as Evanno er al (2005), but adapted to genetic dis-
tances (please see Rodriguez-Ramilo ez al., 2009 for
more details).

(ii1) Measurement of accuracy

Twenty replicates of each combination of the con-
sidered parameters were carried. Accordingly, the
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Fig. 3. Proportion of replicates where STRUCTURE (left panels) and CLUSTER_DIST (right panels) infer K=3 when
n=13 in the presence of half-siblings, using 10 microsatellites. Triangles represent one family, squares indicate two families
in the same subpopulation, and circles represent two families in different subpopulations.

proportion of the 20 replicates, where the compared
software identified the correct number of subpopu-
lations (3 or 5), was used as the accuracy measure.

3. Results

Figure 1 shows the proportion of replicates where the
number of clusters was correctly inferred (i.e. estimate
was K=3) by STRUCTURE and CLUSTER_DIST
when the real number of subpopulations was #=3 in
the presence of full-siblings. The figure presents results
for the two differentiation levels among subpopu-
lations (Fst=0-1 and 0-2) and the two sets of micro-
satellites-like markers (10 and 20).

The accuracy of both STRUCTURE and
CLUSTER_DIST decreases as the size of the families
increases. In fact, both methodologies show a high
accuracy when there are no siblings. However,
the deterioration in performance with the presence
of sib families is less pronounced in the case of
CLUSTER_DIST (right panels), especially when
the differentiation between subpopulations is high
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(Fst=0-2). Expectedly, the use of more markers
results in a higher accuracy for both methodologies.
There is not a clear effect of the number of families
when the total number of full-siblings in a sample is
fixed. Similar results to those observed for microsatel-
lite loci were also obtained for full-siblings using 100
or 200 SNPs (Fig. 2).

Figure 3 shows the proportion of replicates in which
K is correctly inferred by STRUCTURE and
CLUSTER_DIST when n=3 in the presence of half-
siblings and using 10 microsatellites. Results and con-
clusions obtained from them are in agreement with
those of previous figures. However, for the same
family size and number of families, full-sibs (Fig. 1)
produced a greater reduction in accuracy than
half-sibs (Fig. 3). In the half-sib scenario, it seems
that a greater number of families do lead to a less ac-
curate estimate of K.

Results obtained for n=5 with microsatellites,
SNPs and full- or half-siblings were very similar
to those showed above for three subpopulations
(Figs. S1, S2 and S3 in Supplementary Material).
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4. Discussion

The existence of close relatives within a subpopulation
may lead the program STRUCTURE to infer a wrong
number of groups as the assumptions of Hardy-
Weinberg and linkage equilibrium within subpopu-
lations will not be met. This has been already shown
by some authors (Guinand et al, 2006; Anderson &
Dunham, 2008; Rodriguez-Ramilo & Wang, 2012).
Families are really genetic structures, but are usually
not the focus of most studies which are interested in
knowing the organization at the population level.
But depending on the final objective of the study,
and the particular situation, families may become
the relevant grouping, especially when differentiation
levels (i.e. Fst) are low between subpopulations.

To avoid the bias of clustering methods when rela-
tives are present, Rodriguez-Ramilo & Wang (2012)
proposed a simple 2-step alternative consisting of
(1) detecting with the software COLONY (Wang,
2004; Wang & Santure, 2009) the confounding family
structures from a sample and removing all but one
of the members of each family and then (2) conduc-
ting a STRUCTURE (Pritchard et al., 2000; Falush
et al., 2003) analysis with the reduced sample. The
first stage of this 2-step procedure trims the data
and makes them to better meet the assumptions
of the specific clustering methodology, greatly im-
proving the accuracy of a population structure ana-
lysis with the software STRUCTURE. But the final
results will be influenced by the accuracy of the esti-
mator of relationships and to what extent the assump-
tions of the chosen methodology are fulfilled by the
data.

In this paper, we introduced another alternative to
improve the population genetic structure analyses in
the presence of close relatives. This is a one-step pro-
cedure that uses a clustering method that is insensitive
to deviations from Hardy—Weinberg and linkage equi-
librium. Using this approach, there is no need of
pre-correcting the data and, therefore, we avoid the
possible bias that could appear if the data do not fit
the assumptions of the method used to detect the
family structure. Accordingly, the results presented
in this study indicate that this one-step methodology
is less influenced than STRUCTURE when dealing
with samples containing close relatives. For this rea-
son, CLUSTER_DIST can be used, in combination
with the program STRUCTURE, to infer population
genetic structure when close relatives are supposed to
be present in a sample.

Removing relatives prior to inferring genetic
structure using the genetic distances approach has a
negligible effect (data not shown). This is another evi-
dence of the little influence of the presence of relatives
within subpopulations on the power of this clustering
strategy.
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5. Supplementary material

The online Supplementary Material can be found avail-
able at http:/dx.doi.org/10.1017/S0016672314000068
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