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1. Introduction. Suppose that X and Y are real Banach spaces, K is a compact
Hausdorff space, C(K, X) is the Banach space of all continuous X-valued functions
defined on K (with the supremum norm) and T : C(K, X) → Y is an operator with
representing measure m : � → L(X, Y∗∗), where � is the σ -algebra of subsets of K ,
Y∗∗ is the bidual of Y and L(X, Y∗∗) is the Banach space of all operators T : X → Y∗∗

[3]. Denote the semivariation of m by m̃. The operator T (or the measure m) is said to
be strongly bounded if (m̃(Ai)) → 0 whenever (Ai) is a pairwise disjoint sequence from
�. By Theorem 4.4 of [14], a strongly bounded representing measure takes its values
in L(X, Y ). It is well known that if T is unconditionally converging, then m is strongly
bounded [3, 19, 28].

The Riesz Representation Theorem in this setting asserts that to each operator T :
C(K, X) → Y there corresponds a unique representing measure m : � → L(X, Y∗∗)
with finite semivariation so that T(f ) = ∫

K f dm and ‖T‖ = m̃(K). This correspondence
between T and m will be denoted by m ↔ T . We note that [14] and Chapter 3 of
[18] contain a detailed discussion of this setting. (The reader should note that for
f ∈ C(K, X),

∫
K f dm ∈ Y even if m is not L(X, Y )-valued.)

Let χA denote the characteristic function of a set A, and B(�, X) denote the space
of totally measurable functions on � with values in X . Certainly C(K, X) is contained
isometrically in B(�, X). Further, B(�, X) embeds isometrically in C(K, X)∗∗; e.g. see
[14]. The reader should note that if m ↔ T , then m(A)x = T∗∗(χAx), for each A ∈ �,
x ∈ X . If f ∈ B(�, X), then f is the uniform limit of X-valued simple functions,

∫
K f dm

is well defined, which defines an extension T̂ of T ; e.g. see [18]. Theorem 2 of [7] shows
that T̂ maps B(�, X) into Y if and only if the representing measure m of T is L(X, Y )-
valued. If T : C(K, X) → Y is strongly bounded, then m is L(X, Y )-valued [14], and
thus T̂ : B(�, X) → Y . Since T̂ is the restriction to B(�, X) of the operator T∗∗, it is
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clear that an operator T : C(K, X) → Y is compact (resp. weakly compact) if and only
if its extension T̂ : B(�, X) → Y is compact (resp. weakly compact). Several authors
have found the study of T̂ to be quite helpful. We mention the work of Batt and Berg
[7], Bombal and Cembranos [13] and Bombal and Porras [11]. In these papers it has
been proved that if m is strongly bounded, then T : C(K, X) → Y is weakly compact,
compact, Dunford-Pettis, Dieudonné, unconditionally converging, strictly singular or
strictly cosingular if and only if its extension T̂ : B(�, X) → Y has the same property.
Our results will be concerned with relating properties of the operator T to properties of
its representing measure in the case of weakly precompact operators and operators with
weakly precompact adjoints. An operator T : X → Y is called weakly precompact (or
almost weakly compact) if every sequence in the image of a bounded set has a weakly
Cauchy subsequence.

The general bilinear integral of Bartle [4] can be used in the context of strongly
bounded representing measures to establish convergence results which unify several
approaches and have numerous applications and corollaries. Although the convergence
theorems in [4] are similar to some of the conclusions in our first theorem, it is not
clear that [4] can be used to obtain the specific results we desire. For this reason, as
well as for the convenience of the reader, we include a brief description of the bilinear
integral we shall use and a proof of the convergence results we need. In the process,
the technique and the results in [21] are extended.

Suppose that m is a strongly bounded representing measure with control measure
λ, i.e. 0 ≤ λ ∈ rca(�) and m̃(A) → 0 as λ(A) → 0. If g ∈ L1(λ, X) and g is pointwise
bounded, choose a uniformly pointwise bounded sequence of X-valued simple
functions (sn) so that sn(t) → g(t) a.e.- λ (see [20], p. 117). The standard approach in
Section 7, pp. 106–108, of Dinculeanu [18] is used to define the integral of an X-valued
simple function with respect to an L(X, Y )-valued measure with finite semivariation,
i.e. if s = ∑

χAi xi and m : � → L(X, Y ) is finitely additive and has finite semivariation,
then

∫
s dm is defined to be

∑
m(Ai)xi. Egoroff’s theorem guarantees that (

∫
K sn dm)

converges. Define
∫

K g dm to be limn
∫

K sn dm. It is not difficult to check that
∫

K g dm
is well defined.

2. Main results.

THEOREM 1. Suppose that m ↔ T : C(K, X) → Y is strongly bounded and λ is a
control measure for m.
(i) If (gn) is a uniformly pointwise bounded sequence and (gn) → 0 in L1(λ, X), then
(
∫

K gn dm) → 0 in Y. Consequently, if (gn) is uniformly pointwise bounded and (gn)
w→ 0,

then (
∫

K gn dm)
w→ 0.

(ii) If (hn) is a uniformly pointwise bounded sequence in L1(λ, X) and (hn(t)) is weakly
Cauchy for each t ∈ K, then (

∫
K hn dm) is weakly Cauchy in Y.

(iii) Suppose that H is a bounded set in C(K, X). If (fn) is a sequence in H and f : K → X
is a function such that fn(t) → f (t) for each t ∈ K, then (

∫
K fn dm) → ∫

K f dm.

Proof. (i) Without loss of generality, suppose that ‖gn(t)‖ < 1 for all n ∈ � and
all t ∈ K . Since (

∫
K ‖gn‖ dλ) → 0, we may suppose without loss of generality that

(gn(t)) → 0 for almost all t ∈ K . Let ε > 0 and choose E ∈ � such that m̃(K \ E) < ε

and (gn) → 0 uniformly on E. Choose n0 ∈ � so that if n ≥ n0, then ‖gn(t)‖ ≤ ε, t ∈ E.
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The definition of
∫

E gn dm and
∫

K\E gn dm show that for n ≥ n0,

∥∥∥∥
∫

K
gn dm

∥∥∥∥ =
∥∥∥∥

∫
E

gn dm +
∫

K\E
gn dm

∥∥∥∥ ≤ ε m̃(E) + ε.

We claim that (
∫

K gn dm)
w→ 0, when (gn) is uniformly pointwise bounded and (gn)

w→ 0
in L1(λ, X). Indeed, if (gni ) is an arbitrary subsequence of (gn), then 0 ∈ co{gni : i ≥
1} (since (gn)

w→ 0). Thus, 0 ∈ co{∫K gni dm : i ≥ 1}. This implies that (
∫

K gn dm)
w→ 0.

Otherwise, one can strictly separate 0 from the closed convex hull of some subsequence
of (

∫
K gn dm), a contradiction.
(ii) Without loss of generality, suppose ‖hn(t)‖ < 1 for all n ∈ � and t ∈ K . Let

ε > 0. Using the existence of a control measure for m and Lusin’s theorem, we can
find a compact subset K0 of K such that m̃(K \ K0) < ε/2 and φn = hn|K0 is continuous
for each n ∈ �. Let H = [φn] be the closed linear span of (φn) in C(K0, X) and S :
H → C(K, X) be the isometric extension operator given by Theorem 1 of [13]. Let
ψn = S(φn), n ∈ �. Since (φn(t)) is weakly Cauchy for each t ∈ K0, the sequence (φn) is
weakly Cauchy in C(K0, X) (Theorem 9 of [19], Lemma 3.2 of [3]). Then (ψn) is weakly
Cauchy in C(K, X) and (T(ψn)) is weakly Cauchy. For each n ∈ �,

∥∥∥∥
∫

K
hn dm −

∫
K

ψn dm
∥∥∥∥ =

∥∥∥∥
∫

K\K0

(hn − ψn) dm
∥∥∥∥ ≤ 2 m̃(K \ K0) < ε.

Then (
∫

K hn dm) is weakly Cauchy.
(iii) Let H be the unit ball of C(K, X), (fn) be a sequence in H and let f : K → X be

a function such that fn(t) → f (t) for each t ∈ K . Without loss of generality suppose that
‖f (t)‖ ≤ 1, t ∈ K . Then f is strongly measurable (by the Pettis measurability theorem)
and

∫
K f dm exists. Let ε > 0. Use Lusin’s theorem and the existence of the control

measure to choose a compact subset K0 of K such that g = f |K0 is continuous and
m̃(K \ K0) < ε/2. Let gn = fn|K0 , n ∈ �. Use Egoroff’s theorem to choose a compact
subset K1 of K0 such that m̃(K0 \ K1) < ε/2 and (gn − g) → 0 uniformly on K1. Let
n0 ∈ � so that if n ≥ n0, then ‖gn(t) − g(t)‖ ≤ ε, t ∈ K1. For n ≥ n0, we have

∥∥∥∥
∫

K
(fn − f ) dm

∥∥∥∥ =
∥∥∥∥

∫
K1

(fn − f ) dm +
∫

K0\K1

(fn − f ) dm +
∫

K\K0

(fn − f ) dm
∥∥∥∥

≤ sup
t∈K1

‖gn(t) − g(t)‖ m̃(K1) + 2 m̃(K0 \ K1) + 2 m̃(K \ K0)

≤ ε m̃(K) + 2ε.

�
Abbott [1] gave an example of a pair m ↔ T such that T is weakly precompact

and m is not strongly bounded. The following corollary is related to results in [32].

COROLLARY 2. If 	1 
↪→ X, then every strongly bounded operator T : C(K, X) → Y
is weakly precompact.

Proof. Suppose that T : C(K, X) → Y is a strongly bounded operator with
representing measure m and control measure λ. We have

T(f ) =
∫

K
f dm , f ∈ C(K, X).
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Let (fn) be a sequence in the unit ball of C(K, X). Then (fn) is uniformly integrable in
L1(λ, X). Since 	1 
↪→ X , (fn) is weakly precompact in L1(λ, X) [12]. Without loss of
generality, suppose (fn) is weakly Cauchy in L1(λ, X). By results of Talagrand [30], we
can write fn = gn + hn a.e. in K , where (gn) and (hn) are sequences in L1(λ, X) such that
(gn) is weakly null in L1(λ, X) and (hn(t)) is weakly Cauchy for each t ∈ K . Further, we
have (gn) and (hn) uniformly pointwise bounded. By Theorem 1, (

∫
K gn dm)

w→ 0 and
(
∫

K hn dm) is weakly Cauchy. Hence (
∫

K fn dm) is weakly Cauchy, and thus T is weakly
precompact. �

3. Applications. An operator T : X → Y is called a Dieudonné (or weakly
completely continuous) operator if T maps weakly Cauchy sequences in X to weakly
convergent sequences in Y , and X is said to have the Dieudonné property if every
Dieudonné operator with domain X is weakly compact [25]. If X is a C(K)-space or if
	1 
↪→ X , then X has the Dieudonné property.

COROLLARY 3. ([21, 26]) If 	1 
↪→ X, then C(K, X) has the Dieudonné property.

Proof. If m ↔ T : C(K, X) → Y is a Dieudonné operator, then T is unconditionally
converging and m is strongly bounded [3, 19, 28]. Let (fn) be a sequence in the unit ball
of C(K, X). Using the arguments in Corollary 2 and Theorem 1, we obtain sequences
(gn), (hn) and (ψn) so that

T(fn) =
∫

K
fn dm =

∫
K

gn dm +
∫

K
hn dm,

(
∫

K gn dm)
w→ 0, (ψn) is weakly Cauchy in C(K, X) and ‖ ∫

K hn dm − T(ψn)‖ → 0. Let

y ∈ Y such that (T(ψn))
w→ y. Then (

∫
K hn dm)

w→ y, and thus (T(fn))
w→ y. �

A Banach space X has property (u) if for every weakly Cauchy sequence (xn)
in X , there is a weakly unconditionally converging series

∑
yn in X such that (xn −∑n

i=1 yi)
w→ 0. A Banach space X has property (V ) if every unconditionally converging

operator T from X to any Banach space Y is weakly compact [27].

COROLLARY 4. (i) ([14, 32]) If X is reflexive, then every strongly bounded operator
T : C(K, X) → Y is weakly compact.
(ii) ([27]) If X is reflexive, then C(K, X) has property (V ).
(iii) ([15, 32]) If 	1 
↪→ X and X has property (u), then C(K, X) has property (V ).

Proof. (i) Let m ↔ T : C(K, X) → Y be a strongly bounded operator and (fn) be
a sequence in the unit ball of C(K, X). Repeating the construction in Corollary 2,
we obtain uniformly pointwise bounded sequences (gn), (hn) in L1(λ, X) so that fn =
gn + hn a.e. in K , (gn) is weakly null in L1(λ, X) and (hn(t)) is weakly Cauchy for each
t ∈ K . Let ε > 0. Repeating the construction in Theorem 1, we obtain a compact subset
K0 of K and a sequence (φn) so that m̃(K \ K0) < ε/2 and φn = hn|K0 is continuous for
each n ∈ �; further, (φn(t)) is weakly Cauchy for each t ∈ K0, (

∫
K gn dm)

w→ 0 and

T(fn) =
∫

K
fn dm =

∫
K

gn dm +
∫

K
hn dm.

Let φ : K0 → X be a function so that (φn(t))
w→ φ(t), t ∈ K0 (the reflexivity of X assures

the existence of φ). Then φ is bounded, and since for each n, φn is continuous, φ
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is separably valued and weakly measurable. By Pettis’s measurability theorem, φ is
strongly measurable. Use Lusin’s theorem and the existence of the control measure to
choose a compact subset K1 of K0 such that h = φ|K1 is continuous and m̃(K0 \ K1) <

ε/2. Hence (φn)
w→ h in C(K1, X).

Let H = [φn] be the closed linear span of (φn) in C(K1, X) and S : H → C(K, X)
be the isometric extension operator given by Theorem 1 of [13]. Let ψn = S(φn),
n ∈ � and ψ = S(h). Since (φn)

w→ h in C(K1, X), it follows that (TS(φn))
w→ TS(h);

i.e. (T(ψn))
w→ T(ψ) := y in Y . Further, for each n ∈ �,

∥∥∥∥
∫

K
hn dm −

∫
K

ψn dm‖ = ‖
∫

K\K1

(hn − ψn) dm
∥∥∥∥ ≤ 2 m̃(K \ K1) < 2ε.

Then (
∫

K hn dm)
w→ y, hence (

∫
K fn dm)

w→ y.
(ii) Every unconditionally converging operator on C(K, X) is strongly bounded [3,

19, 28], and thus weakly compact.
(iii) If T : C(K, X) → Y is an unconditionally converging operator, then T is

a Dieudonné operator, since X has property (u) [32]. By Corollary 3, T is weakly
compact. �

Gamlen [23] proved that if X∗ has the Radon–Nikodym property and Y is weakly
sequentially complete, then any operator T : C(K, X) → Y is weakly compact. Bello
[8] generalized this result to the case of X not containing copies of 	1. The following
result contains Theorem 12 [8].

COROLLARY 5. Suppose that 	1 
↪→ X.
(i) If c0 
↪→ Y, then every operator T : C(K, X) → Y is weakly precompact.
(ii) If Y is weakly sequentially complete, then every operator T : C(K, X) → Y is weakly
compact.
(iii) If Y has the Schur property, then every operator T : C(K, X) → Y is compact.

Proof. (i) Suppose T : C(K, X) → Y is an operator. Since c0 
↪→ Y , T is
unconditionally converging, and thus strongly bounded [3, 19, 28]. By Corollary 2,
T is weakly precompact.
(ii) Since Y is weakly sequentially complete, T is weakly compact.
(iii) Since Y has the Schur property, T is compact. �

We remark that if c0 
↪→ Y and T : C(K, X) → Y is an operator with representing
measure m, then m is countably additive. To see this, note that T is unconditionally
converging, m is strongly bounded, and thus countably additive [3, 14].

COROLLARY 6. (i) If X∗ has the Radon–Nikodym property, then every strongly
bounded operator T : C(K, X) → Y is weakly precompact.
(ii) If X∗ is separable, then every strongly bounded operator T : C(K, X) → Y is weakly
precompact.

Proof. (i) If X∗ has the Radon–Nikodym property, then 	1 
↪→ X [17]. Apply
Corollary 2. (ii) If X∗ is separable, then X∗ has the Radon–Nikodym property. �

COROLLARY 7. Suppose that X is a Banach space such that for every compact
Hausdorff space K and every Banach space Y, an operator m ↔ T : C(K, X) → Y is
weakly precompact whenever m satisfies the following conditions:
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(i) m is strongly bounded and
(ii) m(A) : X → Y is weakly precompact for each A ∈ �.
Then 	1 is not complemented in X.

Proof. Suppose that 	1 is complemented in X . If P : X → 	1 is a projection, then P
is not compact. By Theorem 2.2 of [2], there is a compact space � and a continuous
linear surjection m ↔ T : C(�, X) → 	1 so that m is strongly bounded and m(A) :
X → Y is compact for each A ∈ �. Since T is a surjection onto 	1, T is not weakly
precompact. �

COROLLARY 8. If 	1 
↪→ X∗ and T : C(K, X) → Y is strongly bounded, then T and
T∗ are weakly precompact.

Proof. T∗ is weakly precompact by Theorem 9 [6]. Since 	1 
↪→ X∗, 	1 
↪→ X ([16],
p. 211). Apply Corollary 2. �

COROLLARY 9. Suppose that 	1 
↪→ X∗ and T : C(K, X) → Y is an operator. Then
the following are equivalent:
(i) T is strongly bounded.
(ii) T∗ is weakly precompact.
(iii) T is unconditionally converging.

Proof. (i) implies (ii). If T : C(K, X) → Y is a strongly bounded operator, then T∗ is
weakly precompact by Theorem 9 [6].
(ii) implies (iii). If T∗ is weakly precompact, then T is unconditionally converging by
Corollary 2 [6].
(iii) implies (i). Every unconditionally converging operator on C(K, X) is strongly
bounded [3, 19, 28]. �

COROLLARY 10. ([14]) If c0 
↪→ X and T : C(K, X) → Y is a strongly bounded
operator, then T is unconditionally converging.

Proof. It is enough to show that if
∑

fn is weakly unconditionally converging in
C(K, X), then ‖T(fn)‖ → 0. Suppose that

∑
fn is weakly unconditionally converging.

Then for each t ∈ K ,
∑

fn(t) is weakly unconditionally converging, and thus
unconditionally converging in X (since c0 
↪→ X). Hence ‖fn(t)‖ → 0 for each t ∈ K ,
and (T(fn)) → 0 by Theorem 1. �

An operator T : X → Y is called completely continuous (or Dunford–Pettis) if T
maps weakly Cauchy sequences to norm convergent sequences. The Banach space X
has the Dunford–Pettis property (DPP) if every weakly compact operator with domain
X is completely continuous. Talagrand showed that there is a Banach space X such
that X∗ has the Schur property (hence X has the DPP), but neither C(K, X) nor L1(X∗)
has the DPP [31].

COROLLARY 11. Suppose that X has the Schur property. Then the following assertions
hold:
(i) Every strongly bounded operator T : C(K, X) → Y is completely continuous.
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(ii) ([19]) C(K, X) has the DPP.
(iii) ([14]) If c0 
↪→ Y, then every operator T : C(K, X) → Y is completely continuous.
(iv) If T : C(K, X) → Y is an operator with a weakly precompact adjoint, then T is
completely continuous.
(v) If T : C(K, X) → Y is an operator, then T is a Dieudonné operator if and only if T
is completely continuous.

Proof. (i) Let (fn) be a weakly null sequence in the unit ball of C(K, X) and T :
C(K, X) → Y be a strongly bounded operator. Since (fn(t)) is weakly null in X , and X
has the Schur property, ‖fn(t)‖ → 0 for each t ∈ K . By Theorem 1, (T(fn)) → 0, and
thus T is completely continuous.

(ii) Every weakly compact operator T : C(K, X) → Y is strongly bounded [14].
Then T is completely continuous, and thus C(K, X) has the DPP.

(iii) If c0 
↪→ Y and T : C(K, X) → Y is an operator, then T is unconditionally
converging, and thus strongly bounded [3, 19, 28]. By part (i), T is completely
continuous.

(iv) If T∗ : Y∗ → C(K, X)∗ is weakly precompact, then T : C(K, X) → Y is un-
conditionally converging (Corollary 2 in [6]), and thus strongly bounded. Apply (i).

(v) If T : C(K, X) → Y is a Dieudonné operator, then T is unconditionally
converging, hence strongly bounded. Apply (i). The converse is clear. �

The next result establishes a connection between weakly precompact operators and
unconditionally converging adjoints. It is known that if T : X → Y is an operator, then
T(BX ) is a V∗ -subset of Y if and only if T∗ : Y∗ → X∗ is unconditionally converging
[5, 24].

THEOREM 12. If T : X → Y is weakly precompact, then T∗ : Y∗ → X∗ is
unconditionally converging.

Proof. Suppose T : X → Y is weakly precompact. Then T(BX ) is weakly
precompact, and thus a V∗-subset of Y [27]. It follows that T∗ is unconditionally
converging. �

We remark that the converse of this theorem is not true. Specifically, let X be
a Banach space such that 	1 ↪→ X and 	1 
 c

↪→ X . Let T : 	1 → X be an isomorphic
embedding. Then T∗ : X∗ → 	∞ is unconditionally converging (since c0 
↪→ X∗) and
T is not weakly precompact (since it is an isomorphism on 	1).

If 	1 
↪→ X , then every strongly bounded operator T : C(K, X) → Y is weakly
precompact and has an unconditionally converging adjoint (by Corollary 2 and
Theorem 12). This observation gives the following result.

COROLLARY 13. If 	1 
↪→ X, then every unconditionally converging (resp. completely
continuous) operator T : C(K, X) → Y is weakly precompact and has an unconditionally
converging adjoint.

Proof. If T : C(K, X) → Y is an unconditionally converging operator, then T is
strongly bounded. Since every completely continuous operator is unconditionally
converging, every completely continuous operator T : C(K, X) → Y is strongly
bounded. �

THEOREM 14. Suppose that 	1 
 c
↪→ X. Then every operator T : C(K, X) → Y has an

unconditionally converging adjoint.
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Proof. Suppose T : C(K, X) → Y is an operator and T∗ : Y∗ → C(K, X)∗ is not
unconditionally converging. Using [9] or problem 8, p. 54, of [16], one obtains an
isomorphic copy U of c0 in Y∗ on which T∗ acts as an isomorphism. If L : c0 →
U ⊂ Y∗ is an isomorphic embedding, T∗L : c0 → C(K, X)∗ is an isomorphism. Then
c0 ↪→ C(K, X)∗, and thus 	1

c
↪→ C(K, X) [9]. The main result in [29] implies that

	1
c

↪→ X , a contradiction which concludes the proof. �

The Banach space X has property (V∗) (resp. (wV∗)) if every V∗-subset of X
is relatively weakly compact (resp. weakly precompact) [10, 27]. The following result
contains Theorem 1.6 of [22].

COROLLARY 15. Suppose that 	1 
 c
↪→ X and Y has property (V∗) (resp. (wV∗)). Then

every operator T : C(K, X) → Y is weakly compact (resp. weakly precompact).

Proof. Suppose that T : C(K, X) → Y is an operator and Y has property (V∗) (resp.
(wV∗)). By the previous result, T∗ : Y∗ → C(K, X)∗ is unconditionally converging.
Apply Theorem 3.10 of [24] to obtain that T is weakly compact (resp. weakly
precompact). �

Corollary 2 of [6] shows that if T∗ : Y∗ → X∗ is weakly precompact, then T :
X → Y is unconditionally converging and weakly precompact. It follows that if T :
C(K, X) → Y has a weakly precompact adjoint, then T is strongly bounded (since it
is unconditionally converging) and T∗ is unconditionally converging (by Theorem 12).

Suppose that T : C(K, X) → Y is an operator and T̂ : B(�, X) → Y∗∗ is its
extension to B(�, X). We remark that if m ↔ T : C(K, X) → Y is strongly bounded,
then m is L(X, Y )-valued [14] and T̂ maps B(�, X) into Y (as noted in the
Introduction).

THEOREM 16. Suppose that T : C(K, X) → Y is a strongly bounded operator.
Then T is weakly precompact if and only if its extension T̂ : B(�, X) → Y is weakly
precompact.

Proof. Suppose that T : C(K, X) → Y is weakly precompact and T̂ is not weakly
precompact. Let ε > 0, y∗ ∈ BY∗ and (fn) be a sequence in the unit ball of B(�, X)
such that |〈y∗, T̂(fn − fm)〉| > ε, for n 
= m.

Using the existence of a control measure for m and Lusin’s theorem, one can find
a compact subset K0 of K such that m̃(K \ K0) < ε/8 and gn = fn|K0 is continuous for
each n ∈ �. Let H = [gn] be the closed linear subspace spanned by (gn) in C(K0, X)
and S : H → C(K, X) be the isometric extension operator given by Theorem 1 of [13].
If hn = S(gn), n ∈ �, then (hn) is in the unit ball of C(K, X), and for n 
= m,

|〈y∗, T(hn − hm)〉| ≥
∣∣∣∣
〈
y∗,

∫
K0

(hn − hm) dm
〉∣∣∣∣ −

∣∣∣∣
〈
y∗,

∫
K\K0

(hn − hm) dm
〉∣∣∣∣

≥
∣∣∣∣
〈
y∗,

∫
K0

(fn − fm) dm
〉∣∣∣∣ − ε/4

≥
∣∣∣∣
〈
y∗,

∫
K

(fn − fm) dm
〉∣∣∣∣ −

∣∣∣∣
〈
y∗,

∫
K\K0

(fn − fm) dm
〉∣∣∣∣ − ε/4

≥ |〈y∗, T̂(fn − fm)〉| − ε/2 > ε/2.

This is a contradiction, since T is weakly precompact. �
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COROLLARY 17. Suppose that m ↔ T : C(K, X) → Y is a strongly bounded
operator. If T is weakly precompact, then m(A) : X → Y is weakly precompact for
each A ∈ �.

Proof. If A ∈ �, A 
= ∅, define θA : X → B(�, X) by θA(x) = χAx. Then θA is an
isomorphic isometric embedding of X into B(�, X) and T̂θA = m(A). By Theorem
16, T̂ is weakly precompact, and thus m(A) is weakly precompact. �

A Banach space X is a Grothendieck space if weak∗ and weak convergence of
sequences in X∗ coincide.

COROLLARY 18. Suppose that C(K) is a Grothendieck space. If m ↔ T : C(K, X) →
Y is a weakly precompact operator, then m is L(X, Y )-valued and m(A) : X → Y is
weakly precompact for each A ∈ �.

Proof. Suppose m ↔ T : C(K, X) → Y is a weakly precompact operator. For each
x ∈ X , define an operator Tx : C(K) → Y by Tx(f ) = T(f · x), f ∈ C(K). Then Tx is
weakly precompact. By Corollary 6 of [6], T∗

x is weakly precompact. Hence Tx is
an unconditionally converging operator on a C(K)-space, and every unconditionally
converging operator on a C(K)-space is weakly compact [14, 27]. If mx is the
representing measure of Tx, then mx is Y -valued ([17], p. 105). Since mx(A) =
m(A)x, m is L(X, Y )-valued. An application of Corollary 6 of [1] concludes the
proof. �

If S is a subspace of X and T : X → Y is an operator, let TS denote the restriction
of T to S. A closed operator ideal O is said to be separably determined provided that
for each pair of Banach spaces X and Y , an operator T : X → Y belongs to O(X, Y )
if and only if TS ∈ O(S, Y ) for each separable subspace S of X .

THEOREM 19. Suppose that T : C(K, X) → Y is an operator and T̂ : B(�, X) →
Y∗∗ is its extension to B(�, X). Then T∗ is weakly precompact if and only if T̂∗ is weakly
precompact.

Proof. If T̂∗ is weakly precompact, then T̂ is unconditionally converging and weakly
precompact [6]. Hence T is strongly bounded and T̂ : B(�, X) → Y . Apply Theorem
4 of [6] to obtain a subspace Z of C(K, X) and an operator S : Y → 	∞ so that
ST(Z) = c0. Since T̂ is an extension of T , there is a subspace W of B(�, X) so that
ST̂(W ) = c0. Thus by Theorem 4 of [6], T̂∗ is not weakly precompact, and we have a
contradiction.

Conversely, suppose that T∗ is weakly precompact. Then T is strongly bounded and
T̂ : B(�, X) → Y . Let O = {L : X → Y | L∗ is weakly precompact}. By Proposition 8
of [6], O is a closed separably determined operator ideal. Apply Proposition 4.1 of [2]
to conclude that T̂ is an element of O, i.e. T̂∗ is weakly precompact. �

COROLLARY 20. ([6]) Suppose that m ↔ T : C(K, X) → Y is an operator. If T∗ is
weakly precompact, then m(A)∗ : Y∗ → X∗ is weakly precompact for each A ∈ �.

Proof. For A ∈ �, A 
= ∅, define θA : X → B(�, X) by θA(x) = χAx. Then T̂θA =
m(A), T̂∗ is weakly precompact (by Theorem 19), and thus m(A)∗ is weakly
precompact. �
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