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A METHOD OF SOLVING A CLASS OF CIV
BOUNDARY VALUE PROBLEMS

NEZAM IRANIPARAST

ABSTRACT. A method will be introduced to solve problems u, — u;; = h(s, 1),
u,t) = u(l+¢t,1—10), u(s,0) = g(s), u(1,1) = 0 and uy — uss = h(s,1), ‘;—‘;(t, t) =
Z—ﬁ(l +1,1—1), u(s,0) = u(1, 1), for (s, 7) in the characteristic triangle R = {(s,?) :

1 <s<2-10<t<1} Here Z—g and 3—'7‘ represent the directional derivatives of u in

the characteristic directions e; = (—1, —1)and e; = (1, —1), respectively. The method
produces the symmetric Green’s function of Kreith [1] in both cases.

1. Introduction. A successful attempt by Kreith [1] to generalize the eigenvalue
problem

d?u

E + )\p(t)u = 0,

u(0) = 0 = u(),
to the case of vibrations of a finite string governed by
(1.1) Uy — Ugs + Ap(s,Hu = 0,
in the characteristic triangle
R={(0:1<s<2-10<1<1},

and subject to certain boundary conditions, has resulted in the establishment of eigen-
values and eigenfunctions. The technique of [1] furnishes a symmetric Green’s function
for the eigenequation (1.1) subject to the characteristic boundary and initial conditions

(1.2) ut,) =u(l+t,1—1, 0<r<1,

(1.3) u(s,0) =u(1,1)=0, 0<s<2,

by computing the product of the Green’s functions for a pair of operators 5—i s %, s = x+y,

t = y — x and mixed boundary conditions for which ;% is selfadjoint. The symmetric
Green’s function of (1.1)—(1.3) is then used to construct a Green’s function for (1.1)
subject to

(1.4) u(s,0) =u(l,1)=0, 0<s<2
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However, the behavior of u along the characteristics is not given in this case.
In what follows we will consider the more general problem of solving (1.1) subject
to (1.2) and

(1.5) u(s,0) =g(s), u(1,1)=0, 0<s<2

Furthermore we will show that the appropriate characteristic boundary condition for (1.1)
subject to (1.4) is
du du
1.6 —@t,)=—(0+t,1—1),
(1.6) do( ) dr( )
where ;’—(’; and % represent the directional derivatives of u in the characteristic directions,
e; = (—1,—1)and e; = (1, —1), respectively.

2. The first CIV boundary value problem. For convenience we make the change
of independent variables s = ‘2(0 —7)+1,t= —\/%(a +7) + 1. In o7-coordinates the
problem (1.1), (1.2), (1.5) reads

2.1 Wor = —%Pw = F(o,7), (0,7)inR’,

2.2) w(0,0) =w(0,v2—0), 0<o<V2,
2.3) w(o,V2—0)=g(2 0)=G(o), 0<0<V2
2.4 w(0,0) = 0 = G(0) = G(v/2),

where w, P are u and p at (0,7), F, G are defined to be ——%Pw and g(\/ia) respectively
and R’ is the region.

R ={0,7:0<0<v2,0<7<V2—0}.
Integrating (2.1) over the rectangle Q = [0, 0] x [0,7] C R’, we obtain

Q.5) w(o,T) = w(0,T) + w(a, 0) — w(0, 0) + /(: /0 ° Fo',7)do’ dr'.

Extending the corner (o, 7) of the rectangle of Q to meet the line o + 7 = v/2 we have
from (2.5)

Ww(o, V2 — 0) = G(o) = w(0, V2 — ) + w(o,0) + /0 Vi /0 "Fo', 7 do’ dr',

which upon using (2.2) yields

_ 1 1 V20 ’o W,
2.6) w(,0) = 7G(0) - 5/0 fO’F(a 7 do' dr',
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and

2.7 w(0,7) = w(v/2 —1,0) = %G(\/_i —7)— %[;/Oﬁ_r F(o',7)dd' dr'.
Using (2.6) and (2.7) in (2.5) we have
1

w(o,T) = %[G(o) +G(2 —1)] — 3 fo Vi /0" F(o',7)do’ dr’

1 V21 ' 1 gt 7 o ! g
—5/07/0 F(cr,'r)dod'r+/0/OTF(0,'r)dad'r,

or
w(o,T) = %[G(a) +G(WV2—1)]+ fR’/ K(o,7;0',7)F(o', 7" do’ dr’,

where K(o,7; 0’,7') is the symmetric Green’s function [1] best described graphically in
Figure 2.1.

N—

N—

o [0
FIGURE 2.1

Therefore in st-coordinates (1.1), (1.2), (1.5) is equivalent to
1
(2.8) u(s,t) = 2 [gs—D+g(s+]+ )\/R / M(s,t; 5", (s’ Oyus', ¢y ds' dt’,

where M = — %K.
If we write (2.8) in the form

(2.9) u=f+AL[u]

where L is the integral operator of (2.8), then in the space of weighted square integrable
functions L5(R), for continuous positive p in R, the theory of symmetric completely con-
tinuous operators [2] and the result of [1] yields.

THEOREM 2.1. Let p;, i = 1,2,... be the eigenvalues of the homogeneous functional
equation u = pL[u] with corresponding eigenfunctions ¢;. Then
1) if X # piforalli, (2.9) has a unique solution.
2) if A\ = piforsomeiandf is orthogonalto ¢; associated with ;, (2.9) has infinitely
many solutions.
3) if \ = p; for some i and the orthogonality condition of 2 is not satisfied, (2.9) has
no solution.

https://doi.org/10.4153/CMB-1992-049-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1992-049-2

374 NEZAM IRANIPARAST

3. The second CIV boundary value problem. Now we consider (1.1), (1.4) and
(1.6). Once again the change of variables s = %(0’ —7T)+1landt = —ﬁ(a +7)+1
conveniently transforms the problem to

3.1 Wor = F(o,7), (0,7)inR,

(3.2) Wo(0,V2 = 0) +wi(0,V2—0) =0, 0<0<V2,
(3.3) we(0,0) = w,(0,v2—0), 0<0<V2
(3.4) w(0,0) = 0.

Integrating (3.1) with respect to o and 7 respectively we have

3.5) Wi, 7) — wi(0,7) = /(;’ F(o',7) do’

(3.6) Wo(0,7) — wy(0,0) = /J Flo, ™) dr’

From (3.5) and (3.6) we obtain

(3.7) wo (V2 —7,7) — wi(0,7) = /O ﬁiTF(U’,T) do’
3.8) Wo(V2 —7,7) — wo(v/2 — 7,0) = /(: F(V2 —1,7')dr'.

Adding (3.7) to (3.8) and using condition (3.2) we have

V2-r
3.9 w0 +w(V2 7,00 =~ [*" F@'\ndo’ ~ [[FV2 7,7 ar
0 0
The condition (3.3) and equality (3.9) now yields

(3.10)  w.(0,7) = ~%[ /0 ﬁiTF(U',T)d0'+ /(: F(V2 ‘T,T’)dT’] = wy(v2 —1,0),

G.11) wo(,0) = -% [ /O "F(o', V2 — 0)do’ + /0 Y o) dT’].

Integrating (3.10) and (3.11) over [0, 7] and [0, o] respectively and using (3.4) results in

(3.12) w(0,7) = ~%u:/0ﬁ4lF(o',T')do'dT'+/(:[:IF(\/§—T',T")d’r" dT/],

(3.13)  w(0,0) = —% [ /0 ’ /0 " Fo" V2 — ') do" do' + /0 ’ /0 ﬁio,F(O'I,TI) dr' da’].
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Substituting w(t,0) and w(0, o) from (3.12) and (3.13) in (2.5) with w(0,0) = 0, we find
w(o,7) = /:/;F(U/,T/)dUIdT/ — %/OafoalF(a”, V2 —0')do" do’'
- %/Oa/oﬁkalF(a’,T') dr' do’ — %ﬂ/()ﬁ_T/F(a',T') do' dr’'
— % A /OTIF(\/E—TI,T”)dT”dTI,
which can be written in the form
w(o,T) = /\/I;/N(a, 1,0, 7F(o',7)do' dr’

where N(o,T;0',7') is the symmetric Green’s function whose values in different regions
are demonstrated in Figure 3.1.

Converting the o, T variables back to s, ¢ we have

u(s, ) = A /R / S(s, t; 8", )p(s’, yu(s', ) ds' dt’,

where § = —N.
’T/
-1
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-3 0
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FIGURE 3.1
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