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Human Swarm Problem Solving

. Background

In CI research, biological research and studies of animals’ collective behav-
ior is considered to be one of the most important research areas. Although
biologists sometimes use CI as a term, the more biologically orientated
term “swarm intelligence” is more common. Usually, the notion of a
swarm describes the collective behavior of a decentralized, self-organized
system like fish schooling, bird flocking, ant colonies, animal herding and
honeybee swarming. When operating in large groups, these swarms are
together able to solve far more complex problems than a single of these
individuals can do alone (Bonabeau, Dorigo, & Theraulaz, ; Corne
et al., ; Krause et al., ). One of the most remarkable features of
this type of collective behavior is that it often can be described and
predicted with mathematical models. Although individual behavior varies,
the predictive value of statistical models suggest the presence of unique
mechanisms at a group level (Sumpter, ). Inspired by the behavioral
rules these animal groups or swarms use to coordinate actions, humans
have even invented similar artificial systems that can function effectively by
following the same principles. As an academic term, swarm intelligence
was introduced by Gerardo Beni and Jing Wang () who created
robotic systems where agents were programmed to follow very simple
interactional rules without any centralized control structure that dictated
local individual behavior. Despite the simplicity of these rules, the collec-
tive behavior of the agent would be surprisingly intelligent at a level
that was unknown to the individual agents (Bonabeau et al., ;
Corne et al., ; Krause et al., ). Such artificial systems will
not be the topic of this chapter. Instead, the chapter will address how
human swarm problem solving also builds on some of the same behavioral
rules and basic mechanisms that other animals use. The term “swarm
problem solving” highlights that the sections are organized according to a
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few selected biological mechanisms that also resemble how large human
groups sometimes solve some types of problems together.

As such, the chapter will primarily link current biological research
on animals’ collective behavior to the wisdom-of-the-crowd approach
within CI research. In , Surowiecki coined the term the “wisdom
of the crowd” in describing how a crowd, a large groups of amateurs,
can outperform individual experts in many different areas if four con-
ditions are fulfilled. First, a heterogeneous group with diverse opinions
produces better quality solutions than a homogeneous group. Second,
individual must make independent contributions without being influ-
enced by others. Third, individuals should work in a decentralized and
autonomous manner. Fourth, the contributions need to be aggregated
in an effective way. Under these conditions, an increase in the group
size will also increase the chances of producing the best solution
(Surowiecki, ).

These principles became the most important guidelines for a new
research area within CI that examined new crowdsourcing methods and
“wisdom of crowd” effects. However, Surowiecki and few others have
compared human crowd behavior with animal crowds. This chapter will
address the issue by examining five different swarm mechanisms that, to
some degree, humans and animals have in common when they solve
problems. Several crowdsourcing methods will be analyzed and framed
with terminology from biology. By choosing this approach, the goal is to
illustrate how biological research can provide valuable insights into mech-
anisms that are often studied in the “wisdom of crowd” literature as being
uniquely human.

The biological studies in the chapter primarily describe how animals
make consensus decisions. In many situations, animals have to decide
between two or more options. Most of these examples concern how groups
choose a new shelter or migrate to a new home. In this setting, information
transfer is required and collective decisions build on alternatives that
remain stable. Cohesion, speed and accuracy are considered important
factors that will influence how all or nearly all group members come to
agree on the same option. The overall key question is how individuals
reach a rapid consensus for the best of a number of available options
(Sumpter, ).

Building on recent biological research, this chapter discusses five mech-
anism related to animals’ collective problem solving that are also consid-
ered to be relevant in explaining human swarm problem solving. These
mechanisms are:
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- Decision threshold methods
- Averaging
- Large gatherings
- Heterogeneous social interaction
- Environmental sensing

Animals also use both averaging methods and decision threshold methods
that build on statistical rules and resemble how humans aggregate information
from a large group. In addition, biological studies show that animals coordi-
nate qualitatively different actions in effective ways when they solve different
types of problems. Here, three animal mechanisms – large gatherings, het-
erogeneous social interaction and environmental sensing – will be presented
and compared with how large human groups operate in similar ways.
A key issue in human decision-making is whether it should build on

aggregation with no information exchange versus letting a group inform each
other in different ways (Tindale&Winget, ).While the original wisdom
of crowd literature stressed the need for individual independent opinions in
crowds, there is today a stronger emphasis on the possible positive influence of
dependent contributions (Davis-Stober et al., ; Tindale & Winget,
), such as in prediction polls or decentralized communication networks
(Becker, Brackbill, &Centola, ). New technological platforms that build
on dependent swarm contributions are also being invented (e.g., Willcox
et al., ). By connecting these studies to biological research, I found
human swarm problem solving to be the most appropriate term to cover a
large variety of crowdsourcing methods. Here, the notion of a swarm covers
the aggregation of both independent and dependent crowd contributions.

. Decision Threshold Methods

Decision threshold methods attempt to reach consensus by following a
response threshold rule. This can primarily be done in two different ways.
On one hand, quorum decisions ensure that a minimum number of
individuals (the actual quorum number) are ready to shift from one
behavior to the next. On the other hand, a majority decision let all
contributions or votes count, but only a certain percentage of consensus
is required to reach a decision, typically a simple majority.

.. Quorum Decisions as Swarm Problem Solving among Animals

In animals’ collective decision-making, quorum decisions will rely on
independent assessments in the first phase of the process. When a specific
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threshold is met, there will be a distinct behavioral shift in mode towards
dependent behavior. Everyone will copy the preferred behavior. Most
importantly, both the speed and accuracy of decision-making can be
improved by copying the choice of a better-informed neighbor
(Sumpter, ). Quorum decisions ensure that a minimum number of
individuals (the actual quorum number) are ready to shift from one
behavior to the next. Because decisions taken by several individuals are
generally more accurate than individual decisions made alone, quorum
thresholds reduce the risk of errors (Bousquet, Sumpter, & Manser, ).

This behavior has primarily been studied in honeybees, ants, and fish
(Bousquet et al., ). However, there are differences, as ants use tandem
runs as recruitment signals, while bees use dances (Figure .). Still, there
are also strong similarities between the decision processes of Temnothorax
ants, honeybees, and even cockroaches since all three species exhibit
positive feedback and quorum responses. Because decision-making in
animal groups often will be decentralized, positive feedback plays an
important role. A plausible explanation is the evolutionary consequence
of a need by individuals to reach consensus (Sumpter, ).

In one experiment, small groups of fish had to swim through a Y-
shaped maze where replica conspecifics were set up down both sides of
the maze. Interestingly, smaller groups of one or two fish were more
likely to be influenced by the replicas than larger groups of four or eight
fish. If the difference between the number of replicas moving to each side
was only one (e.g., if left:right was : or :), the larger groups were not
influenced by the majority at all. However, if the difference in replicas
was two (e.g., if left:right was : or :), the larger groups were much
more likely to follow the majority. The results show that fish only follow
a certain majority size (response threshold), and they are able to compare
their own group size with the numbers of fish in their surroundings
(Sumpter, ).

In another experiment on a potentially dangerous situation, groups of
four or eight fish only swam past a predator replica when guided by two or
more “leader” replicas, while they usually ignored the behavior of one
single “leader” replica. However, a single fish who would never swim past a
predator alone would still do it sometimes if led by a single “leader” replica.
The results show that uncommitted individuals in larger groups only
follow above a threshold number of leaders. This threshold dramatically
reduces the probability of errors being amplified because if the probability
of one individual making an error is small, the probability that two fish
independently make the same error simultaneously is very small.
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Interestingly, experiments show that humans also ask for the opinions of two
other individuals if they want to be more certain about a particular choice. The
quorum rule of following more than one leader allow both fish and humans to
make more accurate decisions as group size increases (Sumpter, ).
Another example is Temnothorax ants who live in colonies of between

 and  individuals in small rock or wood cavities. If their nest is
damaged, they are able to move to a new site within a few hours, and will
nearly always choose the best site from as many as five alternatives. They
are able to assess new sites from several environmental cues such as cavity
area and height, entrance size, and light level. Around  percent of the
colony participate in the nest siting, and these ant scouts go through
different phases of commitment. Each ant first searches for nest sites,
and when finding a spot, the length of the evaluation will be inversely
proportional to the quality of the site. Once the site has been accepted, the
ant moves into a canvassing phase, whereby she leads tandem runs, in
which a single scout ant follower is led from the old nest to the new site.
However, the newly recruited ants make their own independent evaluation
of the nest and then return to recruit new ants. Since ants use more time to
accept lower quality nests, the better quality nests will have a more rapid
recruitment. Here, the ant decision-makers face a trade-off between speed
and accuracy. Greater speed in making a final decision increases the risk of
not choosing the best available nest site option. Recruitment via tandem
runs is rather inefficient because ants only move at one third of their usual
walking speed. When the size of support for one site exceeds a certain
quorum threshold, a recruiting ant will move into a committed phase, and
instead begin to carry passive adults and other items to the new nest site.
These transports are done at a normal walking speed, marking a shift from
slow to rapid movement into the new nest (Sumpter, ).
Until recently, researchers have thought that dominant individuals lead

decision-making in vertebrate groups (animals with backbones: mammals,
birds, fish, reptiles, amphibians). However, recent studies show that con-
sensus decisions are more common than previously thought, for example
when animal groups decide in what direction they want to move. Only a
small proportion of individuals in the group may possess the relevant
information about the route. Some may also differ in their preferred
direction. A consensus decision is then necessary to prevent the group
from splitting. Typically, a group begins to move in a particular direction
when a certain threshold of individuals make the same signal with their
head movements (whooper swans), gaze in a particular direction (African
buffalo), or use calling (gorillas) (Dyer et al., ).
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Another example is meerkat groups which stay together during daily
foraging (Figure .). Some of their specific moving calls build on quorum
decisions, which is used as an efficient temporal coordination tool of group
movement. A quorum of at least two and usually three meerkats are
necessary to enable the whole group to move to a new foraging patch.
The quorum shows that an accumulation of evidence is needed, increasing
the likelihood of the foraging patch actually being food-depleted. This
decision-making system avoids that one individual makes the wrong
conclusion. Neither dominance status, sex, nor age affects the calls and
suggests they are made as independent individual assessment of the food
patch quality. If none or only one extra individual join in on the moving
call, the group will continue to forage in the same area. However, the
moving calls are not used as a directional coordination tool. Because
meerkats’ prey are widely distributed underground, it is more important
for them to know when it is best for them to leave instead of where to go
next. The system provides a simple mechanism to coordinate group
cohesion while at the same time maximizing foraging success for the
majority of the group (Bousquet et al., ).

It is also interesting that the quorum number is an absolute value, either
two to three individuals. Other studies show similar results: it takes more

Figure . Two worker ants of the species Temnothorax albipennis performing a tandem
run, image courtesy of Thomas O’Shea-Wheller, 
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than two fish to make a decision in groups of up to ten individuals. It
appears that two to three individuals acting as signalers is a common
requirement in several species, at least for group sizes ranging from six to
 individuals. It shows that a quorum number does not need to be large
to be effective since errors decrease exponentially with quorum size. If the
probability that one meerkat wrongly concludes that it is time to leave a
foraging patch is  percent, then the probability that two and three
individuals will independently reach the same conclusion is . percent
or . percent, respectively (Bousquet et al., ).
However, recent studies suggest that the response threshold in several

different animal groups does not depend on the absolute number of other
individuals exhibiting a certain behavior, but rather on a fraction of the
perceived individuals who exhibits a certain behavior (Couzin, ). For
example, a study of whirligig beetles, tested at what threshold the beetles
initiated a flash expansion when observing a predator. The ratio of sighted
beetles was manipulated so one could test whether the threshold was an
absolute number or a proportion of the group size. The results supported
the proportional hypothesis since the response occurred when more than
 percent of the beetles saw the predator (Romey & Kemak, ).

Figure . Meerkat (suricata suricatta) digging in the Kalahari Desert, photo © Tim
Jackson/Getty Images
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Sumpter () emphasizes that quorum responses can substantially
reduce errors compared with independent decision-making. Positive
feedback combined with quorum responses can aid accuracy in collective
decision-making without requiring full consultation of all group mem-
bers. While the quorum mechanism leads to improvement in accuracy
over individual decisions, it does not achieve the same accuracy level as in
majority decisions. For example, if  individuals each have a / prob-
ability of making the correct choice, the probability of a majority error is
just . percent. In a similar group, a quorum response that is elicited
when – persons make the same choice will produce an approximate
error rate of  percent. In a quorum response, there is a risk that
small initial errors can be amplified and lead nearly all individuals to
make the same incorrect choice, which they would not have made by
themselves. However, compared with making individual decisions the
simple copying rule based on threshold responses substantially reduces
the number of errors. The mathematical model suggests that response
thresholds not only provide cohesion, but also facilitate accuracy. This is
because quorum responses allow effective averaging of information with-
out the need for complex comparison between the options. Evidence
shows that in most cases, quorum responses allow for greater accuracy
than complete independent behavior or just having weak responses to the
behavior of others (Sumpter, ).

.. Human Quorum Response as Swarm Problem Solving

The noun “quorum” is plural of qui in Latin, meaning “of whom.” The
first quorum refers to commission papers that authorizes a group to be the
justices of the peace. Today, the meaning of the term typically refers to
the minimum number of members who must be present at a meeting in
order to make official decisions. A human quorum often refers to the
majority or supermajority of quorum (in most cases, the bylaws will state
the rules for a quorum), but as in animal groups, a quorum can require a
group minority significantly lower than  percent. It varies whether a
specific percentage (quorum quotient) or a fixed absolute number is
required to make decisions.

The main purpose of a quorum is to avoid a few members becoming too
powerful when important decisions are made. Many democratic institu-
tions also use quorum rules to ensure the “legitimacy” of decisions if it is
likely that not all eligible voters will participate. For example, it may not
only be enough with a majority, but the total number of votes will also
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need to exceed a particular threshold. Quorum rules are common in
referendums like for example in Switzerland, which let citizens challenge
a law approved by the parliament or propose a modification of the federal
constitution. They organize several different types of referendums, includ-
ing mandatory referendums that propose a modification of the national
constitution, optional referendums which require that citizens collected
, signatures against a law accepted by the national Assembly and
demand a referendum, and there are also federal popular initiatives with
voting on a change of the constitution, which require a minimum of
, (“How to launch a federal popular initiative,” ). With
, signatures in Kraków, Poland, a proposal can be presented to
organize a citizens’ assembly, and with , signatures, the mayor is
required to organize an assembly (Gerwin, ). Town meetings is
another example of a quorum response where those who show up make
the decision. However, there are major challenges in this method since
studies show that very few eligible voters show up and very few speak up in
these settings. In Switzerland, direct democracy continues to play an
important role at a local (cantonal) level, but it is increasingly as a referenda
and not as the large gatherings where everyone meet together face-to-face.
The Landsgemeinde or cantonal assembly only persists in two cantons
(Fishkin, : , ) (see Figure .).
With the emergence of new digital technology and an online setting,

quorum response mechanisms are now also used in new ways. In certain
types of synchronous decisions-making systems, individual votes can be
graded and collective decisions are made when a certain threshold level of
support is reached (Patel et al., ; Willcox et al., ) (see example in
Section .. Large Gatherings as Human Swarm Problem Solving). One
interesting example is Kickstarter, which is a crowdfunding platform that
gathers money from the public as a new way of financing new ventures and
bringing creative projects to life. Here, the quantitative response threshold
is not votes, but money. Project creators in need of economic support will
describe the project on the website and choose a deadline and a minimum
funding goal. The model builds on microfinancing and make it possible
for anyone to contribute from anywhere in the world within a short fixed
period (Kuppuswamy & Bayus, ).
In , Kickstarter reportedly received more than $. billion in

pledges from . million persons to fund approximately , projects.
The projects range from the invention of equipment, art projects, design,
technology, film, music, games, comics, and food-related projects. People
who support Kickstarter projects are usually offered tangible rewards and
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the opportunity to buy some of the products for a reduced price
(Kuppuswamy & Bayus, ). The collective decision of whether to
fund the project or not is left open to unknown others or outsiders in a
global online setting. In some projects that aim to sell a product, it may be
relevant to check whether the product is interesting for potential customers
in the future. These online platforms enable people to create products that
it would have been very difficult to fund in other ways. In this way,
crowdfunding resembles arts patronage, where artists go to the audiences
to fund their work. The difference is that the outreach is to potential
backers from all over the world.

This fundraising resembles a quorum response because it builds on an
“all-or-nothing” model. If the project is not fully funded within the
deadline, the project owner gets no money at all. If the funding goal is
overambitious, there is a risk that one may raise no funds at all. However,
the project can continue to receive contributions until its deadline even
after the funding goal has been reached. The crowdfunding process is also
transparent in providing information about the total amount of money

Figure . People raise their hands to vote during the annual Landsgemeinde meeting at a
square in the town of Appenzell, April , . Appenzell is one of Switzerland’s two

remaining Landsgemeinden, a -year tradition of an open-air assembly in which citizens
can take key political decisions directly by raising their hands, photo Christian Hartmann/

Reuters/NTB ©
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received at any point of time. Anyone can see how much money is needed
to reach the pledge or the decision threshold point. There is also informa-
tion on the number of backers and days of the crowdfunding period
(Kuppuswamy & Bayus, ). Micro funders have an updated overview
of the aggregated collective contribution at any time. Because contribu-
tions are given as money, the size of the contribution is also much more
flexible compared with votes.

.. Majority Decisions

Majority decisions is another decision threshold method that is particularly
important in human decision-making and democratic political systems.
When problems involve discrete alternatives, large groups will often use
majority or plurality rule to make a decision. The most important theorem
that explains the epistemic advantages is the Condorcet Jury Theorem
from . According to the theorem, majorities are virtually certain to be
right when some assumptions are fulfilled. The theorem states that if voters
() face two options, () vote independently of one another, () vote
honestly and not strategically, and () have, on average, a greater than
 percent probability of being right, then, as the number of voters
approaches infinity, the probability that the majority vote will yield the
right answer approaches certainty (Anderson, ). These principles were
first applied in the design of a jury system that aimed to determine the
optimal number of jurors. Today, it is used in a much broader sense to
prove how majority rule decisions can be better than individual decisions.
It explains the relative probability of a given group of individuals arriving
at a correct decision. The theorem also covers plurality voting with
multiple-choice options (Anderson, ; Landemore, : –, ).

Voter Competence
However, in reality, it is often very difficult to meet the Condorcet
conditions of voter competence and voter independence. First, voters need
to be better than random at choosing the correct solution. Then the
probability of being correct increases rapidly even in a relatively small
group. For instance, if the probability that each individual is correct is
 percent (p = .), a group of one hundred individuals will hardly ever
make a majority error if each individual also makes independent decisions
(Sumpter, ). Among large electorates voting on yes and no questions,
majoritarian outcomes will almost certainly make the best decision if the
Condorcet conditions are fulfilled. If ten voters have a  percent of being
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correct, a majority of six individuals will have  percent chance of being
right. However, when the group size increases to ,, a majority of
 persons will have  percent change of being correct. Because of the
properties in the law of large numbers, the majority opinion moves closer
to complete certainty as the group size moves toward infinity (Landemore,
: –, –).

While Condorcet originally believed that each voter had to better than
. correctness probability, it is today considered to be enough that the
median voter is above  percent change of being correct. This permits a
larger diversity in voter competence, and one can still end up with a correct
result (Landemore, : ). Unfortunately, the theorem also implies
that if the group is sufficiently big and the individuals are slightly worse
than  percent average, the group as a whole will almost always be wrong.
The same mechanism that pulls the results up also pulls the results down
(J. F. Mueller, ).

In direct democracies, the voter competence may be quite low on issues
related to new laws or constitutional amendments. The voters may not
have considered the issue before or they may lack knowledge. This opens
up special interest groups who can try to confuse or manipulate voter
preferences, or simply discourage them from voting. There is a risk that the
voting does not end up with the best result (Fishkin, : –). Most
of the problems in democracies are also complex, with different effects on
individuals depending on geographic location, social class, occupation,
education, gender, age, race, and so forth. In addition, knowledge about
these effects will be distributed unevenly in the population
(Anderson, ).

Enhancing citizens’ competence can also strengthen the majoritarian
outcome. If the percentage size of the majority is higher, it increases the
probability of being right (Landemore, : ). Therefore, one option
can be to use supermajority rules (see information about the Delphi
method in Section . Heterogeneous Social Interaction). In democracies,
this rule is often used in important political decisions. The long tradition
of requiring supermajorities rather than simple majorities implies that
opinions should approach unanimity. The disadvantage is that superma-
jority privileges the status quo over change (Fishkin, : ).

Voter Independence
The second condition in Condorcet’s theorem is that individuals must
vote independently of each other and be unbiased. Votes cannot have
causal effects on each other. The probability of one person being right on
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the problem must have nothing to do with whether other persons are right
on the same question (Landemore, : ). In practice, it will often be
difficult to determine variation due to error or systematic bias. The
assumption that individuals are independent leads to a paradox in the
theory of many wrongs. On the one hand, the theory says that the group is
collectively wise, but if individuals behave completely independent from
each other, there is no sharing of information or benefits from the input of
others. On the other hand, if there is too much information transfer
between individuals, the decisions will not be independent anymore.
Positive feedback can spread particular information quickly through the
group, and also encourage all individuals to make the same, possibly
incorrect choice (Sumpter, ).
Another paradox is that deliberation before voting is likely to increase

voter competence, but it may also have a negative influence on voter
independence. However, in a free and plural society that values a diversity
of perspectives, it is essential to let voters influence each other through
political discussions. From this perspective, Condorcet becomes less rele-
vant for modern democracies that rely on critical discourse, a free press, and
public discussions prior to voting. If it is not possible to share information
and opinions, this can easily create incompetent voters, which according to
Condorcet is also a threat against the best solution (Landemore, ).

Majority Decisions among Animals
Even animals sometimes follow a majority rule when making decisions
between binary discrete options. This typically happens when there is a
conflict of interest and large discrepancies in the group, for example, when
the angle between two directional options is more than  degrees
(Strandburg-Peshkin, Farine, Couzin, & Crofoot, ). Condorcet’s
theorem is also relevant in explaining how animal groups are able to make
accurate decisions when there are discrete options, like when fish swim
through a river network (Berdahl et al., ). One experimental study
shows that when the size of groups of fish increased, more of the fish
managed to follow the more attractive leader fish. Decision accuracy
improved with group size (Sumpter, Krause, James, Couzin, & Ward,
 & Sumpter, ).
When navigating, animal groups operate according to the “many

wrongs principle.” Each individual makes a noisy estimate of the “correct”
navigation direction, but by pooling these individual estimates, the accu-
racy is improved. The basic mechanism builds on the law of large num-
bers. If errors in individual estimates are unbiased and not perfectly
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correlated with each other, then a simple averaging across estimates
reduces noise and comes close to the optimal decision. This mechanism
covers both group movements and selection of alternative pathways. In
this case, majority rule serves the same purpose as simple averaging
(Berdahl et al., ).

. Averaging

.. Averaging as Swarm Problem Solving in Animals

The section on decision threshold methods describes situations where one
individual has a piece of information, like the location of food, which is
then transferred to others through positive feedback. It can then be
effective to copy the behavior of the individual that possesses the relevant
information. However, animals also make decisions when there are two or
more options when none in the group knows more than the others. For
example, when a group looks for food in an unfamiliar environment, each
individual has some probability of making the “correct” decision, but no
individual is more likely to be correct than any other (Sumpter, ).
Under such circumstances, animal groups will sometimes use an
averaging strategy.

As already mentioned, the “many wrongs principle” refers to the general
idea that social interactions reduce individual errors, improves navigational
accuracy when groups move together. For instance, individuals which
move together in herds, flocks or swarms, will continually adjust their
route based on real-time perceptions of the movements of other agents.
Simulations have demonstrated that averaging can describe local social
interactions if individuals balance their own preference with how
their neighbors move. These simple mathematical models assume that all
individuals in the group are identical, follow the same interaction
rules and have the same level of navigational information or error
(Berdahl et al., ).

At first, one might think that averaging is a distinctly human decision
method since it follows a relative complex statistical rule, but surprisingly,
animal groups are also able to use this mechanism when navigating.
Already in the s, some researchers proposed that birds and fish moved
in the average preferred direction of all individuals (Berdahl et al., ).
Recent empirical studies have also proven the existence of such a mecha-
nism. One example are wild baboons, which prefer a process of shared
decision-making instead of following dominant individuals when they
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navigate (Figure .). If the disagreement on the angle of the direction of
movement is above  degrees, the baboons will choose to travel in one of
two preferred directions. In this case, majority rule counts, and every one
will eventually move in the same direction. However, below a critical
angle, if the differences in preferences are lower than approximately 
degrees, the baboons’ compromise. The group will then move towards the
average of the preferred directions (Strandburg-Peshkin, Farine, Couzin,
& Crofoot, ). Honeybee swarms use the same mechanism. Prior to
lift-off to a new nest site, the bee dances encode the direction to the chosen
nest site with some individual differences. The actual flight direction will
then be close to the average direction advertised by the different bees in
their dances (Oldroyd, Gloag, Even, Wattanachaiyingcharoen, &
Beekman, ).
When averaging, both baboons and honeybees improve their naviga-

tional accuracy because of the “many wrongs principle” (Simons, ).
When all individuals want to reach the same target destination, they will
navigate according to their unique directional information such as visual
landmarks, internal compass, and smell and so on. Each individual will
therefore navigate with some error, but when this error is unbiased, the

Figure . Olive Baboons crossing Uaso Nyiro River in Kenya, photo Don Farrall/Getty
Images ©
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average direction of the group is more likely to be correct than a random
individual in the group. Assuming there is no cost to aggregating infor-
mation, navigational error in the average direction decreases in proportion
to the group size. This is analogous to the central limit theorem that shows
how the standard error shrinks when the sample size increases. Averaging
effects reduce “noise” at the individual level of information, and produce
more accurate collective actions (Berdahl et al., ; Krause et al., ;
Strandburg-Peshkin et al., ; Sumpter, ).

However, animal groups do not explicitly average individual estimates
in a group because they can only observe their near-neighbors. Instead, the
collective behavior relies on individuals having access to different informa-
tion. According to “the many eyes principle,” animal groups can integrate
more information about the environment because it is distributed among
all the individuals. Therefore, the dominant male in the baboon group
does not have a higher chance of getting followers, in decision-making on
group movements. These daily decisions are shared equally between the
members of the group (Strandburg-Peshkin et al., ).

.. Human Averaging as Swarm Problem Solving

By now, there exists a lot of research that demonstrates averaging effects
within the “Wisdom of Crowds” literature (Surowiecki, ). A classical
example is the jelly-beans-in-the-jar experiment, in which the group’s
estimate is superior to the vast majority of the individual guesses. In one
study with  beans in a jar, only one of the fifty-six individuals beat the
crowd guess of . If ten different jelly-bean-counting experiments are
done successively, it is likely that one or two students will beat the group
each time. However, it is very unlikely that the same student outperforms
the group. Over ten experiments, the group’s performance or the crowd
will almost always be the winner compared with single individuals
(Surowiecki, ; Treynor, ).

The basic requirement in human averaging is that estimations, pre-
dictions, or judgements can be quantified. The crowd will often be studied
as the aggregation of separate individual judgements. Typically, the crowd
will solve simple tasks that assume the existence of a correct solution, such
as predicting changes in the stock market or betting on a sports event.
Each member of a crowd will submit some relevant information (signal)
and some random errors (noise). When these errors are truly random and
not systematically biased, the average will perform very well because the
errors cancel. A good example of the crowd estimate is the temperature in a
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room, since individuals use uniquely different strategies when they guess
the temperature (Davis-Stober et al., ; Surowiecki, ).

If certain conditions are fulfilled, a group can be remarkably smart when
their averaged judgements are compared with the judgements of individ-
uals. The individual heterogeneity in the group makes the aggregate more
accurate (Lorenz, Rauhut, Schweitzer, & Helbing, ). From one
perspective, this effect is primarily a statistical phenomenon that requires
some type of averaging technique. A typical definition of “crowd wisdom”
refers to the performance of a group average compared with an individual
selected randomly. If guesses exhibit a random deviation from the correct
answer, these deviations tend to cancel each other out when a large
number of them are aggregated. When inaccurate perceptions are diverse,
the shortcomings of the ones tend to compensate for the shortcomings of
the others. This gives a more accurate, global estimate. Other definitions of
crowd wisdom are more mathematically orientated, comparing the mean
of the individuals with the mean individual or defining accuracy as the
average squared error of prediction (Davis-Stober et al., ).
Several of the citizen science projects from Chapter  use averaging

techniques to aggregate independent volunteer contributions. The same
micro task is done by several persons independent of each other a certain
number of times. This increases the likelihood of getting correct and valid
information. For example, in the Galaxy Zoo project, hundreds of thou-
sands of online volunteers helped astronomers by classifying the shapes of
astronomical objects. Even though some single volunteer made mistakes,
this became less of a problem when many volunteers looked at that same
object. The group results were very accurate and showed that the crowd
can perform well on relatively simple tasks.
A comparison of several wisdom of crowd studies found that simple

crowd average is robust across different aggregation and sampling rules. In
most cases, the simple average of individual judges is wiser than a single
individual estimate. If the true score is well bracketed by multiple estima-
tions (near the median or average), the aggregate accuracy will perform
much better than the typical judge in the group. This crowd wisdom effect
is present even when judges are individually biased and the crowd aggre-
gate is not particularly accurate. Unless it is easy to identify the best
individual across tasks that are done repeated times, the best option is
instead to choose the unweighted aggregate of the crowd if the size is large.
Over time, even the best performers will lose against the crowd average
(Davis-Stober et al., ). Although the simple average or mean is the
most popular aggregation technique, others have argued that median is a
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viable option. When group size is small, medians are less sensitive to
extreme member estimates and may provide a more accurate result
(Tindale & Winget, ).

There are also other treats against averaging. If individual have very little
background knowledge, the crowd aggregate may be very bad. In one
study, the crowd made a very poor estimate when asked how many times a
coin must be tossed for the probability that the coin shows heads (and not
tails) on all occasions to be roughly as small as that of winning the German
lotto. Here, the estimate of a single “expert” is better, as a person with
competence in mathematics can quickly estimate the correct answer to be
 coin tosses. Compared with the jelly bean experiment of the temper-
ature task, the coin example shows not only that those individuals are
imprecise, but there is also a huge systematic bias. Most real-life problems
include both imprecision and bias, and it is not always easy to distinguish
these from each other (Krause et al., ).

One way of improving the averaging methods is to weight individuals
differently, for example by giving more weight to expert members (Tindale
&Winget, ). However, there is still a risk that the decrease in variance
of predictions can offset bias in future aggregations. Another key concern is
the role of social influence. It is almost impossible to collect independent
opinions in society because people are part of social groups and will be
influenced by each other (Davis-Stober et al., ). An important con-
dition in the original “wisdom of crowds” approach is that the estimations
need to be made independent of each other (Surowiecki, ). While
animal groups are very effective in producing individually independent
information, humans are much more vulnerable to social influence. There
is a risk that negative social influence can reduce the diversity of perspec-
tives. For example, one study found that when the crowd received infor-
mation about the group estimate, the individuals changed their estimates
and performed worse as a group.

In the first round of the study, all subjects answered independently.
Afterwards, the subjects were allowed to reconsider their response after
having received full information of the group response. The new estimates
narrowed the diversity of opinions in a negative way even when the
individuals were not allowed to discuss the task with each other. One
explanation is that when individuals become aware of the crowd estimate,
they may move closer to the average because they assume that the crowd is
wiser. If all predictions are more narrowly distributed around a value, this
“range reduction effect” makes the crowd less reliable. The negative effects
of social influence will also be smaller if the individuals are more confident
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in their own estimates (Lorenz et al., ). The Delphi method builds on
this assumption (see Section ..).

. Large Gatherings

.. Large Gatherings as Swarm Problem Solving among Animals

Are humans the only ones who let a large number of people come together
to solve a problem? Not entirely. Arguably the most famous example in the
animal world is the “waggle dance meeting” which is an event honeybees
arrange to find out where to move their nest. The house hunting will
usually begin when colonies become overcrowded in their nesting activi-
ties. About a third of the worker bees stay at home and rear a new queen,
while the rest, a group of ten thousand bees, leave together with the old
queen to create a daughter colony. The migrants travel about  meters
before they stop and form a beardlike cluster, where they stay for a few
days. From this place, several hundred house hunter bees will travel out
and explore  square kilometers ( square miles) of the surrounding
landscape for potential home sites. They will usually identify around a
dozen potential home sites, which are evaluated by several bees to check if
they are sufficiently spacious or provide good protection. What is remark-
able is that the bees almost always select the single best site from the
options they have first identified (Seeley, : ). In this process, they
utilize a range of strategies that are also relevant for human swarm
problem solving.
The scout bees follow three steps in their collective decision-making

process. First, they search widely for prospective nesting sites and identify
all the available options in the surrounding area. They look for small, dark
openings that can provide a roomy and protective nest cavity. None of the
bees checks the same area; they are able to maximize the diversity of their
searching behavior, and thus optimize the chances of finding an excellent
home. The differences in flight routes may be due to where they have
previously worked as foragers or differences in their “personalities.” Since
the search group is so large, with several hundreds of bees participating,
they are usually able to identify the best sites very quickly, usually within
hours or a few days (Seeley, : , –).
The second step is that the bees meet at the cluster and freely share

information about all the available options. The scout bee that has located
a good potential nesting site announce the discovery through a waggle
dance which aims to recruit other scouts to the fly-out and evaluate the
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sites. These recruited bees will then fly out, assess the site independently,
and then return to dance for that site. Dances are more frequent for
better sites, leading to a faster recruitment of scouts. This is how the
positive feedback loop of recruitment to the different sites begins
(Sumpter, ).

What is extraordinary with the honeybee waggle dance is that it gives
specific information about the distance, direction, and desirability of the
site (Figure .). The duration of each waggle run is the distance coding
and gives information about the length of the outbound flight. Second, the
waggle run is positioned as a direction coding by running at the same angle
as the proposed outbound flight relative to the sun’s direction. The dance
is a specific flight instruction: “Should we consider this site which is
located X degrees to the right (or left) of the sun and Y meters away.” In
addition, the number of dance circuits inform the relative desirability of
the site. The better the site is, the stronger the advertising dances will be,
resulting in a stronger positive feedback for this site. The dance attracts the
other uncommitted scout bees to a specific site, and the scouts who made
the original discovery tend to be especially persistent in sharing their
information (Seeley, : , , – –).

One can look at the waggle dances as a large gathering with competing
“dance” advertisements for different candidate nest sites. At any given
point of time, some scout bees will be committed to a candidate, while
others are still uncommitted. A committed scout will advertise “her” site to
uncommitted scouts and recruit them to visit the advertised site. When the
recruited bees return, they advertise the same site and begin to recruit even
more scouts to the particular site. Supporters of one site can also become
apathetic and rejoin the neutral voters. Since the bees that have found the
best site will dance most intensively, they will gain supporters more rapidly
and these supporters will move back to a neutral status more slowly. The
interest in some sites will shoot up, while others fade away.

All bees are free to advocate any site, and all views are voiced and
respected. What is important is that the scout bees do a personal, inde-
pendent evaluation of the different sites. Each individual decides whether
she want to fly out to the site and whether she want to advertise it when
returning. No scout bee will follow another dancer without inspecting the
site. This is important because if scout bees blindly copy other bees, they
would make biased decisions by overemphasizing the reports from the first
scouts. The aggregated information builds on an open debate with con-
tributions from dozens, if not hundreds of scout bees with independent
opinions (Seeley, : , –, –).
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Figure . The honeybee waggle dance. The direction the bee moves informs others
about where the site is. The duration of each dance informs about the distance to the site,

photo Paul Starosta/Getty Images ©
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The positive feedback mechanisms aim to recruit a sufficient number of
scouts to one site to pick a winner. Even when the best site is discovered
several hours after the other candidates, it will still quickly dominate the
competition. The decision-making process is essentially a competition
between alternatives to accumulate support, and the winning alternative
is the one that first surpasses a critical threshold of support from the bees.
When the scouts visiting one of the potential home sites exceed a specific
threshold number, a quorum response is initiated which suddenly makes
them return to the swarm. There is enough evidence to make the best
decision. Back in the swarm, the scout bees who are convinced begin using
piping signals to inform thousands of nonscout bees to begin warming
their flight muscles. These preparations even start before all scouts have
reached consensus since it is vital to speed up the process. Quorum
responses ensure that the consensus decisions are both very accurate and
time efficient since not all have to agree before a decision is made (Seeley,
: , ). At the same time, the honeybees show that their solutions
are surprisingly accurate (Seeley, : , –).

The bees’ survival depends on the decision about their new home. This
is why they expend a lot of effort in searching for possible home sites and
debate it for several days. The large gatherings of honeybees are interesting
also in relation to human swarm problem solving, both in how all relevant
options are identified, how this information is effectively shared, and how
accurate decisions can be made more quickly through a quorum response
(Seeley, : –). If we look at the basic idea of deliberative
democracy, there are several similarities. People should listen to each other,
include all relevant arguments, and criticize them in a fair way. Without
these qualities, democracy can easily end in manipulation and misled
opinions (Fishkin, ).

.. Large Gatherings as Human Swarm Problem Solving

Deliberative Polling
If we look at large gatherings as a specific mechanism in human swarm
problem solving, Deliberative Polling is one example that resemble how
honeybees quickly solve problem together. It is a participatory governance
method developed by James Fishkin (). It includes the “whole terri-
tory” by inviting a representative sample from the whole population.
Random sampling is a strategy that ensures inclusion by gathering the
whole population in a smaller group to make it easier to deliberate. The
problem with self-selected participation is that the samples are
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unrepresentative, and participants who show up will often have special
interests and not really be engaged in finding out what is best for the whole
community. In Deliberative Polling, criteria for demographic and attitu-
dinal representativeness are therefore included to optimize representation.
Demographics representativeness cover standard categories such as class,
gender, education, income, and ethnicity. Attitudinal representativeness is
equally important and seeks a representative microcosm of the political
viewpoints in the population. It is also important that the group is large
enough, so the sample size is representative and includes all relevant
diversity in the whole population. A large group makes it possible to
produce meaningful statistically representative results. Usually, several
hundred persons will participate in a poll. One of the advantages with this
sampling, is that it is an effective way to get access to the opinions of an
entire nation. If all members have an equal chance to participate, this is
another variant of equal opportunity. Demographic and attitudinal
representativeness ensure that all relevant viewpoints and interests are
included in an appropriate proportion in relation to the population
(Fishkin, ).
The poll participants are the “scout humans” that do the work for the

entire population. Similar to bee nest siting, the poll participants will
typically meet to deliberate a couple of days. While the bees are genetically
designed to share and listen to all information in an open way, humans will
often need somebody to help them organize a similar process. Small group
discussions can easily become polarized. Cass Sunstein has found that if an
issue has a midpoint, the group will often move further away from the
midpoint and become more extreme. One reason is an imbalance of
arguments. If most people are positioned on one side of the midpoint,
they are more aware of arguments supporting only one of the positions.
Another reason is the “social comparison effect” which occurs when people
compare their views and feel a social pressure to fit in (Fishkin, :
, ).
Deliberative Polling addresses this challenge by using balanced info

materials and moderators that ensure that everyone is allowed to speak.
Discussions can easily become too dominated by men or those who are
educated. It is important that the ground rules for the discussions protect
individual opinions from the social pressures of consensus. Therefore, the
facilitators are trained to bring out minority opinion and to set a tone for
respecting all opinions equally. The briefing materials are typically made
beforehand by an advisory group which seek to include competing
accounts. The participants also pose answers to experts with different
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opinions in the plenary sessions. In order to ensure independent opinions,
and avoid conformity pressure, the participants’ final considered judge-
ments are collected in confidential questionnaires at the end of the process
(Fishkin, ).

An interesting example of Deliberative Polling is the participatory
budgeting project in the capitol of Ulaan Baator, Mongolia. Over two
days,  persons participated in the Government Palace. These respon-
dents were drawn from a larger stratified random sample of , resi-
dents. The randomly selected individuals comprised a balanced
representation of households, from both apartment areas and the tradi-
tional tent communities. When the participating residents arrived, they
were randomly assigned to small groups of about  persons who would be
together during the weekend. The participants received briefing materials
and the moderators supported the group processes. The groups also
identified key questions that panels of competing experts addressed in
the plenary sessions (Fishkin, : –).

It was expected that the final results would give the proposed Metro
system top priority, but instead the best-ranked proposal was “improved
heating for schools and kindergartens,” mainly because Ulaanbaatar is one
of the coldest major cities in the world. The groups also opted for a cleaner
environment, even if it would make energy prices higher. In addition, the
participants reported greater respect for others’ opinions by being part of
the process. The results from the Poll were afterwards included in the
Action Plan for the City Master Plan in the exact order determined by
the citizens. Other elected representatives in the city experienced the
process as a legitimate democratic process (Fishkin, ).

Furthermore, in , the parliament of Mongolia passed a law that
requires Deliberative Polling as a form of public consultation before the
parliament can consider amendments to the constitution. In the first poll
that built on this law, a national random sample of  was invited over
the weekend to deliberate in the Government Palace. It was an extraordi-
narily high rate of participation for those invited. Also on this occasion, the
results gave important advice to the national parliament. Two of the most
ambitious proposals for change, the indirect election of the president and
introduction of a second chamber, were rejected. The main reason was the
negative results from the Deliberative Polling (Fishkin, ).

Deliberative Polling appears to be a successful example of human swarm
problem solving. According to Seeley (: ), the honeybee
researcher, swarm problem solving depends on four things. First, the group
needs to be large enough for the challenge. Likewise, it is important that
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the sample size in the Poll is large enough to be representative for the
whole population. Second, the swarm must consist of people with diverse
backgrounds and perspectives. The Poll ensures this through not only
demographic representativeness but also attitudinal representativeness.
Third, individuals should, like the bees, be encouraged to do independent
exploratory work. In the Poll, this happens by letting many smaller groups
deliberate independent of each other. In the end of the process, the
participants also make an individual, independent assessment through
anonymous voting. While the bees end up selecting only one winner site,
the Poll ends up with a ranked list of prioritized solutions. However, a
major difference is that the bees identify all available options and collect
information by themselves during the process. In the Poll, most of the
background information is collected in advance by experts and summa-
rized in briefing material. It is essential that this information is balanced
and unbiased.
Fourth, it is important to create a social environment where everyone

feels comfortable about proposing solutions and sharing information with
full honesty. The waggle dance of the bees shares information regarding
the options in a precise way, and the goal with the deliberation is also to let
everyone be free to put forward arguments and criticize them in an open
way. In the Poll, a moderator supports the group to ensure that the group
dynamics are as good as possible. The bee competition for the best site is
friendly because the bee swarm has a common interest. Likewise, the
Deliberative Poll often addresses issues that are relevant for all citizens,
like constitutional change.

Hackathons
Obviously, there is a huge variation in how humans use large gatherings to
solve problems together, also in nonpolitical areas. In the offline setting,
the hackathon is one such example of a gathering with up to ,
participants (Figure .). It is an event where people who not usually
meet, gather for a few days to solve a problem together. Most hackathons
center on software development. For instance, Google, Facebook, and
open-source software projects like Linux host hackathons to rapidly
advance work on specific development issues. In addition, universities
and national and local government agencies increasingly arrange hacka-
thons to build technology that addresses different societal issues, such as
helping the elderly cope with dementia. Some events may have as many as
, participants (Trainer, Kalyanasundaram, Chaihirunkarn, &
Herbsleb, ). A hackathon is also called a “hackfest,” which is an
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Figure . Hackathon in Berkeley, California in . Students work at Cal Hacks .,
the largest collegiate hackathon, in Berkeley, CA, November , , photo Max

Whittaker/The New York Times/NTB
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abbreviation of hacking festival. Codesprints or codefest is another term
that avoids some of the negative connotations associated with the term
“hack.” These sprints are usually organized as an intensive computer-
programming event with specific goals and a short timeframe. However,
most hackathons are quite open-ended and exploratory, with various
activities going on at the same time. At the end of hackathons, individuals
or groups will usually present or demonstrate their results (Briscoe &
Mulligan, ).
Like with the honeybees, the participations will work hard within the

short time period of the event. Typically, a hackathon will last between a
day and a week in length. Eating and sleeping is often informal, and
sometimes people will even sleep on the site. Participants will usually need
computer programming skills; the exception is some hackathons organized
for educational or social purposes. Participants must also be able to work
comfortably with new people in small informal teams. This includes
intense work conditions with time pressure. At the end of the hackathon,
they must be able to present the work to others in a compelling way in a
short time (i.e., pitching to potential investors) (Briscoe & Mulligan,
).
Hackathons will usually begin with a plenary presentation about the

event and the contest format, including the challenge prizes if available.
Sometimes, the prizes will be a substantial amount of money. A panel of
judges will then select the winning teams, and prizes are given. The judges
can be organizers, sponsors, or peers. It varies to what degree information is
shared online before the conference starts. The number of participants and
the organization of teams will depend on the concrete tasks. Usually, the
participants suggest ideas and form teams, based on individual interests and
skills. Sometimes they will pitch their ideas to recruit more team members
(Briscoe &Mulligan, ). This is somewhat similar to how the honeybees
also attempt to recruit other scouts to join them in investigating one
specific site.
Although the hackathons are brief, one of the expected benefits is to

build a community (e.g., often only a few days). When the participants
observe and interact with another, they share the feeling of being at the
same place. This proximity can contribute to the development of durable
social ties. During the hackathon, it is important that the interpersonal
relationship is of such a quality that people feel free to ask and offer help,
and work openly so others can observe their work. By getting in contact
with others, participants have the opportunity to identify common inter-
ests. If they share the same interests, it is more likely that they will trust
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each other and want to work together (Trainer et al., ). Like with the
honeybees, the hackathon let all participants move freely around, interact-
ing with whomever they want.

Because of time pressure in completing work within the deadline,
participants learn a lot about each other. However, one study still found
that some participants were not comfortable asking for help, showing the
importance of participants becoming acquainted. Some participants also
maintain contact after the hackathon (Trainer et al., ). Hackathons
illustrate that an offline setting can be used to let a large gathering of
people solve problems in effective ways within a short period.

Swarm Platforms
In the online setting, new swarm platforms are being invented that attempt
to involve large gatherings of people in collective problem solving. One
interesting example is the UNU platform, which attempts to enable large
groups to solve a challenge within an extremely short period. This is done
in an online environment that enables a group to synchronize all their
contributions in real time. Modeled after biological swarms and how many
species reach group decisions by deliberating in real-time systems, the
platform lets online groups work together as a dynamic moving group or
“swarm” that can quickly answer questions and make decisions by explor-
ing a decision-space and converging on a preferred solution. By giving
people a very short decision-making time, the intention is to reduce social
biasing effects like snowballing, which is considered to be a problem in
majority voting systems, which arise from sequential voting where persons
can observe how other votes have been given (Rosenberg, ).

The design of the UNU platform is inspired by honeybee nest siting –
how they integrate diverse information, competing alternatives, and con-
verge on a unified decision when a sufficient quorum is reached. The
primary goal is to design a system that allows networked users to make
intelligent decisions by reaching decisions in real-time systems, modeled
after natural swarm behavior (Patel et al., ; Rosenberg, ; Willcox
et al., ). This process is labeled as Artificial Swarm Intelligence (ASI)
because the system architecture runs algorithms modeled on the decision-
making process of honeybee swarms. All participants receive instant feed-
back on the movements of the human swarm group. This allows each user
to adjust their own preferences in relation to the changing swarm behavior.
Inspired by the complex body vibrations in the “waggle dance,” the
technology intends to model something similar in human groups (Patel
et al., ; Willcox et al., ).
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Individuals in the swarm respond to a question by pulling a “graphical
magnet” with their mouse cursor towards one of the proposed answers.
The group will in real-time collectively pull on the puck toward one of the
preferred answer options. Every individual can also at any moment change
behavior, making it possible to negotiate among alternatives. The answer
period varies, but is usually within  seconds, often much quicker. The
group output is the result of a “tug of war” between all participants.
Individuals who do not adjust their magnet will lose influence over the
swarm’s outcome, just like bees vibrating their bodies to express favor for a
new home site in a biological swarm. The pull from each user’s magnet is
visible to other users, and the aggregated force from all of the magnets
controls the movement of the puck (Patel et al., ; Willcox et al.,
).
Like with the bees, the collective decisions build on reaching a threshold

level of support, weighing the input from the group of swarm members,
and their mutual excitation and inhibition. When a certain number of
individuals prefers one specific option, and exceeds a certain threshold, the
answer is eventually selected (Patel et al., ; Willcox et al., ).
A study of the system found that the group’s final answers when swarming
were significantly different from the swarm initial mean and the
survey answers. The results show that individuals respond to the swarming
experience and do not only change their answer to conform to most of the
individuals in the group. The changes in responses are both influenced by
the dynamic expression of individual answers and the confidence in those
answers. Individuals must intuitively negotiate many factors in a short
period, including their own conviction in their answer and the real-time,
changing distribution of answers in the group at large. When individuals
choose to pull for other alternatives, they choose a nearby option that is
also still close to their original preference (Willcox et al., ).
Human online swarming can be regarded as a new wisdom of crowd

approach. However, the collective performance of such systems is still uncer-
tain. A few scientific studies have shown positive results compared with other
wisdom of crowd approaches. It illustrates that it is possible to utilize real-time
dependent contributions and not only aggregate separate independent con-
tributions (Patel et al., ; Rosenberg & Willcox, ; Willcox et al.,
, ). For example, when assessing whether patients were positive for
pneumonia based on their chest X-rays, a group of radiologists reduced the
percentage of errors by  percent compared to the averaging the individual
estimates (Rosenberg et al., ). In another study, the human swarm also
performed better than one of two machine-learning models (Patel et al.,
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). In general, these online swarm platforms are interesting because they
allow for a very large group of individuals to gather for a very short time and
make effective, relatively accurate, decisions.

. Heterogeneous Social Interaction

.. Heterogeneous Social Interaction in Animal Swarm Problem Solving

Do individuals in animal groups usually behave the same way when they solve
problems together?While averagingmethods and decision thresholdmethods
assume that individuals are identical units, there is today increased interest in
how individual differences influence group behavior. For instance, genetically
diverse honeybee colonies maintain a more stable nest temperature than
genetically uniform bees. The reason is that diverse bees respond at different
temperatures, thereby avoiding “all or nothing responses” that could easily
overshoot the target temperature (Sumpter, ).

In other animal groups, group heterogeneity includes the presence of
both leadership and other specific social structures (Jolles, King, & Killen,
). Individuals will fulfill different roles in a group when they solve a
problem together. When chimpanzees hunt monkeys in groups, they take
complementary roles. The driver chases the prey in a certain direction,
while the blockers prevent the prey from changing directions. Although
this type of group hunting looks like genuine collaboration, the most likely
explanation is that they follow simple interactional rules. Each animal fills
whatever spatial position is still available at any given time. Encircling is, in
this way, accomplished in a stepwise fashion. The group hunting does not
require a prior plan or agreement; each individual chases the prey from its
own position (Moll & Tomasello, ).

Complementary roles in a group hunt can be explained as simple
associative learning. One simple rule is that each individual follows their
preferred stalking pattern and goes straight towards or circle around the
prey. The timing of actions between the animals needs to be synchronized
to make the hunt effective. For example, when wolves fan out and encircle
prey, they follow two simple rules; get to the closest safe distance from the
prey, and get the best possible view of the prey (Figure .). By following
these two rules, each individual will at the same time move both towards
the prey and away from other individuals, so those in front do not obstruct
their view (Bailey, Myatt, & Wilson, ).

Body posture may be important as communication, particularly in
instances where the prey is only visible to the first animal. It provides
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information about prey position and direction of travel to the other pack
members. For example, when lions see prey, they adopt a ridged, alert
posture which give the other lions information about the prey’s presence
and location. In addition, individuals often choose to adopt a similar
posture or speed of travel to that of conspecifics during hunts resulting
in greater synchronization. This copying of behavior between individuals is
effective because individuals base their decision both on information from
the environment and from each other. In most circumstances, these
strategies, which require a low level of cooperation with simple interac-
tional rules, may be very effective (Bailey et al., ). Studies of schooling
fish have also shown that they organize themselves in an attempt to obtain
independent individual information. Their network of social influence is
structured to reduce the probability that individuals obtain correlated
(redundant) information from others (Couzin, ).
Furthermore, in most cooperative hunting species, there is some degree

of information transfer amongst individuals in group hunting, achieved via
visual, tactile, vocal or olfactory cues/signals or a combination of these.
Depending on the hunting strategy, this can take the form of both

Figure . Cow moose defends her newly born calf from the Grant Creek wolf pack
while surrounded in a tundra pond in Denali National Park, Alaska, photo Patrick

J. Endres/Getty Images ©
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inadvertent behavioral cues or intentional signals. For example, vocal
communication is ineffective for predators that typically rely on ambush,
because the sound would alert prey. Dogs, however, rely less on surprise
and thus can use vocal communication. In high levels of vegetation with
poor visibility, calls may help coordinate pack movements, but they do not
communicate specific hunting behaviors (Bailey et al., ).

These studies are interesting because they illustrate that higher-level
cognition is not necessary to perform highly organized cooperative hunts.
Effective coordination is achieved by following simple interactional rules in
combination with some degree of associative learning (Bailey et al., ).
Although chimpanzees are “mutually responsive” and adjust their individ-
ual actions according to the actions of other individuals in the group, there
is no indication of joint planning. Nor is there any indication of a
chimpanzee leader which directs the group activity (Moll & Tomasello,
). The collective behavior of these animal groups illustrates how
simple interactions at the local level create complex patterns of coordinated
activity at the system level.

Although these examples illustrate collective problem solving without
leadership, many animal groups will still rely on a small minority acting as
leaders. Leadership emerges when informed individuals successfully guide
naive individuals towards favorable environments. Like elephants, smaller
groups may recognize some individuals to be leaders, but this leadership is

Figure . African Elephant herd walking on marshy area of Amboseli National park,
Kenya. The oldest female is the leader of the herd, photo Manoj Shah/Getty Images ©
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usually anonymous in large groups (Figure .). For instance, if informa-
tion sharing about who has the relevant knowledge cannot be directly
signaled, leadership can instead be achieved when the informed subclass
moves more quickly than the naive majority. When speed variations are
used to transfer information, surprisingly few informed individuals are
required to effectively lead a group (Berdahl et al., ). When moving
together, individuals with faster speeds or slower turning behavior will
tend to end up at positions towards the front and edge of groups. The
leader in the front of groups will have a larger influence over group
movements and decision-making because of how the information flows
in the group. For example, fish leaders will elicit following from naive
conspecifics by showing more directed movement paths or greater likeli-
hood of initiating motion. In many cases, those individuals with relevant
information or experience are more likely to get followers. For example, in
groups of elephants and killer whales, knowledgeable and older individuals
lead foraging decisions, especially when the environment is changing.
Individuals which are central in social networks are also more likely to
get followers (Jolles et al., ).
However, there will be a conflict of interest between maintaining group

cohesion and moving towards the individually preferred target. If the
group becomes too large or too diverse, it may become fragmented. One
mechanism that helps avoid this is that members of the group rotate at
being leaders. Because it is costly to devote a lot of attention to gathering
information, it may also be more effective to have some leaders who
primarily focus on environmental cues and followers who predominantly
rely on social cues. This group heterogeneity may be an outcome of
evolution, rather than simply a consequence of age structure or mixing
(Berdahl et al., ; Jolles et al., ).
Studies show that only a very small group of goal-oriented individuals is

required to lead a large numbers of uninformed individuals to novel
resources. Naive individuals can even improve collective navigation,
because they, in line with the many wrongs principle, contribute with
errors that can actually stabilize consensus decision-making and increase
the speed and sensitivity of consensus (Berdahl et al., ; Jolles et al.,
). Likewise, studies of human groups show that a small, informed
minority ( percent) could guide a group of naive individuals to a target
without verbal communication or obvious signaling. When conflicting
directional information was given to the informed individuals in the
group, the time taken to reach the target did not increase significantly. It
suggests that this mechanism can also be effective even when the informed
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subgroup disagrees on the preferred options. When there was a disagree-
ment, the majority dictated the group direction (Dyer et al., ).

Another aspect of group heterogeneity is the possibility of social learn-
ing. Social learning allows knowledge possessed by informed individuals to
spread through the group and across generations through unidirectional
copying behavior. If naive individuals follow more knowledgeable group
individuals along a path or a migration route when they travel, they may
learn the route by being exposed to the cues associated with that route.
This learning is unidirectional in the way that individuals gain personal
information by following others who already have that information. Over
time, they will become an informed subset. For example, cranes have no
genetically encoded preferred direction in navigational tasks but will
instead rely on social learning over generations. Because there are different
levels of knowledge in the group, naive individuals can learn migratory
routes that may be helpful in future journeys. In such groups, there will
both be informed and naive individuals. Intergenerational leadership will
be one way that social learning can emerge. For example, neither genetic,
nor environmental factors, explain Atlantic herring annually returning to
specific sites to feed and breed. The most likely explanation is that young
individuals school with and learn from older and more experienced indi-
viduals. Light-bellied brent geese also choose staging and wintering sites in
adulthood that are identical or very near to those of their parents, indicat-
ing social learning of migratory routes. In such cases, successful navigation
will be more effective with leadership by the informed subgroup. The
other alternative, navigating by the “many wrongs” principle and averaging
estimates across the entire group, would be worse when a large group of
naive individuals lack experience of the route (Berdahl et al., ).

.. Human Heterogeneous Social Interaction as Human Swarm
Problem Solving

There is also CI research that examines heterogeneous interaction through
collective problem solving in different social network structures. These
social structures will follow specific interactional rules. For instance, an
important part of the original wisdom of crowd approach is decentraliza-
tion (Surowiecki, ). Centralized networks are organized around a core
or a leader, while decentralized networks open up for more direct social
interaction. Here, the emphasis is on utilizing local and specialized indi-
vidualized knowledge and avoiding a too strong centralization of the
collective work.
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In contrast, centralized networks have a structure where communication
flows disproportionately through one or more members instead of being
equally distributed among all members. In highly centralized structures,
the core, or a coordinator, will broker all interactions amongst the periph-
eral group members. This guarantees that the core has access to all critical
information and sole responsibility for coordinating activities for the whole
group. The potential disadvantage is that the periphery will then become
completely dependent on what the cores decides to share of information.
Individuals in the periphery cannot share knowledge or learn from each
other directly, and this is assumed to inhibit the problem-solving process.
The core may end up being a bottleneck if a large quantity of information
must flow through it or it can lead the whole network astray with bad ideas
(Shore, Bernstein, & Jang, ).

Decentralized Networks
Because of limitations in centralized networks, decentralized structures
have become more popular in recent years. It is assumed that a peripheral
individual, who is closer to the problem, is more likely to provide a good
solution. In addition, knowledge sharing can be done more effectively
throughout the system. One study finds that in decentralized communi-
cation networks where everyone is equally connected, group estimates
become more accurate because of information exchange instead of just
aggregating the independent individual contributions. The social learning
results in both individual and collective judgements becoming more
similar and more accurate. In decentralized networks, social learning aims
to utilize the heterogeneity of contributions in a more effective way
(Becker et al., ). The results point to the importance of learning
between near-neighbors and having a transparent access to information in
these closer surroundings. Less confident or informed individuals can
adopt better solutions from their peers. This communication may also
lead to learning and important sharing of knowledge that increase the
collective performance. It can be particularly valuable to rely on peers’
knowledge when newcomers lack sufficient relevant experience (Lave &
Wenger, ). Both IdeaRallys and hackathons, mentioned in the previ-
ous section as an example of a large gathering, also build on a decentralized
network structure. This structure allows for flexible social interaction that
enables participants to easily engage with each other without needing to
communicate through a central core. The Foldit gaming community also
resembles a decentralized network with different teams competing against
each other, but at the same time, they share information and learn from
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each from other. Individuals take on different roles in teams, being both
“solvers” and “evolvers” (see Section .).

However, some wisdom of crowd studies also point to negative effects of
social influence and knowledge sharing because individuals align their
judgements and produce more bias. If a few individuals dominate, group
estimates will more likely increase the error (Lorenz et al., ). Social
influence does not automatically lead to learning but can result in
“herding,” with individuals just following the group instead of making
their own individual independent judgement. Subgroups within a decen-
tralized network may become too attached to an existing set of ideas. In
uncertain environments, individuals will also have a tendency to copy their
peers, which can lead to collective bubbles and clustering that increase
conformity pressure (Shore et al., ).

Centralized Networks
There is lack of research in the field and it is far from obvious that
decentralized networks are always superior to centralized networks.
Human groups use many different network structures depending on the
problem they want to solve. For example, wisdom of the crowd problems
typically focus on a limited range of problem types, which involve static
information. In rapidly changing environments, one recent study finds
that centralized networks are more effective. This experimental study
tested the effect of seven network structures on problem solving in a
shifting environment. A murder mystery task was given, and early infor-
mation encouraged individuals to first draw the wrong conclusion. When
they later received new information, they would have to change the
proposed solution (Shore et al., ).

The results show that the best performers were the centralized networks
with peripheral nodes not being connected with each other. The core
nodes in the centralized network identified more unique solutions than
other networks structures such as a complete clique or local cluster. The
two-way communication between the core and the periphery ensured the
flow of communication and spread of good ideas. The positive effects arose
because herding and conformity pressure were minimized and learning
maximized. The inability of peripheral nodes to interact with each other
did not limit problem solving, but preserved a degree of independence of
judgement. This resulted in more openness and adaptation to new infor-
mation. The periphery was more adaptable to new information and less
likely to retain a wrong answer that had been established in the group too
early. The centralized network also generated solutions that were more
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diverse. Although these were not recombined, good ideas still spread
effectively even when they contradicted the majority opinion (Shore
et al., ).
Furthermore, the core node appears to be essential in this network

structure. The core gets access to many different opinions and uses its
special position to learn from the peripheral independent nodes. It also acts
as a filter, selecting promising ideas and sharing them with the periphery.
Nor will the central node feel the same group pressure as a smaller cluster
that is internally cohesive. This reduces the likelihood of being stuck with a
premature consensus solution. The core can also make everyone voice their
opinion to maximize the production of diverse ideas. The success lies in
limiting conformity pressure, but still retaining efficient connectivity,
promoting social influence as learning without herding.
However, there is a risk that the core becomes a bottleneck by giving too

much weight to a few ideas or their own idea. If a central node has a bad
idea, it can have a negative influence throughout the network. This is in
line with the original assumption by Surowiecki () that crowd
wisdom occurs only if no single individual is too influential. Another issue
is that in the experiment, random individuals were in the key central
positions, which is not usually the case in authentic problem solving
(Shore et al., ). Still, the findings suggests that both centralized and
decentralized networks can utilize heterogeneous social interaction in
effective swarm problem solving.

The Delphi Method
Moreover, there are specific crowdsourcing methods that seek to solve
complex problems by using a centralized network structure. One of the
most well-known methods is the Delphi technique or the Delphi
method, a method often used in idea-generation and forecasting, but has
since been widely applied in other areas (Tindale & Winget, ). It has
been applied in various fields such as program planning, needs assessment,
policy determination, and resource utilization (Hsu & Sandford, ).
The method can be used to determine expert consensus when it is
difficult to use other research methods or there is a lack of research on
the topic. Panel members will typically be invited to solve the problem
by using their professional or personal experience, i.e., practice-based
evidence (Jorm, ). It is a widely used and accepted method for
gathering data from respondents within a specific domain of expertise.
The communication is organized to stimulate a convergence of
individual opinions around a specific problem. The consensus evolves
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gradually through a collection of data from the panel members in multiple
iterations (Hsu & Sandford, ).

The method is used to explore possible strategic alternatives within an
area, explore underlying assumptions around a problem, and seek out a
broad range of information, like connecting informed judgements on a
multidisciplinary topic. Evidence may be available, but it can be incom-
plete or cannot be adapted to practice in a simple way. For example, in
mental health research, the method has been used to define foundational
concepts or determine collective values within an area (Hsu & Sandford,
; Jorm, ). The panel members who often are experts will use a
range of different evidence to make their judgements, such as systematic
reviews, individual experiments, qualitative studies, and personal experi-
ence. The panel may also include a wide range of stakeholders such as
clinicians, researchers, consumers, and caregivers (Jorm, ).

The process has many variants, but the first step is usually to formulate a
clear question that is answerable by the methodology. The group is
challenged to make an estimation or a prediction, such as for example
what mental health research topics should be prioritized by funders (Jorm,
). A facilitator will organize the Delphi study and recruit a group of
individuals (panel members) with some expertise on the topic. Ideally,
there should be a specific sampling strategy to recruit these experts.
Although the group size can vary a lot, it will typically be from ten to 
participants. Since the process depends on a statistical analysis, it is normal
to recruit a relatively large number of participants to produce stable results
(Jorm, ).

Typically, questionnaires will be used to collect data. The facilitator will
compile a questionnaire with a list of relevant statements that the experts
are to rate for agreement. The items can build on literature search or
through qualitative feedback from the expert panel or other stakeholders.
These items will usually attempt to give a complete coverage of an area
(Jorm, ).

The facilitator will then send out and collect independent individual
responses from the questionnaire. The invited group members make a
series of independent estimates, rankings, or idea lists on a specific topic.
The facilitator then compiles or aggregates the member responses and
sends it back again to each participant as a meaningful summary (mean
rank or probability estimate, list of ideas with generation frequencies, etc.)
(Tindale & Winget, ). The feedback is sent anonymously to each
individual in the group, but they can still compare the individual responses
with the rest of the group. The results will typically be given as percentage
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endorsement or mean score for each item on a Likert rating scale. The
emphasis is on describing the participant’s own position in relation to the
whole group. Qualitative feedback is used less often. It will be distributed
as a summary of the group comments and make each participant aware of
the range of opinions and the reasons that are given (Hsu & Sandford,
; Jorm, ).
In the second round, the participants can choose to revise or re-rate their

initial estimations or judgements based on reading the group results. The
results are presented in a well-organized summary of the prior iteration,
which allows each participant to learn, gain new insights, and clarify or
adjust their own choices. Individuals who deviate from the majority
opinion can be asked to explain why, and this new information may also
be sent to everyone and can potentially change the majority opinion in the
group (Hsu & Sandford, ; Jorm, ).
Responses will usually converge after some rounds, and a statistical

criterion is used to define when consensus has been reached. There is no
single answer to what the percentage should be, but the cutoff may be
lower for a multidisciplinary group than a single disciplinary group. Since
the aim is to reach consensus, a supermajority rule will typically estimate
when the group agrees, with items needing up to  percent endorsement
to be included in the final iteration. Items in the initial questionnaire that
deviate a lot from the consensus criterion might be eliminated immediately
(Hsu & Sandford, ; Jorm, ; Tindale & Winget, ).
The Delphi method can go over several rounds, but two rounds is most

common. The presentation of group opinions as statistical results allows
for a more impartial summarization of the collected data. It also ensures
that opinions generated by each individual is well represented in the final
iteration. The final outcome can range from a frequency distribution of
ideas to a choice for the preferred outcome or the central tendency (mean
or median) estimate (Hsu & Sandford, ; Jorm, ; Tindale &
Winget, ).
The Delphi method deviates from the wisdom of crowds approach

proposed by Surowiecki () in some ways. The original claim of
making independent individual contributions is only important in the
first round of the data collection. This strategy intends to avoid
groupthink. In groups where members have similar backgrounds and
interests, there is a risk of creating conformity pressure. However, the
process is entirely different in the second round. Then, the participants are
challenged to modify and seek consensus with the rest of the group based
on aggregated group results. The anonymity of the responses intends to
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reduce conformity pressure and bias by ensuring that individuals do not
have to agree with the rest of the group. Since the outcome will be an
aggregated quantified result, it is reliant on equal participation and avoids
influence from dominant individuals. In addition, the facilitator can
remove irrelevant content that focuses on individual interests or statements
rather than focusing on the collective problem solving process (Hsu &
Sandford, ).

The social structure is very similar to a centralized network and depen-
dent on the competence of the facilitator. The process emphasizes knowl-
edge sharing between members, but without any direct contact between
group members. The iterations show that individuals are allowed to be
influenced by other decisions, but the primary emphasis is on learning and
on providing more relevant information to every individual, and at the
same time minimizing herding or group pressure. This procedure allows
for knowledge sharing between the group members but avoids conformity
pressure or undue influence by high-status members (Hsu & Sandford,
; Jorm, ; Tindale & Winget, ). Overall, the purpose of
these procedures is to allow for some information exchange while holding
control over potential distortions due to social influence. Research on the
Delphi method has tended to show positive outcomes and do at least as
well as, if not better than, face-to-face groups. (Tindale & Winget, ).

Although diversity of expertise is not a requirement, it is often recom-
mended when selecting panel members. Because panel members do not
have to meet offline, it is possible invite experts from all over the globe and
make it easier to invite a diversity of expertise. Since the process is
anonymous and builds on aggregated contributions, there are fewer dis-
advantages with using the online setting. Part of this diversity is also about
ensuring that a diverse range of relevant topics are included in the ques-
tionnaire (Hsu & Sandford, ; Jorm, ).

As these examples show, both centralized and decentralized networks
can be regarded as important examples of heterogeneous social interaction.

. Environmental Sensing

.. Environmental Sensing in Animal Swarm Problem Solving

As mentioned in the previous section on large gatherings, the honeybees
display a fascinating ability to maximize environmental information when
they search for the best nest site in their surroundings. It is a matter of life
or death for the bees, and they are usually able to identify all relevant
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options in the surrounding area. This is possible because the individual
searching areas do not overlap with each other. Most other mobile animal
groups will also aim to utilize individual sensing capabilities by collecting
information about the surrounding environment in an effective way
(Berdahl, Torney, Ioannou, Faria, & Couzin, ). Previous sections
showed how groups are able to pool imperfect individual estimates accord-
ing to the many wrongs principle and use this information to navigate
noisy and complex environments.
Often, animals will combine environmental information and social

information between members in the group. For example, birds will utilize
the “many eyes principle” when they synchronize their decisions on when,
and where, to move to find food or avoid threats. A bird spotting a danger
will start to fly, and by this example set off the whole flock to fly away.
Starlings synchronize their individual actions very rapidly (Figure .).
When a predator attacks, a few peripheral group members will make the
first encounter. This elicits a sudden change in direction, which then
spreads through the rest of the group. Because the birds have different
spatial positions in the group, they acquire different information about the
surroundings and utilize the “many eyes principle” when spotting danger
(Couzin, ; Dyer et al., ).
Likewise, giant honeybees synchronize their activity to avoid threats.

Because they nest on a single, open comb, they are a target for predatory
wasps. When attacked, the bees respond by create “shimmering” waves
collectively. Initially, a subset of individuals starts a wave by rapidly raising
and lowering their abdomens, making the other neighboring bees do the
same. As with neurons and other “excitable” cells, individual bees will need

Figure . Starlings move as one giant organism to synchronize their defence against
predators, Kent, United Kingdom, photo Sandra Standbridge/Getty Images ©
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to “recover” for a short period after one round of activity. This creates very
visible waves of rapidly expanding rings or spirals across the colony surface
(Couzin, ).

Individuals respond to the body orientation of near-neighbors by
alignment. It requires that each agent both independently gathers infor-
mation about the environment, but also imitates the behavior of others.
These simple rules or behavioral algorithms provide the basis for the
“many eyes effect” by letting individuals benefit from others, such as when
detecting a predator or finding food. This collective navigation is possible
even when individuals do not know which cue other group members
respond to at any moment in time. It is enough to copy or imitate the
response of others in the vicinity (Krause et al., ). The group’s
capacity for surveillance also increases with the number of alert animals.
Fragmented individual information will be integrated at a group level and
provide a better overall “picture” (Feinerman & Korman, ).

Emergent sensing is a label used to describe how animal groups in
different ways combine environmental information and social interactional
rules, which can be different types of repulsion, alignment, and attraction
(Berdahl et al., ; Puckett, Pokhrel, & Giannini, ). According to
Berdahl et al. (), emergent sensing occurs when a group is able to
navigate even when no individual is aware of the correct direction. In a
school of fish, each individual fish directs its behavior based on the
perception of the position and speed of its immediate neighbors. For
example, if an individual fish has no memory and is only able to make a
scalar, one-dimensional, measurement of the environment, it will not be
able to assess the gradient of an environmental cue. However, when
information from multiple individuals is compared with each other, the
group can collectively measure and follow a gradient in the environment.
This is possible because a part of the group behavior is orientated towards
the environment, like when a school of fish navigate through a changing
“noisy” light field. Although these fish are not able to detect environmental
gradients individually, the school still manages to swim toward darker
waters because of a simple context-dependent rule: when observing the
light field, golden shiners swim faster in bright regions and slower in dark
regions (Berdahl et al., ; Puckett et al., ). The movement is not
directed by the behavior of one or a few “leader fish,” but a self-organizing
intelligent swarm system (Figure .).

A study shows that when the fish make movement decisions, they
respond more strongly to social influences like the location of near-
neighbors compared with the environmental influence of light gradients.
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Fish located in bright regions will travel more quickly, but because the
fish also attract each other, this creates a rotation in the school, turning
the whole group toward the darker region. The swim speed differences
within the group causes a turning toward those who move more slowly.
The collective sensing of the group level is both a result of individuals
adjusting their speed in response to local, scalar, measurements of light
(environmental gradient) and the social attraction to others in the group.
The group operates as a distributed sensor network (Berdahl et al., ,
). Another type of fish, the tetras, outperform many other types of
fish because they can sense the environmental gradient individually. They
rely more on environmental information and less on social information,
and can therefore have more distance between the individuals in the
group. Most groups will not only navigate on the basis of sharing of
information within the group, but they will respond to local environ-
mental cues like light, odor, temperature, or finding the winds or
currents that provide a better migration route (Berdahl et al., ;
Puckett et al., ).
Another interesting finding is that simulations of schooling fish show

that the group-level responsiveness to the environment improves

Figure . Bronze whaler shark swimming through a giant ball of sardines, waiting to
feed on them. Off the East coast of South Africa, photo wildestanimal/Getty Images ©
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spontaneously as group size increases. Although increased group numbers
reduce measurement error, the key determinant of improved performance
is the spatial extent of the group in relation to the length scale of the
environment. Groups that are able to span a larger area are more likely to
capture variations in environmental cues that are necessary to elicit speed
differences between individuals in the group. Each individual exhibits a
rudimentary, nondirectional response to the environment. This emergent
sensing creates a collective response to the environment not present at the
individual level. The results suggest that the ability to respond to environ-
mental information may decline if the group fragments or is reduced in
size (Berdahl et al., ). Studies of salmon in the wild have shown that
in years with more fish, navigation to natal streams is more accurate. The
journey home may benefit from the many wrongs principle when crossing
the ocean, consensus decision-making when choosing between two fresh-
water streams and emergent sensing when locating the odor of a river or
entrance of a fish ladder (Berdahl et al., ).

Social learning within groups is also important. If the size and compo-
sition of the groups varies and animals move throughout the environment,
there will be present a large local heterogeneity of knowledge about the
environment. In such cases, animal groups can make the best decisions by
harnessing information from every one and follow the most informed
group members. Naive individuals can even contribute with random noise
and errors that may lead to the discovery of improved routes over time.
This interaction between multiple individuals can sometimes lead to the
production of new knowledge. For example, a group can jointly discover
an improved route, through “the many wrongs principle,” and individuals
in the group will then learn this new route (Berdahl et al., ). By
collecting both social and environmental information, a group of individ-
uals can improve their collective decisions if they are able to balance this
information in an efficient way (Puckett et al., ).

.. Human Environmental Sensing

In environmental sensing, the basic assumption is that large groups can
perform better because they can access more environmental information.
One way of maximizing relevant information from the environment is by
having a broad outreach. Many CI projects build on open calls for
participation where anyone can join and all who join have equal status.
The communication is not targeted towards one specific person or group.
Like with a warning cry, the call for participation is just “released” into the
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surrounding environment, which in this case is the Internet as a global
environment. The aim is often to recruit the right problem solvers with
relevant competence. The goal is to either find the unknown intelligent
outsider or recruit a large enough group of people that can provide a
collective estimation or solution to a problem.

Crowdsourcing in Disaster Management
One example of environmental sensing is crowdsourcing in disaster man-
agement. In these scenarios, it is important that everyone who is affected
contribute with data. Crowdsourcing was first used in the management of
the Haiti Earthquake in . Nearly , independent reports were
analyzed in a volunteer-driven effort to produce a crisis map after the
earthquake. Volunteers, recruited through social media, did the translation
and geocoding of these messages. The countries had limited infrastructure
and few roadmaps that could be used to distribute disaster aid. In only two
weeks,  volunteers helped create road maps of Haiti and mapped
displaced persons camps of Haiti. People in the worst disaster areas could
send requests for shelter, food, and medicines to the government through
an online system. This crowd effort made it easier for the government to
organize help (Kankanamge, Yigitcanlar, Goonetilleke, & Kamruzzaman,
).
Today, mobile technologies provide new opportunities when citizens

can act as moving sensors, reporters, and micro-taskers. An enormous
amount of real-time georeferenced information can be collected with speed
and diversity (Kankanamge et al., ). For instance, citizens produced
massive amounts of digital, real time, local information on critical events
such as Hurricane Sandy in , or the Nepal earthquake in 
(Poblet, García-Cuesta, & Casanovas, ), wildland fire incidents
(Manavi, Gould, Smith, Thorp, & Guerin, ), or floods (Bhuvana &
Aram, ).
In disasters, traditional communication modes such as wired telephones,

television, mobile applications, and radios frequently crash, but social
media will often remain intact. Especially, the propagation speed and the
reaction time of social media has challenged the use of traditional com-
munication modes during disasters. The communication flow between
people through social media has enabled more personalized warnings in
disaster areas and is today challenging the conventional disaster warning
methods. Today, emergencies are often first reported through the “eyes” of
personal mobile cameras and then shared on social media, rather than
reported to officials. The first warning alerts happen through
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communication in personal and informal social networks in the local
language. These provide assurance that family and friends are safe. At an
aggregated level, this information will typically provide the best updated
information about the status of a situation. Ordinary citizens are becoming
increasingly important in solving these type of emergent problems
(Kankanamge et al., ).

If we look more specifically at geomobile technologies, they can maxi-
mize environmental information in at least three different ways (Poblet
et al., ). First, the “crowd as sensors” is a type of crowdsourcing that
enables the collection of data from multiple devices, including mobile
handsets, and each of these devices provides some local information that
can be either automatically generated by sensors running in the back-
ground or it can be generated by humans. A large number of users can
generate raw data by merely carrying their mobile devices. Sensor-enabled
mobile devices (processes run in the backend by GIS receivers, accelerom-
eters, gyroscopes, magnetometers, etc.) automatically collect data in the
background. These types of data are especially important in the mitigation
and preparedness phases of disaster management. They can inform about
stampedes or traffic jams, seismic sensing, and how the population is
distributed. Participants do not actively have to contribute with informa-
tion. However, GPS location services require users’ explicit permission of
access, while other location sensors such as accelerometers and gyroscopes
do not (Poblet et al., ).

A second type of crowdsourcing is the crowd as reporters. Social media
users (Twitter, Facebook, Instagram, etc.) will also produce first-hand,
real-time information on events as they are unfolding (e.g., tweeting about
a hurricane and the damages in a specific location). This user-generated
content is important in information sharing and also contains valuable
metadata added by the users themselves (e.g., hashtags) (Poblet et al.,
). These data can be used to extract semantically structured informa-
tion that can give important situational knowledge during an emergency.

One example is data mining of all messages people have posted about
the disaster in social media channels like Twitter or Facebook. However, it
is not easy to analyze data effectively within a very short period. For
example, in the case of  Hurricane Sandy,  million tweets were
produced over a two-week post period. This is a huge amount of data,
which poses challenges for filtering and synthesizing the relevant informa-
tion (Kankanamge et al., ; Poblet et al., ). The quality of the data
will depend on the credibility of the reporters and a lack of control in this
step can mislead decisions. There needs to be some quality control
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mechanisms based on experience, reputation of sources, and verification
with other sources of information (Poblet et al., ).
Therefore, the response time of this type of tasks will increase compared

with other types of geodata that can be used immediately. Some of the
critical issues concerning trustworthiness and privacy are easier to handle as
the crowd actively take the role of a “reporter.” When people are already
identified, assessing the trustworthiness of the source and verifying the
incoming information may be less problematic (Poblet et al., ).
Finally, “crowds as micro-taskers” includes people executing specific

processing tasks, which typically involve a modularization of a complex
task into many smaller and independent tasks. One example is the cate-
gorization of raw data (labeling images, adding coordinates, tagging reports
with categories, etc.). Volunteers can be part of a global response that allow
them to participate in a number of tasks such as social media monitoring,
data collection, data filtering, tagging, geolocation of events, etc. Because
essential information needs to be analyzed rapidly, it requires active
contributions from many volunteers. Sometimes, these processing tasks
may require a training phase. Automatics tools and machine learning
algorithms can also do some of this work and reduce response time further
in a disaster management scenario. Still, rescue forces are the key volun-
teers during disasters, but online volunteerism can potentially support this
ground work through information sharing on missing people or damaged
property (Kankanamge et al., ; Poblet et al., ).
New forms of participation for individuals and communities often blurs

the skill-based distinctions between amateurs and professionals. This can
make it difficult to establish a shared understanding of how different
sources of data should be used. Shared standards have also become crucial
to facilitate interoperability and reduce misunderstandings (Poblet et al.,
). The crowdsourcing methods in disaster management are still
immature, but the potential in this type of human environmental sensing
is significant.

Collecting Environmental Information in Smart Cities
A new trend in human environmental sensing is the development of smart
cities that aim to employ information and communication technologies to
improve the quality of life for its citizens. Many researchers claim citizens’
use of technological infrastructure based on the Internet of Things and
mobile technologies could potentially help societies in solving a range of
different problems, such as environmental pollution, local economy health
problems, or traffic management (Ismagilova, Hughes, Dwivedi, &
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Raman, ; Staletić, Labus, Bogdanović, Despotović-Zrakić, &
Radenković, ). These technologies are used to collect digitized infor-
mation about the city environment.

One area is “smart mobility” that often addresses traffic management.
This involves how to avoid road congestion by gathering data from sensors
networks, which also involves tracking of moving vehicles. “Smart living”
comprises areas such as public safety, healthcare, education, tourism, and
smart buildings. For example, in developing countries, public safety is a
big area of concern because of growing urbanization. One example is a
crowdsourcing project in South Africa that tested the usability of an
Interactive Voice Response (IVR) system to let people voluntarily report
on any safety issues (Breetzke & Flowerday, ; Ismagilova et al., ).
“Smart environment” is another area that emphasizes quality of air, water,
green spaces, emission monitoring, waste collection management, energy
efficiency, and monitoring of city trees. In some projects, citizens collect
environmental data with their mobile phones. In one study, a crowd-
sourced weather app combined automated sensor readings from mobile
phones and manual input by citizens to estimate current and future
weather conditions. The results showed a high level of accuracy in esti-
mating actual weather conditions, indicating that hybrid participation that
combine machine intelligence and human intelligence can improve
weather condition estimation and prediction (Ismagilova et al., ;
Niforatos, Vourvopoulos, & Langheinrich, ).

Sensor-rich mobile phones allow for the collection of a range of new
types of data about the environment. Mobile crowdsensing let ordinary
citizens contribute data from their mobile devices, which are aggregated at
a collective level. Users are typically supposed to act together, in order to
generate knowledge beyond an individual level. The different modalities of
sensing include numeric values (such as air quality and GPS coordinates),
audios, and pictures or videos. Visual crowdsensing that uses built-in
cameras of smart devices has become increasingly popular. In specific
projects, people can be asked to capture objects, for example in the form
of pictures or videos. Many crowdsensing projects have been developed in
the context of smart cities. One example is how phones perform passive
tasks and monitor noise and sound in the smartphone’s microphones as
sound sensing devices for creating large-scale noise maps and for suggesting
city managers suitable noise reduction interventions (Staletić et al., ).

The notion of smart cities also includes citizen engagement and new
types of interaction with the government. In some cases, this is primarily
to ensure full adoption of new changes and services, but other models
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utilize user-generated content and underline the codesign and coproduc-
tion of government functions. This includes the collection of user gener-
ated content and use of analytics that can be used to generate predictive
models, enabling local government to be more strategic and proactive in its
responses to citizen requirements (Ismagilova et al., ). Decisions are
made by aggregating active user contributions (students’ favorite jogging
and cycling routes, places with major social activities, etc. (Bellavista,
Corradi, Foschini, Noor, & Zanni, ). One simple example is crowd-
sourcing of cycling routes in the city, where city planners have gathered
data from cyclists to analyses traffic and improve urban infrastructure by
adding racks or widening lanes (Ismagilova et al., ). Other active tasks
may involve taking pictures, using tags, committing actions, answering a
survey, etc. Collection of data from passive tasks can be performed auto-
matically by users’ smartphones, e.g., triggered by geo-localization of the
user position. This can be self-monitoring activities like how much time
has been spent walking (Bellavista et al., ).
Data are assumed to provide a better understanding of the community

conditions and facilitate better evidence-based decision-making (Alizadeh,
). Many of these projects are reliant on people being willing to
collaborate toward continuous data harvesting processes. It allows people
to participate in any aspect of urban planning, by collecting and sharing
data, reporting issues to public administrations, proposing solutions to
urban planners, and delivering information of potential social interest to
their community. Although these projects can be helpful for citizens,
mobile users are reluctant to use their devices for these purposes, mainly
due to privacy issues (Bellavista et al., ).
Furthermore, there is a growing number of planning departments at

different levels (e.g., local and state) that use crowdsourcing to seek public
opinions, ideas, and feedback on their, mostly strategic, planning. In some
cases, especially designed digital platforms have been used to facilitate
active crowdsourcing of ideas. However, they are often expensive to
maintain and compete with other social media platforms (e.g.,
Facebook). For instance, the City of Vancouver used an online platform
to seek feedback as part of the participatory process involved in the
development of its first urban digital strategy document (Alizadeh,
). Another example is Citizen Design Science, which challenges
citizen to become urban designers by drawing their own habitat. They
will build their design on residential rather than economic interests.
Neighborhood interests may also diverge from how the municipality
thinks (J. Mueller, Lu, Chirkin, Klein, & Schmitt, ).
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Moreover, in participatory planning, passive crowdsourcing has been
introduced as an alternative channel to gather people’s voices in urban
decision-making processes. This type of crowdsourcing passively collects
information, knowledge, opinions, and ideas concerning hot topics of the
day created by citizens without any initiation, stimulation, or moderation
from government postings. It can exploit the extensive political content
continuously created in numerous social media platforms by citizens and
inform public policy. It differs from the original “task-oriented” crowd-
sourcing approach in its emphasis on “crowdsourcing of opinions”
(Alizadeh, ; Alizadeh, Sarkar, & Burgoyne, ).

One study illustrates how this type of crowdsourcing can be performed as
a sentiment analysis in relation to traffic issues. On Twitter, the query
“Parramatta road” is particularly active during traffic congestion or accidents.
Tweets can be analyzed automatically according to their sentiment, includ-
ing both positive and negative opinions. In this particular study, words like
“happy,” “good,” and “sun” were given a positive score and words such as
“angry,” “traffic,” or “lost” were given negative scores. The aggregated results
would then inform on when there was a potential breakdown in the road
system. Timing is an important factor since certain events create a burstiness
of tweets, followed by spans of silence (Alizadeh et al., ).

Here, crowdsourcing is no longer about getting a certain task done with
intentional help from the crowd. Instead, opinions, ideas, or perceptions
from the public are aggregated through polling, sentiment analysis, and
opinion mining. Sentiment analysis uses language processing and machine
learning to identify which topics different groups talk and care about the
most. Social media like Twitter are rich sources of opinions; and can be
used for this type of analysis. Social media monitoring is used to contin-
uously crawl and analyze data already available and mostly untapped,
sometimes in real time, such as Twitter. These methods are already used
by private companies today when they map potential markets, but have
rarely been used for public purposes to strengthen the citizen voice
(Alizadeh, ; Alizadeh et al., ). Still, passive crowdsourcing can
be regarded as a type of environmental sensing that utilizes a more open
government structure that can perhaps complement traditional urban
planning approaches in the future.

. What Is Human Swarm Problem Solving?

If we summarize the chapter, we have shown that sections show that
animal groups and humans share some of the same mechanisms when
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they solve problem together. What is both amazing and perhaps quite
surprising to the reader, is that animals are able to benefit of wisdom of
crowd effects. There are commonalities concerning both decisions thresh-
old methods and averaging methods. These two sections show how
information from many individuals can be aggregated in effective ways
when solving problems. The three other sections describe social practices
that support collective problem solving. The section on large gatherings
shows how large groups can solve problems effectively together in various
ways; the section on heterogeneous social interaction describes the impor-
tance of individual diversity and learning in groups. The final section
provides examples of how one can collect environmental information in
different ways to maximize informational diversity. Together, these mech-
anisms provide a picture of a distinct type of collective problem solving,
which here is labeled as human swarm problem solving. Compared with
the wisdom of crowds literature, this account of human swarm problem
solving provides a broader framework that includes both independent and
dependent contributions and both quantitative and qualitative contribu-
tions. What, then, are the commonalities of the swarm problems described
in this chapter? In comparing the analysis in the different sections, a
tentative typology of human swarm problem solving will here be
described, covering the following four areas:

. Predefined problems
. Prespecified problem-solving procedures
. Rapid time-limited problem solving
. Individual learning

.. Predefined Problems

If we look closer at all the examples in this chapter, we see that the
problems are predefined in different ways. A project will describe an initial
problem or challenge and formulate an “open call for help.” In the online
setting, the outreach can be to a very large group of potential problem
solvers. Some projects look for individuals with special expertise (e.g.,
IdeaConnection), but in several projects, such as within citizen science
(e.g., Galaxy Zoo), anyone can participate. This also includes most of the
crowdsourcing projects in Chapter . Because the outreach is broad, it is
important to formulate the problem in a precise way, so it is easy for
potential participants to assess whether the task is relevant to do. Some
problems are well-defined because the tasks are relatively simple tasks and
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do not require much background skills (e.g., Galaxy Zoo project). Regarding
complex problems in innovation contests, intermediaries will often support
the solution-seeker in formulating the problem in an accessible way.
Deliberative Polling and the Delphi method are other examples of complex
problem solving that involve a high degree of uncertainty about the best
options. Still, both these approaches are reliant on a precise formulation of
the problem. In Deliberative Polling, participants receive briefing material
that aim to give a balanced and comprehensive introduction to the problem
in a short time. In the Delphi method, the problem is described in the
questionnaire sent out to the participants. In both these processes, the
solutions will also be presented as a statistical result. Disaster management
is another example of a predefined problem that centers on an emergency.
Although part of the challenge may be to get an overview of the situation
and what actually is happening on the ground, there is still no doubt about
the general problem whether it is an earthquake or wildland fire.

.. Prespecified Problem-Solving Procedures

In human swarm problem solving, there is usually no need to
metacommunicate about the collective work because the problem, the
interactional rules, and the aggregation rules are defined in advance. By
minimizing the need for explicit coordination, problems can be solved more
rapidly. Nor is direct coordination possible when the group size is large.
Two examples are Deliberative Polling and the Delphi method, where both
the interactional rules and aggregation rules have been formulated in
advance in a quite detailed way. In a hackathon, there are fewer interactional
rules and more participant autonomy. Still, the core of the collective work,
like the sessions and the contest format, will have been planned.

As animal groups follow a few simple rules in swarm problem solving, so
will human swarms do the same in this approach. However, the human
swarm contributions are obviously much more heterogeneous, being any-
thing from a vote, an argument, or an informational report. Problem-
solving procedures, like interactional rules and aggregation rules, will also
vary a lot. Still, both honeybees and humans will in this type of problem
solving be similar in the sharing of a common interest and agreement on
the objective (Seeley, : –).

Participant Selection
Concerning participant selection, some projects allow for self-selection
(e.g., citizen science and innovation contests), while other projects invite
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specific persons to participate, for example by random sampling (e.g.,
Deliberative poll) or expert sampling (e.g., Delphi method). Participant
selection is important in both the Delphi method and Deliberative Polling
when the goal is to maximize comprehensive information about an issue.
In the political domain, random sampling of any citizen can give infor-
mation about the entire population. In contrast, the Delphi method
typically invites formal experts to provide a broad coverage of one specific
area. In different ways, both approaches seek informational diversity
through the careful selection of participants.

Near-Neighbor Alignment
Human swarm problem solving is also characterized by interactional rules,
like near-neighbor alignment. The human swarm in the UNU platform has
real-time access to the group opinion and will typically align to each other in
the rapid “tug of war” problem-solving process. In the Delphi method, near-
neighbor alignment is possible through the sharing of statistical results.
Participants are asked if they want to adjust or align their individual opinion
based on the results from the group opinion. A certain aggregated percentage
threshold needs to be reached for each item to be included in the final
report, which represents the group opinion. In addition, small group dis-
cussions in Deliberative Polling can be regarded as a type alignment to near-
neighbors that emerges through discussions. A large group of hundreds of
persons is split into many small groups with  persons. These groups
deliberate in a decentralized network and each group will be “near-neigh-
bors” to each other, being mostly separated from the other small groups.

Coordinators Enforce the Interactional Rules
In animal swarm problem solving, individuals follow interaction rules as a
part of their innate behavior. There is no need for someone to control their
behavior (Seeley, : –). This is very different in human swarm
problem solving because individuals will not automatically follow rules or
guidelines. In many of the examples in this chapter, coordinators also need
to support the collective problem solving by ensuring procedures are
followed. Facilitators in Deliberative Polling ensure equal participation.
In the Delphi method, a moderator helps summarizing the work. In a
hackathon, coordinators are important as event organizers.

Competition between Different Proposed Solutions
Human swarm problem solving often centers on some type of competi-
tion. In Foldit, this requires competition rules and active use of

. What Is Human Swarm Problem Solving? 

https://doi.org/10.1017/9781108981361.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108981361.004


leaderboards. In a hackathon, the individuals compete for prizes within a
short time period. Even the Deliberative Polling can be regarded as a contest
between different proposed solutions, which in the end will be ranked
against each other. The UNU platform can be looked on as a “tug of
war” contest between different predefined alternatives. Likewise, the waggle
dance meeting among the honeybees also functions as an open competition
among the proposed alternatives. Groups compete to gain additional mem-
bers from a pool of scout bees who are not yet committed to a site.
Whichever group first attracts a quorum of supporters win the competition.
The winning group then goes on to build consensus among the scouts
(Seeley, : –, ). The difference between bees and humans is that
humans use a variety of competition rules, like different voting procedures.

According to Malone et al. (), competition is especially useful
when only a few good solutions are needed. For example, solution-seekers
in innovation contests do not want a large number of alternative solutions
to their problems, but only one or a few solutions of optimal quality.

Prespecified Aggregation Rule
Many of the CI projects in this chapter build on the aggregation of all
group contributions. Together these contributions can produce one single
or a set of optimal solutions, but it can be achieved in various ways. Four
aggregation rules are mentioned in this chapter. First, both humans and
other animals use averaging strategies. In line with the original wisdom of
crowd approach, this statistical rule assumes that the crowd is intelligent
when individuals contribute with diverse perspectives in combination
with, independent and unbiased opinions.

Second, all contributions can be ranked. In the Delphi method, all
items in a questionnaire that receive a certain level of support are included
in the final report. Another example is Deliberative Polling, which ranks all
results by letting participants vote on proposed solutions.

Third, quorum response ensures that a minimum number of individuals
agree before the group shifts to a new behavior. The most well-known
quorum response is the majority rule, which selects the most preferred of
one of two alternatives. Everyone will then follow this decision. This is an
essential decision-making method in all types of democratic decision-
making, and even animal groups sometimes use this aggregation method.
Today, digital technologies and the online setting make it easier for large
groups to use voting methods. Simple majority is most common, but
supermajority rule is also sometimes used in political systems and in other
types of swarm problem solving such as the Delphi method.
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Animal groups even show that the decision threshold can be much
lower than a majority. However, there are few such examples of human
quorum responses. One example is the presence of a certain number of
people to be present to make the vote valid. When not everyone has to be
present, this makes the decision-making system more efficient. The UNU
platform also uses a decision threshold, but it is uncertain how much
support is required. Crowdfunding is another example that illustrates how
the total amount of money can function as an alternative quorum
response, offering a more flexible individual contribution than equally
weighted votes.
A fourth aggregation rule concerns the qualitative contributions. In

disaster management, this can be the collective production of a digital
map of the disaster area. In these situations, it is essential to get precise
information because difficult decisions need to be made within a short
time frame. Passive crowdsourcing is another example that illustrates how
one can automatically collect social media data. These data can be used to
quickly aggregate crisis information. Fluctuations in the use of key words,
for instance hashtags, can provide information about what is happening on
the ground. This type of aggregation resembles environmental sensing; in
letting the “many eyes” of different individuals provide an updated con-
tinuous overview of a complex problem. All the individuals operate as one
unit, like a synchronized sensor network that maximizes the collection of
environmental information through a broad outreach. Smart cities build
on the same approach, but here the privacy concerns are much more
apparent (Zuboff, ).
If we compare the different aggregation rules, we see that optimal swarm

problem solving involve both quantitative and qualitative contributions
that can be both independent and dependent on each other. However, the
aggregation seldom recombines or synthesizes contributions. The aggrega-
tion rules are typically prespecified, whether it is an averaging strategy or
majority rule.

.. Rapid Time-Limited Problem Solving

This chapter shows the importance of rapid problem solving. Animal
groups operate according to a speed vs. accuracy tradeoff. Among ants,
the evaluation time of different nests regulate decision-making because
they use longer time to accept lower quality nests. To speed up decision-
making, a relatively low quorum number is required. When a certain
number of ants move in the same direction, all ants will suddenly switch
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from slow to rapid movements and begin moving to one of the new nests.
Honeybees also act under time pressure when looking for a new nest site.
A decision must be made within a few days. The bees elicit a quorum
response long before a majority of bees has checked the site and the
accuracy of the decision is still very high.

If we look at the examples of human swarm problem solving, they also
highlight “decision speed.” Both hackathons and Deliberative Polling
require a weekend. Decisions in the UNU platform happens within
seconds, and in disaster management, even lives depend on rapid deci-
sion-making.

The challenge is to enable a large number of individuals to produce new
levels of insight under significant time compression. Swarm problem
solving is in a hurry or it has a tight schedule to follow. This includes
both tasks that allow direct interaction and other projects where contribu-
tions must be made separately from each other. The rapid problem solving
is typically made possible because everyone adheres to prespecified
problem-solving procedures. Here, two types of rapidity are highlighted,
solving a problem as fast as possible or within a prespecified deadline.

Making a Decision as Fast as Possible
In some cases, a human swarm will want to make decisions as “fast as
possible.” When there is an emergency, there will be an immediate need
for crowd data that can provide information about the problem. There is
no final deadline, just a general sense of urgency. The crowd can be
involved as both sensors, reporters, and micro-taskers. Social media is also
a channel that continuously produces relevant information that can be
utilized. In smart cities, mobile crowdsensing aim to solve problems by
collecting sensor data from mobile phones and other geo-technological
tools. Citizens can also actively report information through different types
of online communication. Today, companies already use these data com-
mercially, and there has been few legal regulations, but this will likely
change in the future.

Short Deadlines
In other cases, the human swarm will operate within a prescheduled
deadline, typically a short period. There is still a wide range of timescales,
covering anything from seconds to months. In swarm platforms, the
period can be as shorter than a minute. Hackathons or Deliberative
Polling demands intense done during a weekend. However, it varies how
tightly organized the work is. A hackathon is more loosely organized, while
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the Deliberative Polling follows a tightly organized procedure. The Delphi
method may last much longer, like several months, since the problem
solving covers several iterations. The limitations of a short problem-solving
period is compensated by increasing the number of participants joining
the project.
Moreover, innovation contests often cover only a few weeks or months.

The deadlines can have a positive influence on the creative problem-
solving process, as this statement from a top solver illustrates:

For me the solutions tend to come quicker nearer the deadline, like a lot of
students writing a thesis who tend to get most of it done at the end. I have to
confess some of that’s true with me. When the deadline comes, it tends to spur
creativity a lot. You now, you might think about it for a while and do a little
research, but it seems like the biggest breakthroughs tend to come closest to the
deadline.

The solver shows how being in a hurry can boost creativity when closing in
on the deadline. This urgency is at the center of what characterizes swarm
problem solving.

.. Individual Learning

It is not apparent that human swarm problem solving always promotes
individual learning. In the original wisdom of crowd approach (), the
ideal is to reduce negative social influence such as herding effects. The risk
of individual learning is that it can reduce diversity of opinion and
promote herding instead of informed opinions. According to “the many
wrongs principle” incorrect guesses at an individual level can make the
crowd wiser. This suggests a possible conflict between collective perfor-
mance and individual learning.
This dilemma is present in several citizen science projects (e.g., the

Galaxy Zoo project). When using averaging, it is usually important to
gather independent contributions, which ensure the quality of the work.
The single individual will then have no information about other contri-
butions. Social interaction is avoided because it can introduce herding
effects, groupthink, or systematic bias.
Another example is decision-making process in the UNU platform. It is

performed so rapidly to reduce potential negative effects of long-term
social influence. As biologists have noted, even naive individuals can
improve collective navigation, just by contributing error. Although some
individuals are not particularly accurate, they introduce valuable “noise”
that makes the crowd wise relative to the individual. Another advantage
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with minimizing individual learning is that the task can be done faster and
make the problem-solving process more time efficient.

Nevertheless, there ismuchmore attention today around the possible positive
effects of individual learning in human swarm problem solving. While wisdom
of crowd literature originally highlighted the importance ofmaking independent
separate contributions, dependent contributions are today considered to be
equally important. Even animal groups appear to be able to both share informa-
tion and simultaneously make individually independent assessments.

In human swarm problem solving, individual learning within a group can
also improve crowd performance if one avoids herding or conformity pressure
(Shore et al., ). However, there is a tension between the need for
independent opinions and the need for some degree of information transfer.
Learning and herding are two different types of social influence that can be
present at the same time (Shore et al., ). Collusion, alignment, and peer
group pressure are constant threats when social interaction is possible.
Groupthink (“Social proof”) is our tendency to assume that if lots of people
believe something, there must be a good reason why. One important factor is
to get people to pay much less attention to what everyone else is saying.

Still, there is a need for learning and deliberation between individuals.
The challenge is to find the balance between independent thinkers who
create their own opinions and do not simply follow the views of others and
those who are able to build on other ideas. This can be described as an
independence vs. learning tradeoff, which open for different participatory
designs. Both Deliberative Polling and the Delphi method expect individ-
ual learning to happen during the collective problem-solving process.
However, the processes differ because Deliberative Polling promotes direct
interaction, while the Delphi method builds on indirect interaction.
Participants only get access to aggregated group information. The empha-
sis is on knowledge sharing and ensuring informational diversity, but
without the opportunity of having any discussions. This is very different
in Deliberative Polling because participants are encouraged to discuss
ideas, but still primarily in separate subgroups.

Individual learning can happen in several different ways in the human
swarm, both through observational learning and conversational learning.
In observational learning, individuals learn by observing what others are
doing and what they are discussing. One relevant example is hackathons in
an offline setting and the traces of discussions in an IdeaRally in the online
setting (Chapter ). Here, the transparency of the environment is key, as is
how it supports knowledge sharing. In centralized networks, the core node
will spread information to everyone in the crowd without creating the same
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conformity pressure (Shore et al., ). The Delphi method is one example
of how aggregated group results are shared with everyone. This is done
anonymously through a facilitator. By not allowing direct interaction between
participants, the degree of independent assessment is larger and the role of
social influence is minimized. The goal is to maximize learning andminimize
herding, like conformity pressure or uncritical copying of others’ behavior.
Another example of observational learning is how disaster management

platforms give everyone an updated overview of what is happening on the
ground. By effectively aggregate all information on one site, individuals
will more quickly learn about the situation and act more appropriately. In
areas where such incidents occur often, like frequent occurrences of
wildfires or flooding, it is essential that individuals learn how to take such
systems in use in effective ways.
Furthermore, conversational learning is another important part of many

human swarms. Both a hackathon and Deliberative Polling center on
conversational learning between participants. The discussions can last for
two days, and because participants are together most of the time, this
allows for intense discussions. There is also experimentation, with discus-
sion in similar large groups in an online setting, such as the previously
mentioned IdeaRally (see Chapter ).
Deliberative Polling can be regarded as a decentralized network, which

divides several hundred participants into separate discussion groups com-
prising  persons. Individuals will engage in conversational learning with
“near-neighbors” in these subgroups, most of the time separated from
others. This may reduce potential negative herding effects.
Compared with the Delphi method, the learning potential is likely to be

larger in Deliberative Polling because it is easier for participants to elaborate
on each other’s arguments. However, this also increases the risk of negative
conformity effects. A facilitator is included to avoid such effects and ensure
equal participation. Another aspect of this learning process is the briefing
materials participants receive. They offer individual learning, but they may
also unintentionally create negative herding effects. However, both
Deliberative Polling and the Delphi method collect the final results anon-
ymously to strengthen the independent voices in the process.

.. Summary of the Basic Characteristics in Human Swarm
Problem Solving

In conclusion, the quality of human swarm problem solving depends on
whether one is able to utilize sufficient diversity of perspectives. Most of
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the swarm designs aim to produce informational diversity by bringing in
people with different backgrounds from different environments. As men-
tioned in the sections on averaging and decision thresholds methods,
individuals may benefit from pooling information to overcome inaccurate
estimates according to “the many wrongs principle.” These contributions
will be aggregated and not recombined or synthesized. The sections on
heterogeneous social interaction and large gatherings show how cognitive
diversity can be utilized in accordance with the diversity prediction
theorem (Hong & Page, ). Likewise, the section on human environ-
mental sensing shows how environmental information can be maximized
according to “the many eyes principle.” Large gatherings also stand out as
one of the most interesting swarm mechanisms in an online setting (e.g.,
IdeaRally).

Honeybee nest siting is in many ways a prominent example that can
provide inspiration for human swarm problem solving. When searching
the surroundings for the ideal home, they utilize “the many eyes principle”
by identifying all relevant options with an extraordinary precision. They
then compare all contributions through the waggle dance and are almost
always able to identify the best solution through a quorum response
mechanism. They have perfected both the informational search process
and knowledge sharing process afterwards so the whole process is com-
pleted within just a few days. (Seeley, : –, ). We are still far
from designing human swarm problem solving to be as successful as the
honeybees, but by better understanding its basic mechanisms, one can
hope that new technological inventions can make us better able to utilize
this type of problem solving in both an offline and online setting.

Notes

 Meerkats forage for insects. https://www.youtube.com/watch?v=
cFCirxuvcQ

 Flash Expansion of Whirligig Beetles. https://www.youtube.com/watch?v=
CivzLnIzU

 The Waggle Dance of the Honeybee. https://www.youtube.com/watch?v=
bFDGPgXtK-U
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