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Abstract. A global existence result for solutions u(t) of the differential equation
x′′ + f (t, x) = p(t), t ≥ t0 ≥ 1, that can be written as u(t) = P(t) + o(1) for all large t,
where P′′(t) = p(t), is established by means of the Schauder-Tikhonov theorem. It
generalizes the recent work of Lipovan [On the asymptotic behaviour of the solutions
to a class of second order nonlinear differential equations, Glasgow Math. J. 45 (2003),
179–187] and allows for a unifying treatment of the existence problems concerning
asymptotically linear and oscillatory solutions of second order nonlinear differential
equations.

2000 Mathematics Subject Classification. 34A34, 34C10, 34E05, 47H10.

1. Introduction. In this note, we consider the perturbed nonlinear differential
equation of second order

x′′ + f (t, x) = p(t), t ≥ t0 ≥ 1, (1)

where the functions f : [t0,+∞) × � → � and p : [t0,+∞) → � are continuous.
Recently, Lipovan [12] demonstrated the existence of a global solution u(t) of

Equation (1) that is asymptotic to a given straight line L(t) = at + b, where a, b ∈ �,
i.e.

lim
t→+∞[u(t) − L(t)] = 0.

Similar and related results have been obtained in [20], [14], [2], [23], [3], [19], [13], [15],
[21], [22]. We mention also the pioneering contribution [1]. An investigation of the
existence of such solutions, usually referred to as asymptotically linear, is essential for
the oscillation theory of ordinary differential equations (see the references in [15]) as
well as for the existence theory for positive solutions of semilinear elliptic problems in
exterior domains (see [4], [22]).

Another important topic in the qualitative theory of ordinary and functional
differential equations regarding Equation (1) is that of deriving sufficient conditions
for the nonlinearity f (t, x) to ensure that the oscillatory character of the perturbation
p(t) is inherited by all or at least by some of the solutions (say, for instance, the bounded
solutions) of Equation (1). See [11], [18], [7], [10] and [16].
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Here, by using the Schauder-Tikhonov theorem [15], we establish in rather general
circumstances the existence of a global solution u(t) of Equation (1) that admits the
following representation

u(t) = P(t) + o(1) as t → +∞, (2)

where P′′(t) = p(t) for t ≥ t0. If P(t) = at + b, with a, b ∈ �, an extension of the results
in [12] is obtained. Also, if lim inf t→+∞ P(t) < 0, lim supt→+∞ P(t) > 0, the existence
of an oscillatory solution u(t) of Equation (1) can be derived.

2. The results.

THEOREM 1. Assume that the nonlinearity f (t, x) in Equation (1) satisfies the
inequality

|f (t, x)| ≤ F(t, |x|), t ≥ t0, x ∈ �, (3)

where F : [t0,+∞) × � → [0,+∞) is a continuous function that is nondecreasing in the
last argument. Suppose further that there exists a number ε > 0 such that

∫ +∞

t0

sF(s, |P(s)| + ε) ds ≤ ε. (4)

Then Equation (1) has a solution u(t) defined in [t0,+∞) with the asymptotic
representation (2).

Proof. We introduce the set Y of all functions y(t) from C ([t0,+∞), �) such that
limt→+∞ ty(t) = 0. If endowed with the usual function operations and the Chebyshev-
type norm

‖y‖ = sup
t≥t0

{t|y(t)|},

Y becomes a Banach space. (See [5], [21].) Let B(ε) be the closed ball of radius ε and
center 0 in Y and consider the operator T : B(ε) →Y given by

[T(y)](t) = 1
t

∫ +∞

t
s f

(
s, P(s) − s

∫ +∞

s

y(v)
v

dv

)
ds, t ≥ t0,

for all y ∈ B(ε).
By a direct computation

t|[T(y)](t)| ≤
∫ +∞

t
sF

(
s, |P(s)| + s

∫ +∞

s

|y(v)|
v

dv

)
ds

≤
∫ +∞

t
sF

(
s, |P(s)| + ‖y‖

(
s
∫ +∞

s

dv

v2

))
ds

≤
∫ +∞

t
sF (s, |P(s)| + ε) ds ≤ ε,

we conclude that the operator T is well-defined, since

T(B(ε)) ⊆ B(ε).
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The technique from [15] can be adapted easily to establish that the operator
T is completely continuous (compact). Thus, according to the Schauder-Tikhonov
theorem, there exists a fixed point y0(t) of T in B(ε).

The C2−function u(t), t ≥ t0, given by the formula

u(t) = P(t) − t
∫ +∞

t

y0(s)
s

ds, t ≥ t0, (5)

is the solution of Equation (1) for which we are looking.
By application of L’Hospital’s rule, we obtain

lim
t→+∞ t

∫ +∞

t

y0(s)
s

ds = lim
t→+∞ ty0(t) = 0.

The proof is complete. �
COROLLARY 2. Consider the nonlinear differential equation

x′′ + f (t, x) = 0, t ≥ t0 ≥ 1, (6)

and assume that the following inequality is valid:
∫ +∞

t0

sF(s, |as + b| + ε) ds ≤ ε (7)

for certain a, b ∈ �, where F(t, z) is given by (3). Then, Equation (6) has a solution u(t)
defined in [t0,+∞) that is asymptotic to the straight line L(t) = at + b; that is

lim
t→+∞[u(t) − L(t)] = 0. (8)

Proof. We take P(t) = at + b and apply Theorem 1. �
COROLLARY 3. Suppose that (4) holds and, simultaneously, there exists an increasing

sequence (tn)n≥1, with t1 ≥ t0, such that (tn)n≥1 is not bounded above and

P(t2n−1) > ε P(t2n) < −ε, n ≥ 1. (9)

Then Equation (1) has an oscillatory solution u(t) defined in [t0,+∞).

Proof. From (5) we deduce that

|u(t) − P(t)| ≤ ε, t ≥ t0.

Then

u(t2n−1) ≥ P(t2n−1) − ε > 0

and

u(t2n) ≤ P(t2n) + ε < 0,

for all n ≥ 1. The existence of a zero of u(t) in (t2n−1, t2n) is a consequence of the
continuity of the solution. �
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EXAMPLE 4. Fix c > 0, ε ∈ (0, 3]. Let p ∈ C([t0,+∞), �) be nonnegative. Introduce
P, t0 by the formulae

P(t) = c +
∫ t

t0

(t − s)p(s) ds, t ≥ t0,

and

t0 = 3
ε

(
1 + ε

c

)2

≥ 1.

The nonlinearity f (t, x) of the Emden-Fowler equation below

x′′ − 2
t[tP(t) + 1]2

x2 = p(t), t ≥ t0, (10)

satisfies the hypotheses of Theorem 1. In fact, condition (4) reads as
∫ +∞

t0

2
s2

(
P(s) + ε

P(s) + s−1

)2

ds ≤
∫ +∞

t0

2
s2

(
1 + ε

c

)2

ds

= 2
t0

(
1 + ε

c

)2

< ε.

It is easy to see that Equation (10) has the exact solution u(t) = P(t) + t−1 for t ≥ t0.

Let us employ now the integral operator T given in Theorem 1 to give an
alternative proof of a general existence result for the asymptotically linear solutions of
Equation (6). See [15] and [12]. The proof relies on the fixed point theorem referred to
as the Leray-Schauder alternative [6], [15].

COROLLARY 5. Suppose that there exist continuous functions h1, h2 : [t0,+∞) →
[0,+∞) and g : [0,+∞) → (0,+∞) such that

F(t, z) = h1(t)g
(

z
t

)
+ h2(t), t ≥ t0, z ≥ 0. (11)

Assume further that g(w) is nondecreasing and∫ +∞

0

dw

g(w)
= +∞,

∫ +∞

t0

shi(s) ds < +∞, i = 1, 2. (12)

Then for any a, b ∈ �, Equation (6) has a solution u(t) defined in [t0,+∞) such that (8)
holds.

Proof. Introduce P(t) = L(t) for t ≥ t0. According to the Leray-Schauder
alternative, in order to establish that the integral operator T defined in the proof
of Theorem 1 has a fixed point we have to show that the set

E(T) = {y ∈ Y : y = λT(y) for a certain 0 < λ < 1}
is bounded. In fact, for y ∈ E(T), we deduce that

t|y(t)| ≤ H +
∫ +∞

t
sh1(s)g

(
|a| + |b| +

∫ +∞

s

|y(v)|
v

dv

)
ds,

for all t ≥ t0, where H = ∫ +∞
t0

sh2(s) ds.
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Using integration by parts, we obtain
∫ +∞

t

|y(s)|
s

ds ≤ Ht−1
0 +

∫ +∞

t

1
s2

∫ +∞

s
vh1(v)g

(
|a| + |b| +

∫ +∞

v

|y(w)|
w

dw

)
dv ds

≤ H + 1
t

∫ +∞

t
sh1(s)g

(
|a| + |b| +

∫ +∞

s

|y(v)|
v

dv

)
ds

−
∫ +∞

t
h1(s)g

(
|a| + |b| +

∫ +∞

s

|y(v)|
v

dv

)
ds

and so

z(t) ≤ K +
∫ +∞

t
sh1(s)g(z(s)) ds, t ≥ t0,

where z(t) = |a| + |b| + ∫ +∞
t

|y(s)|
s ds and K = H + |a| + |b|.

According to [15], we deduce that

z(t) ≤ Z(t) = G−1
(

G(K) +
∫ +∞

t
sh1(s) ds

)
< +∞,

where G(x) = ∫ x
0

dw
g(w) for all x ≥ 0.

In conclusion,

‖y‖ ≤ H + g(Z(t0))
∫ +∞

t0

sh1(s) ds, y ∈ E(T).

The proof is complete. �
REMARK 1. The Leray-Schauder alternative and condition (12)1 were needed only

to ensure the global existence of the asymptotically linear solution u(t). If, as in [12],
the solution u(t) is allowed to exist only for large t, then Corollary 5 follows from
Theorem 1 for an appropriate choice of t0. In fact, in this case (4) should read as

g(|a| + |b| + ε)
∫ +∞

t0

sh1(s) ds +
∫ +∞

t0

sh2(s) ds ≤ ε.

REMARK 2. Corollary 2 complements [22]. In fact, if for a certain c > 0 we have
∫ +∞

t0

tF(t, 2ct) dt < +∞,

then, for a t1 ≥ t0 sufficiently large, condition (7) reads as (a = c, b = 0, ε = c)
∫ +∞

t1

sF(s, cs + c) ds ≤
∫ +∞

t1

sF(s, 2cs) ds < c

and Equation (6) has a solution u(t) defined in [t1,+∞) such that

u(t) = ct + o(1) as t → +∞.

REMARK 3. It is not clear from Corollary 3 whether the oscillatory solution u(t)
tends to zero as t → +∞ or the quantity limt→+∞ u(t) does not exist. However, by
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replacing in Theorem 1 hypothesis ( 4) with the following inequality
∫ +∞

t
sF(s, |P(s)| + q(s)) ds ≤ q(t), t ≥ t0,

where q ∈ C([t0,+∞), �) decreases to zero as t → +∞, the set B(ε) with the one below

Bq = {y ∈ Y : t|y(t)| ≤ q(t) for all t ≥ t0},
and hypothesis (9) with


P(t2n−1) > q(t2n−1) P(t2n) < −q(t2n), n ≥ 1,

lim
t→+∞ P(t) = 0,

the existence of an oscillatory solution u(t) of Equation (1) such that limt→+∞ u(t) = 0
follows from Corollary 3.

REMARK 4. Obtaining asymptotic integration results via fixed point theory usually
leads to special, sometimes complicated, function spaces; see [15], [21], [22]. The
function space employed in [12] is simple. However, the proof relies on a change
of variables similar to the one suggested in [9]. The function space Y , introduced here,
is closer to the ideas developed in [8]. This allows us to establish Theorem 1 in a direct
way. As a by-product, in the case of P(t) = at, where a ∈ �, (see [23], [13], [22]) the
function y0(t) reads as u′(t) − t−1u(t), a quantity playing a significant role in asymptotic
integration theory [17].

A careful inspection of proofs from [14], [2], [19], [15] shows that, if (12)1 holds,
all solutions of Equation (6) are defined globally in the future and satisfy (8) for
appropriate a, b ∈ �. As opposed to this situation, the violation of condition (12)1

leads to solutions that either blow up in finite time or are not asymptotic to straight
lines. See [15] and [17].

EXAMPLE 6. Consider the differential equation below

u′′ = (3 − t)e−tu2 + (4 − t)e−2tu3, t ≥ t0 = 1. (13)

Here, h1(t) = t3e−t(|3 − t| + |4 − t|), h2(t) = 0 and g(z) = 1 + z2 + z3. Obviously, (12)1

is not valid. Equation (13) has the exact solution

u(t) = et

2 − t
, t ∈ [1, 2),

that cannot be continued to the right of t = 2.

EXAMPLE 7. The differential equation

u′′ = e−tu2, t ≥ t0 = 1,

has the exact solution

u(t) = et, t ≥ 1,

which is not asymptotically linear. Here, h1(t) = t2e−t, h2(t) = 0 and g(z) = 1 + z2. The
condition (12)1 is violated.
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The next result gives a hint of the asymptotic behaviour of solutions of Equation (6)
when condition (12)2 is replaced with a weaker one.

THEOREM 8. Assume that the nonlinearity f (t, x) in Equation (6) satisfies the
inequality (3). Suppose further that there exist numbers a ∈ �, c ∈ (0, 1) and ε > 0
such that ∫ +∞

t0

scF
(

s,
(

|a| + ε

c
t−c
0

)
s
)

ds ≤ ε. (14)

Then Equation (6) has a solution u(t) defined in [t0,+∞) with the asymptotic represen-
tation

u(t) = at + o(t1−c) as t → +∞. (15)

Proof. We introduce the set Z of all functions z(t) from C([t0,+∞), �) such that
limt→+∞ tcz(t) = 0. If endowed with the usual linear operations and the Chebyshev-
type norm

‖z‖ = sup
t≥t0

{tc|z(t)|},

Z becomes a Banach space. Let B(ε) be the closed ball of radius ε and center 0 in Z
and consider the operator T : B(ε) → Z given by

[T(z)](t) = −1
t

∫ t

t0

s f
(

s, as − s
∫ +∞

s

z(v)
v

dv

)
ds, t ≥ t0,

for all z ∈ B(ε).
Hypothesis (14) yields

∫ t

t0

sF
(

s, |a|s + ε

c
s1−c

)
ds ≤ εt1−c, t ≥ t0. (16)

This follows from

ε ≥
∫ t

t0

scF
(

s,
(

|a| + ε

c
t−c
0

)
s
)

ds ≥
∫ t

t0

scF
(

s, |a|s + ε

c
s1−c

)
ds

≥
∫ t

t0

s
t1−c

F
(

s, |a|s + ε

c
s1−c

)
ds.

By direct computation

tc|[T(z)](t)| ≤ 1
t1−c

∫ t

t0

sF
(

s, |a|s + s
∫ +∞

s

|z(v)|
v

dv

)
ds

≤ 1
t1−c

∫ t

t0

sF
(

s, |a|s + ‖z‖
(

s
∫ +∞

s

dv

v1+c

))
ds

≤ 1
t1−c

∫ t

t0

sF
(

s, |a|s + ε

c
s1−c

)
ds ≤ ε,

we deduce that the operator T is well-defined since T(B(ε)) ⊆ B(ε).
The proof can now be completed in the same way as the proof of Theorem 1. �
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COROLLARY 9. Suppose that (3) and (11) hold. Assume further that

∫ +∞

t0

schi(s) ds < +∞, i = 1, 2,

for a certain c ∈ (0, 1). Then, for any a ∈ � there exist a number ta ≥ t0 and a solution
u(t) of Equation (6) defined in [ta,+∞) satisfying (15).

Proof. Introduce Hi(t) = tchi(t) for t ≥ t0. Then, (16) reads as

g
(

|a| + ε

c

)
1
td

∫ t

t0

sdH1(s) ds + 1
td

∫ t

t0

sdH2(s) ds

≤ g
(

|a| + ε

c

) ∫ +∞

t0

H1(s) ds +
∫ +∞

t0

H2(s) ds

≤ ε,

where d = 1 − c. �
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