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UNITS IN INTEGRAL GROUP RINGS OF SOME METACYCLIC 
GROUPS 

BY 
P. J. ALLEN AND C. HOBBY 

ABSTRACT. Let p be odd prime and suppose that G = {a, b) where 
a1' " ' = bp = 1, a ~ ' ba = b', and r is a generator of the multiplicative group 
of integers mod p. An explicit characterization of the group of norma­
lized units V of the group ring ZG is given in terms of a subgroup of 
GL{p - 1, Z). This characterization is used to exhibit a normal com­
plement for G in V. 

Let U = U(ZG) be the group of units in the integral group ring ZG. A number of 
authors have characterized U for special groups (see [1], [2], [5], [6], [7], [8]). In 
particular, characterizations of U as a group of integer matrices were obtained by 
Hughes and Pearson [5] for G = S3, by Polcino Milies [7] for G = D4, and by the 
authors [1] for G = A4. These presentations as integer matrices relied on a technique 
introduced by Hughes and Pearson which, while theoretically adaptable to larger 
groups, is very difficult to use since it depends on solving a system of n linear 
congruences where n is the order of the group G. 

In this article, we use a variation on the Hughes and Pearson technique to represent 
V = V(ZG) = {a E U\ a has augmentation 1} as integer matrices for some metacyclic 
groups G of order (p — \)p. The procedure is straight-forward, with necessary and 
sufficient constraints on the matrices emerging as consequences of the nature of certain 
representations of G rather than as solutions of huge systems of congruences. A 
complete characterization of V is obtained when p = 3, 5, or 7; for larger primes, our 
representation characterizes V/$ where # ^ 1 is the center of V. As an application of 
this representation, we show that for every p > 2, G has a normal complement in V. 

Let p be an odd prime and let G be the group defined by 

ap~] = bp = 1, a~xba = br 

where r is a generator of the multiplicative group of integers mod p. Each non-identity 
coset of (b) is a conjugate class, and the other conjugate classes consist of {1} and of 
{b' | / ¥= 0}. Thus the number of 1-dimensional representations of G is p — 1 and there 
is a single representation of degree/? - 1. Any faithful representation is nonabelian and 
thus must be an absolutely irreducible representation of degree p — 1. We shall be 

Received by the editors October 31, 1985. 
AMS Subject Classification (1980): Primary 20D15; Secondary 16A26, 20C05. 
© Canadian Mathematical Society 1985. 

231 

https://doi.org/10.4153/CMB-1987-033-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1987-033-5


232 P. J. ALLEN AND C. HOBBY [June 

concerned with the faithful representation a of degree p — 1 obtained by letting 

<j(b) = B be the matrix which has a subdiagonal of l ' s , a last column consisting of 

— l ' s , and 0 elsewhere, while v(a) = A is constructed by performing the permutation 

/' —» ri (mod p) on the columns of the identity matrix. 

Let T be the homomorphism of ZG onto Z(a) obtained by setting b = 1, and let 

5 = { S | T O ) = 1}. Then T is the identity map on Vu — V{Z{a)), and V splits as VaD 

where D = V H S. Clearly, D O V and D H V„ = (1). We shall see that the 

representation cr, when extended to ZG, is an isomorphism if restricted to V„ or to D. 

Theorem 1 gives an explicit characterization of v(Va) and cr(D). Consequently, v(V) 

is known. If the center of V is trivial (as it must be when p = 3, 5, or 7), v(V) is 

isomorphic to V. 

THEOREM 1. Let H be the set of all X E GL(p - 1, Z) such that for each k = 

1, 2 , . . . , / ? - 2 

(7) t rX = -\{p) andtrXAk = 0(/?) 
(//) w(5 - /)AX(^ - / y - 1 - * = 0(p) where w = (0, 0 . . . 0, - 1 , 1). 

Then cr is an isomorphism from D to (j(D) — H. Moreover, a is an isomorphism from 

Va to <J(V(I) — VA> where VA consists of the doubly stochastic matrices X in 

GL(p — 1, Z) which have the property that, for each i, all entries on the main diagonal 

of XA' are equal. Finally, cr is a homomorphism of V onto VAH which has $ as its 

kernel, where H <] cr(V). 

We begin by verifying that a is a faithful representation of G. 

LEMMA 1. The subgroup (A, B) of GL(p — 1, Z) is isomorphic to G — {a, b). 

PROOF. One can check that Bk has a column of — l 's as its (p — k)[h column, 1 's in 

the (it + 1, 1 ) , . . . ( / ? - \,p- 1 - k)md(\,p - k+ 1),. . . ,(k- \,p- 1) entries, 

and has 0 elsewhere. Note for future reference that the k[h row of Bk has — 1 as its only 

nonzero entry, while each other row contains exactly one 1 and one — 1. It is clear that 

Bp = I. Also, since the matrix A arises from a permutation of order p — 1, 

Ap~] = I. Conjugation by A sends the (/, j) entry of B to the (ri, rj) entry (where ri, 

rj are computed mod/?), thus A~]BA has l 's in the (2r, r), (3r, 2r), . . . ,((p — \)r, 

(p — 2)r) entries; these are precisely the entries where B' has l 's since, mod p, 

{(ir, (i - \)r) \ i ^ 1} = {(j,j - r) \j ^ r}. Multiplying B on the right by A sends the 

(p — l)th column to the (p — r) th column, so A~]BA has —l's in the same locations 

as Br. Consequently, A ]BA = Bf. 

LEMMA 2. v(Va) — VA and a is an isomorphism on V(l. 

PROOF. Elements of Va are of the form a = S CjaJ where S c, = 1. It is easy to check 

that each c, appears once in each row and column of cr(a), thus v(a) is doubly 

stochastic. The main diagonal of cr(a) comes from c0I, so each entry is c0 . The main 

diagonal of a(a)A"' comes from the entries c, in Cj(j(A'), so each entry is c,. Clearly, 

cr(a) = / implies c0 = 1, c} = 0 for y > 0. Thus a is an isomorphism. 
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LEMMA 3. Each element of v(S) satisfies conditions (i) and (Hi). 

PROOF. If s = 2 c^'b' E S, then T(S) = 1 so if ck = 2,-c*,-, then c0 = 1 and ck = 
0 for k > 0. Each non-trivial coset a'(b) of (b) is a set of conjugates, so for each / > 
0, v(a'b') has the same trace as a(tf'), namely 0. Each non-trivial power of B has trace 
- 1 , thus the trace of v(s) is pcoQ — c'o- Similarly, the trace of a(s)A is pc^o — ck. 
Thus condition (i) holds. 

Condition (ii) is almost equally obvious. If we think of B as a matrix over the integers 
mod p , the eigenvalues of B must be p{h roots of 1 and thus must be 1. The rank of 
B — I is clearly at least p — 2, so its must be exactly p — 2. It follows that the Jordan 
form of B(mod p) consists of a single block, so (B — I)p~x = 0(mod p) while 
(B - I)p~2 # 0(mod p). Now (B - l)A = A(Br - / ) , where Br - l is a multiple of 
B - I. Consequently, if 

X = (T(S) = 2 C/yA'JK 

Then (B - I)kX(B - I)p']'k can be rearranged to have a factor of (B - l)p~ ' on the 
right and therefore is 0 mod p. Thus condition (ii) holds for all matrices in &(S). 

It follows from Lemmas 2 and 3 that the conditions given in the theorem are 
necessary. Moreover, the calculation of traces in the proof of Lemma 3 plays an 
important role in showing that the conditions are sufficient. We found that if X = 
S djAW E cx(S), then 

tr X cijA
iBj 

pci0 - ci 

where c0 is 1 and c, = 0 if / > 0. Thus the coefficients c/0 of X can be written as 

tr(Xi4_/) + ct 
C/o = • 

P 
Similar relations can be obtained for cl} by considering the trace of XB ~'A "'. It follows 
that if X = d(s) where s = S c^a'b1\ then 

HX(B]Al) + Ci 
(1) c(/ = , where c0 = 1 and c, = 0 for / > 0. 

P 
Let K denote the set of (p — 1) x (p — 1) matrices over Z which satisfy conditions 

(i) and (ii). Then v(S) CK. 

LEMMA 4. IfXGK. then the ctj determined by (1) are coefficients of an element 
2 Cija'b1 E S. 

PROOF. We first show that the numbers c/; given by (1) are integers. It is clear that 
condition (i) ensures that the numbers cu given by (1) are integers when) = 0. The only 
way (1) can fail to produce an integer is for there to be a j such that 

ix(XBJAl) ^ tr(XA~')(mod/7). 
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We shall use condition (ii) to show that this cannot happen. Note first that XA Bn 

satisfies condition (ii) whenever X does since 

XA~'B"{B - iy-]~k 

can be written in the form 

X(B - ly-'-'A'JiB) 

where f(B) is a polynomial in B. Next, rewrite 

XB~jAl as XA~lBl 

for some t. Since each of X, XA ' , XA'B" satisfy condition (ii), it will suffice to show 
that if Y satisfies condition (ii), then 

tr(Y) = tr(YB)(modp). 

In what follows, all calculations are made mod p. Since 1 is an eigenvalue of B of 
multiplicity p — 1, there is a matrix M such that M ~ ' BM = J where J is the Jordan form 
with a superdiagonal of l's. 

It is easy to find both M and M~x. As noted in the proof of Lemma 1, if k < p then 
the k{h row of Bk contains — 1 and zeroes while every other row contains —1,1 , and 
zeroes. Consequently, if u is the vector of all l's, then the last two entries in B'u are 
zero for / < p — 2 while Bp2u ends with — 1 and 0. Therefore (B — I)p~2u ends with 
—2 and — 1, so u is a generalized eigenvector (mod p) of degree p — 1. We may take 
M to be the matrix whose/h column is (B — I)p~l~Ju. From what has been said, 
w = (0, 0, . . . ,0, - 1 , 1) is clearly the first row of M '. Also, since (B - I)p~] = 0, 
successive rows of M~] are w(B — I)1 for / = 1, 2 , . . . ,p — 2. 

Clearly, 

tr(YB) = tr(M]YM)J 

where tr(M~lYM)J differs from tr(M~'yM) = tr Y only by the sum of the entries in 
the (2, 1), (3, 2 ) , . . . , ( / ? - 1,/? — 2) locations of M ~lYM. These entries are all of the 
form 

w(B - I)kY(B - I)p-]-ku 

and hence are 0 mod p because of condition (ii). 
So far, we have shown that any element of AT, that is any (p - 1) x (p - 1) matrix 

which satisfies conditions (i) and (ii), is associated by (1) with an element of ZG. One 
consequence of (1) is that the cu defined by it satisfy 2,-C/,- = c, since / + # + ••• + 
Bp~ ' = 0 , therefore the choice of the c, ensures that the Lci:]a

lb} is in the set S. Note 
that S must be closed under multiplication and that S contains D. 

LEMMA 5. o-(S) = K. 

PROOF. We must show that if X satisfies (i) and (ii), and if a = Ec/7«'^y has 
coefficients given by (1), then a(a) = X. We can write a in the form 
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1 ^ 1 
a = - Z tr(Xv(g-]))g + -(1 + b + ••• + bp~l) 

P *ec p 

where the second term, which cornes from c0 = 1, can be disregarded since the sum 
of powers of B is 0. If oyv denotes the r, s entry, then 

<rr5(a) = - 2 tr(Xa0r'))(xr,(#) 

= - tr{x(Xcr(g- ,)a r , (g)}. 

Since CT is absolutely irreducible, it follows from the Schur relations (see Hall [4], 
Theorem 16.6.4) that the w, v entry of the inner sum is 

V ( -K ( ) = f | G | / ( p - 1), if u = s and v = r 
Z.<T„Ag )fT„(g) | 0 otherwise. 

Therefore the inner sum is pEsr, where Esr is the matrix with 1 in the s, r entry and 0 
elsewhere. Consequently, o>,(a) = xrs and v(S) = K. 

LEMMA 6. a w « one-to-one map of S onto K. 

PROOF. If a-(a) = / for some a E S, then the trace of cr(a) is p — 1, and the traces 
of a(a)A_/ are 0 for / > 0. Thus 

pcoo - c0 = p - 1 

and 

pew — c,: = 0 for / > 0 

where c0 = 1 and c, = 0 for / > 0. Thus c*oo must be 1 and c/0 = 0 for / > 0. Next, 
note that u(ab) = B has trace —1 while u(ab)A ~l has trace 0 for / > 0. Thus 

pc0,p-\ - c0 = - 1 

and 

pCi^-\ — Cj = 0 for i > 0 

so c,-,r_ i = 0 for all /. Repeating this argument with higher powers of b shows that 
a = 1. 

LEMMA 7. a is a one-to-one map of D = V Pi S onto H = K PÏ GL{p — 1, Z). 

PROOF. Since S is closed, it follows from Lemma 6 that AT, and thus also H, is 
closed. The congruence subgroup Hx, consisting of invertible matrices which are / mod 
p, is contained in H and is of finite index in GL(p — 1, Z). Thus it follows from the 
closure of H that H is a group. We know that a is homomorphism on D and it is clear 
the CT(D) Ç H. If /z E / / , then h~] E H and Lemma 6 implies that /z and /z~' have 
preimages in 5; the product of these preimages is mapped to / by CT, so h = a(d) for 
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some d E D. 

LEMMA 8. Ifv E V, then cr(v) — I iff v is in the center ofV. 

PROOF. Any central element of V can be written a s v = 1 +v , ( l +Z? + --- + b/7~1) 
so CT(V) = / since 2 B' = 0. On the other hand, if v is not central then there is an x such 
that the commutator (v, x) i= 1. We know that V/D is abelian, so (v, x) E D. But a 
is an isomorphism on D, therefore a(v, x) ^ / . In particular, CT(V) cannot be / . 

PROOF OF THEOREM 1. Observe that H is normal since D is normal in V, and the 
remaining assertions are consequences of Lemmas 2, 7, 8. 

REMARKS. We shall show in Lemma 9 that § is isomorphic to a group of non-trivial 
units of V(Z(A)). There are no non-trivial units in Z(A) when p = 3, 5, or 7, con­
sequently a is an isomorphism on V(ZG) and VA is just (A). 

When p = 3, condition (ii) says merely that the column sums of X must be 
1 mod 3; given condition (ii), condition (i) holds automatically for any X which is 
non-singular mod 3. Thus the characterization of V(ZS^) obtained here is the same as 
the one given by Hughes and Pearson. The characterizations obtained for/? = 5 and 
p — 1 seem to be new. 

LEMMA 9. The center % ofV(ZG) is isomorphic to the subgroup ofVu consisting of 

R = {a E V(Z<fl»|a = 1 mod/?}, 

In particular, § is a torsion free abelian group of rank 

p + 1 
r = - t 

2 
where t is the number of divisors of p — 1. 

PROOF. Central units in V are of the form 1 + u \ where X = S b' and u E Z(a); 
their images under T are units of the form 1 + pu. Thus T(J) Ç R. Note that T is 
one-to-one on g since T(1 + uX) = 1 implies pu = 0 so u = 0. On the other hand, if 
1 + pu E R then (1 + pu)~] is some 1 + pv such that p(u + v + puv) = 0, so 

u + v + puv = 0. 

But then 

(1 + u\)(\ + v\) = 1 + (u + v + puv)\ 

= 1 

so 1 + u\ E ^ and we see that T(§) = R. 
Next, if a E Vtf, then 

a7' = a mod p 

since ap = a, therefore ap~l E R. By a theorem of Higman (see [9], Theorem 3.1) 
the group Va is the direct product of (a) and a free abelian group F of rank (p + l)/2 
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- €. The only torsion elements in Va lie in (a), and (a) has trivial intersection with R, 
thus R is torsion free. Since R has finite index in Va, R must have the same rank as F. 

In view of Lemma 9, the characterization of V given by Theorem 1 is fairly complete 
even when p > 1 since both ^ and V/$ are known. 

As an application of Theorem 1, we show that G has a normal complement in V. A 
theorem of Cliff, Sehgal, and Weiss [3] guarantees that G has a torsion free normal 
complement if p = 3, 5, or 7. For these primes, the complement N which appears 
natural in cr(V) turns out to be the same as the one produced from the ideal 70 in [3]. 
However, their description of N requires one to decide whether an element of 1 + /0 

is a unit, while the corresponding question in our description is whether a matrix 
belongs to GL(p — 1, Z). The matrix question may be easier to answer in a specific 
case. 

THEOREM 2. Let u = (1, 1 , . . . , 1), v = (1, 2 , . . . ,/? - 1), and let N be the subset 
of H — d(D ) consisting of matrices X which satisfy 

uXv' = p(p — l)/2 mod p2. 

Let C be the subset ofVA consisting of matrices S c,A' such that S cjl = 1(/?), where 
r is the number for which a~lba = br. Then C is a subgroup andN a normal subgroup 
of (i(V), and CN is a normal complement of cr(G) in a(V). 

Note that in the special cases where p = 3, 5, or 7, we have v(V) isomorphic to V, 
VA = (A), and C turns out to be trivial, consequently TV can be thought of as a normal 
complement of G. 

The conditions used to define N arise in a natural way. The vector u is an eigenvector 
of A for the eigenvalue 1 and, mod p, is also an eigenvector for B for the eigenvalue 
1 ; this property is what underlies the conditions on column sums found in [5] and in 
the second representation of ZA4 given in [1]. The vector v' is, mod/7, an eigenvector 
of B for the eigenvalue 1, and is at least an eigenvector for A. Clearly, u and v' are still 
eigenvectors (mod p) for each X in a(V). The requirement 

uXv' = p(p — l)/2 mod p2 

is satisfied by / but by no other power of B ; imposing the additional condition that 
N C (j(D) excludes the remaining elements of cr(G) from N. 

LEMMA 10. N is a normal subgroup ofv(V), H = (B)N, and N H v(G) = {/}. 

PROOF. As noted above, it is easy to check that 

uA — u 

uB = u 

Bv' = v' 

Av' = r v \ 

where a~xba - br and all congruences are mod p. Thus if X = S CjjA'Bj, then there 
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are integer vectors ux and vx such that 

uX = u + pux 

Xv' = Xv' + pvx 

where X = 2, 2 ; cl}r
l. When X E H = CT(D), X is 1 since S c0/ = 1 and S, c,:/ is 0 for 

/ > 0. Therefore, if X E H 

uXv' = uv' 4- puxv' 

= wv' + puvx. 

Thus each of the conditions uxv' = 0(/?) and uvx = 0(p) is a necessary and sufficient 
condition for X E H to imply X E Af. 

When X and K belong to / / , 

uXYv' = (u + pux)(v
f + pvY) 

= uv' + puxv' + puvY mod p2 

If X and F are both in N, then the last two terms are 0 mod p2, so it follows that N is 
closed. Also, if X is in N, we let Y = X~l and see that uvY is 0 mod/7, thusX -1 is in 
N. (// is a group, so there is no need to check that products and inverses of elements 
in TV are also in H.) 

Observe that Bv' = v' — pu', thus 

uXBv' - uXv' -p{p - 1). 

It follows that if X E H, then XB' is in N for some j , so the powers of B are a complete 
set of coset representatives of /V in H. Next, note that uB~] — u — (/?, 0, 0, . . . ,0), 
so 

uB~lXBv' = (uX - (p, 0, . . .)X)(v' - pu') 

A straightforward calculation using uX = u + pux and Xv' = v' + pvx shows that B 
normalizes N. UYEVA, then uY~] = u and Yv' = Xv' + pvY. Therefore, if X E N. 

uY]XYv' = (u + pux)(Xv' + pvY) 

= u(Xv' + /?vK) mod p2 

since wxv' = 0(p). Thus the right hand side is uYv' = uv', so F normalizes iV. 
(N is contained in the normal subgroup H so its is clear that Y~]XY E H.) 

Finally, a(G) H Af = {/} since CT(G) Pi // = (B) and £ is not in N. 

LEMMA 11. IfC is the subset ofVA consisting of elements which centralize B modulo 
N, then C is a subgroup and CN is a normal complement to CT(G) in cr(V). 

PROOF. It is clear that C is a subgroup. Modulo N, (B) is a normal subgroup of order 
p, and conjugation by A is an automorphism of order p — 1. Thus VA = (A )C where 
(A) H C = {/}. The group C is central modulo N, so CN is normal. Moreover, V = 
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(T(G)CJV and v(G) H CN = {/}. 

PROOF OF THEOREM 2. The theorem will follow from Lemmas 10 and 11 as soon 
as we show that the C of Lemma 11 is the set of all a = 2 c,A' in VA such that 
2 cjl = 1 mod p. We use the fact that 

B ]A'B = A'B1" 

to write the commutator a~]B~*aB in the form 

y = 1 + cT1 S CiA\Bx-ri - I). 

This commutator is known to be in H so it will be in N iff uyv' = uv' mod p2. Since 
uBk = M — (0, 0 , . . . , / ? , . . . 0), where the p appears in the (p — k){h column, we see 
that uBkv' = uv' — p(p — k). Moreover, uA = w, so 

uyv' = uv' + ZJ CJ{UV' - p[p — (1 — r')] — wv'}. 

Thus 7 is in N iff 2 c,(l — r') = 0(/7). This completes the proof. 
The following result in an immediate consequence of Theorems 1 and 2. 

COROLLARY 1. G has a normal complement in V consisting of all units a such that 
o-(a) E CN. 

There does not seem to be a tidy description of the normal complement in V when 
p > 7; the difficulty is that one must take into account the nontrivial units in Va and 
in g. This difficulty vanishes when p is 3, 5, or 7 since V(l = (a) and ^ = {1}. 

COROLLARY 2. When p is 3, 5, or 1, G has a normal complement in V consisting of 
all a = S Cjja'b1 in V such that 

S ( S c0)j - 0(p) 
./ ' 

and 

y fl when / = 0 
'•' lO otherwise. 

7 

PROOF. For the primes in question, the normal complement in V consists of a such 
that o-(ct) E N. The second condition holds iff o-(a) E H. The first condition is 
necessary and sufficient for ucr(a)v' = wv' mod /?2. To see this, we perform a 
calculation similar to the one in the proof of Theorem 2. 

ud(a)v' = ZJ ( 2 CjjUB'v'J 
j ' 

= I (lc„(uv' - p\p -j])) 
j ' 
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= uv' + 2 [^ Cjjjjpimodp1). 
J i 

The reader can check that the conditions given in Corollary 2 are equivalent to the 
conditions which hold for units in the complement 1 + /() found by Cliff, Sehgal, and 
Weiss [3]. They proved that their complements were torsion free when p = 3, 5, or 7. 
We have been unable to determine whether our normal complement is torsion free when 
p>l. 
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