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PSEUDO-MEASURE ENERGY AND SPECTRAL 
SYNTHESIS 

JOHN J. BENEDETTO 

Introduction. In this paper we develop a natural notion of continuous 
pseudo-measure and study the Stieltjes integral with respect to a given 
pseudo-measure. The common feature to these two topics is the essential 
appearance in both of integrals having the form 

11/, HI = {JJ\f(y + r)-f(y)\2dy 

Such integrals come about naturally when one defines the energy of distribu­
tions other than measures [6]. The reasons to study continuous pseudo-mea­
sures are to find properties analogous with those of continuous measures, and 
to discover more about the structure of pseudo-measures because of their 
importance in harmonic analysis, and particularly in spectral synthesis (e.g., 
[4; 15]). The Stieltjes integral with respect to a pseudo-measure is studied 
because of its intimate relation with spectral synthesis (e.g., §5) ; the key 
observations on this matter were initially made by Beurling [6]. 

Continuous pseudo-measures are defined and characterized in § 1; a norm 
defined in this context yields the necessary translation invariance to prove a 
Fejér theorem. Further, this norm is used to introduce a special type of 
(Riemann) set of uniqueness in § 4. 

In § 2 we accumulate some technical information on the growth of \\f, r | |; 
this is useful in § 5. The relation between continuous functions and continuous 
pseudo-measures is studied in § 3. 

We develop the Beurling integral [6, pp. 2959-2962] in § 5. Using this 
integral we give a different proof to the Beurling-Pollard theorem (e.g., [15, 
pp. 61 ff.]) as well as an even stronger statement, but of the same type. We also 
indicate the limited scope of Beurling's integral for the solution of spectral 
synthesis problems (cf., Epilogue). 

Acknowledgement. I would like to thank Fulvio Ricci and Raymond Johnson 
for their interest and expertise on many facets of this paper. Further, Professor 
Johnson's technical assistance has been invaluable especially in § 3. 

0. Notation. T = K/2TTZ is the circle group. Haar measure m on T is 
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986 JOHN J. BENEDETTO 

normalized by m( T) = 1 and denoted in integrals as 

. . . dy or I . . . dy. 
T «Jo 

ACT) is the space of absolutely convergent Fourier series 0(7) = J^ane
iny, 

with norm ||</>||A = 2 k » | - The set of zeros of (j> G 4̂ (T) is denoted by 
Z0 Ç T. A'ÇY), the space of pseudo-measures, is the dual of ACT) with 
canonical norm || ||.4/. For £ Ç T closed, 

A'{E) = {T e A'(T) : s u p p T Ç E } , 

Ao'(E) = \T e Af(E) : l i m U U œ î (n) = 0}. 

M(E), the space of Radon measures supported by E, is contained in A'(E) 
and has total variation norm | | r | | i . Notationally, 

MC(E) = [T e M(E) : T is continuous}, 

Mo(E) = \T Ç M(E) : l im U U o o f (») = 0}. 

It is well-known that M0(E) C MC(E). Also, in this paper, we assume without 
loss of generality that T(0) = 0 for T in any of these spaces. TT is the translate 
of T: 

' ' iny 
Cn6 rT~x; cne

iniy-T} w here r~ E -
The notation 

f~T 
shall mean that T ~ ' Hcne

iny is in A'(T) and 

/ ~ d0 + E ^n iny 

(do an arbitrary constant). f' = T distributionally, and, from the Hausdorff-
Young theorem, / 6 npL

p(T). 
<j> e ACT) (respectively, T G -4'(T)) is synthesizable if for all S £ A'(Z<f>) 

(respectively, for all \j/ £ ACT) with supp T ÇZ Z\p) we have (S, </>) = 0 
(respectively, (7\ ^) = 0). Set 

4fl'CE) = {T e A'(E) : for all 0 G 4 (T) with £ C Ztf>, (T, <t>) = 0}. 

£ is a Helson set if M(E) = ^ ' ( E ) and a uniqueness setiî AQ (E) = {0}. 
All other notation is completely standard and can be found in [15; 25]. 

Also, some of our proofs are more general than the context of ACT), Af(T) 
duality, but we have chosen this latter setting for the obvious reason of unity. 

1. Continuous pseudo-measures. Because of Wiener's characterization of 
continuous measures we say T 6 A'(T) is continuous (T G AJÇT)) if 

(1.1) l i m s ^ j - r £ | Î W | 2 = 0. 
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We define the norm 

M(T)= sup^-r.r 2 : \f(n)\ 

on Af (T). Clearly (by Holder's inequality), (1.1) holds if and only if 

(1.2) l i m ^ r r Z \T(n)\ = 0 ; 

and it is obvious that 

for all T e A'ÇT), M(T) S \\T\\A>. 

From Parseval's formula, i f / ^ 71, 

(1.3) | | / , T|| = 4 2 , ^2 sin —. 

Because of Theorem 1.1(b) we prove that 

/ ~ T implies | | / , r||2 = 0 ( r ) , r - > 0. 

In fact, from (1.3), 

\\f,r\\2^Kj: A ( l - c o s » r ) , 
1 " 

and the Fourier series on the right hand side represents the even function 
4>{T) = 7TT - r2 /2 on [0, TT). 

With this order condition on pseudo-measures in terms of | | / , r||, the 
following characterization of T £ Ac

f(T) (particularly, Theorem 1.1(b)) is 
interesting. 

THEOREM 1.1. The following are equivalent for T £ A'(T): 
(a) TeA.'ÇT); 
(b) | | / , r||2 = O(T), r -> 0, where f ~ T; 
(c) M ( r - r7) -> o <w T -> o. 

Remark. Theorem 1.1 is proved using Wiener's original computation [24] 
to characterize continuous measures. In fact, the calculations for (a) <=$ (b) 
are precisely Wiener's (e.g., Zygmund's first edition, p. 221); whereas, those 
for (a) <=» (c) stem from [11]. There are, of course, more elegant proofs of 
Wiener's result (e.g., [25, I, pp. 107-108; 16, Chapter 1]), but these are not 
as adaptable to our generalization for pseudo-measures. 

We know from Wiener's theorem that M0ÇT) C MC(T). From Theorem 1.1 
we have 

PROPOSITION 1.1. (a) Let T £ A'ÇT). T e A0'(T) <=» \\T - Ty\\A> -» 0 as 
y ->0 . 

(b)Ao'(J)QAe'(J). 
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Example 1.1. Goes (1967) proved that if [nk] is strictly increasing to in­
finity then T ~ 2^=1 sin nky is not a measure. Choose such a sequence {nk} 
with the property that lirm. k/nk = 0. Then 

1 N -i Nk y 

^ E | f ( » ) l s ^ Ç | f W I = | 
where, given N, Nk ^ N is the largest integer with | T(Nk)\ = 1. Consequently 

ru/fr)\(4o'(T)UM(r)). 
Remark. A straightforward calculation first recorded by S. M. Lozinskii for 

measures [17] shows that if T G AC'ÇT) then 

lim 
T(n) 

n = 0. 
N_œ log (2N + 1) \^iN 

In light of the continuity of translation property of continuous pseudo-
measures (Theorem 1.1) and the fact that such continuity of translation is 
the key to Fejér's theorem in LX(T), we ask if T continuous implies 
M(T - aNT) -> 0, where 

<™ - £JM I1 - î +ï) 
Remark. Obviously, \\T — <rNT\\A' —»0 for T G A0'(T) (Proposition 1.1(a)), 

and the result is always false for T G ^4 ,(T)\^40
/(T). Similarly, since 

Ll(T) Ç Mo(T) is closed in the total variation norm, it never happens 
that ||M - <TN» | |I - • 0 for ju G MÇT^L^T). On the other hand if M G -M(T) 
then ju G ^ 0 0 if and only if some subsequence of {aNn} converges weakly 
i n L ^ T ) . 

A routine computation yields 

THEOREM 1.2 If T G ^ / ( T ) , Jfcew 

lim Jlf ( r - cr^r) = 0. 
N 

2. Integrability conditions. Throughout, we shall test functions according 
to the growth of | | / , r||, but with motives along the lines of Beurling's work 
[6; 7]. We refer to Herz' classification [13] of various Lipschitz (et al) function 
spaces for other uses of such differences. We now record some routine informa­
tion on | | / , T\\ that will be useful in what follows. 

PROPOSITION 2.1. Let f, g G LXÇY) and assume 

(2.1) | | / , r | | =0(T^), T - > 0 . 

(a) Ifge CX(T) then 

(2.2) r | | g f r | | | | / , r | | T < c x ) . 
«/0 T 
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(b) / / Z)IIM| 2M < °° then for any a < 2 

(2-3) P l l f , r | | | | / l r | | ^ < o o . 

(c) If g £ Aa,a> 1/2, then (2.2) holds. 

Proof, (a) By hypothesis ||g, T\\ = O(r), r —» 0, and so 

J
»2x 7 /^27T 

| |g , r | | \\f,r\\-2 ^K r -*dT<oo. 

(b) By Parseval's formula and our hypothesis 

£ \\g, r\\\\f, r\\^a ^K j\\g, rWr'^dr 

= 2K J V ' 2 - " ( r - 2 D | | W | 2 s i n 2 f V ' V 

^ 2X [ J r — * ] ' " [ £ | | (») I2 J r-2 sin2 f «fr]1" 

^ E IK»)!*!»!-

(c) If g e Aa, a > 1/2, 
•»2TT 

1 "co(g, r)/r3 / 2^r < oo 

and sc ) 

/*2TT 

u2(g, r)/^/2dr < 0 0 . 

(2.2) then follows from (2.1). 

Remarks. 1. (2.3) is true for any a < 3/2 if in addition to (2.1) we take 
g € i 2 ( T ) . 

2. Clearly, Proposition 2.1 is true for pseudo-measures. 

From (1.3) and the fact that 

J»2TT 

T~2 sin2 nrdr = 0 ( H ) , 
o 

we have 

2TT 

n\ —» oo, 

PROPOSITION 2.2. If f ~ T and 

(2.4) BT = £ J ^ < oo 
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then 

(2.5) | | / , r | | = 0(T), T 0. 

Goes [10] and Stein [20] have proved (for the cases p = 1, p = 2, respective­
ly): l e t / G L 2 (T) , / (0 ) = 0, and p G [1, 2]; / ~ T if and only if there is 
Mp such that for any finite sequence of disjoint intervals (ak, bk), 

Z) (f(h - x) - f(ak - x)) ^Mp. 

Using Parseval's formula this condition is (for dn = 0(1) , \n\ 

12 

• oo, erndp = 2) 

(2.6) £ ' E (« *) < M. 

The trigonometric sums in (2.6) are reminiscent of the techniques in [3]. 
The condition (2.4) was considered by Beurling [5] who proved that for 

such f ~ T the Fourier series of/ diverges only on a set of zero exterior capa­
city. To fill in the picture, we know that (2.4) implies T £ AC'(T) (Proposi­
tion 2.4). It is an immediate calculation that when (2.4) is satisfied the 
Dirichlet integral D(f ) is given by 

^) - . r :n^ rdydr 
2|»| + 1 ' 

where/(r, 7) = £ / ( w ) H n ' ^ . 
With regard to Proposition 2.1 and (2.4) we use Parseval's formula (twice) 

and Holder's inequality to compute 

PROPOSITION 2.3. If BT < 00 forf ~ T and ]C||(w)l2M < °° then (2.2) holds. 

There is, of course, no a priori relation between 0(r) and o(rin). On the 
other hand, from a standard technique we prove 

PROPOSITION 2.4. Letf~ T satisfy (2.4). Then T Ç AC'(T). 

Proof. Set an = \T(n)\2 andbn = J^]k\^nak/\k\. For each n ̂  l,n(bn — 6n_i) = 
an + a-n (bo = 0). Thus 

X an = NbA 

N-l 

z *» 
and so 

1 l'fv M2 1 N— 1 / fc 1 ^ / \ | 2 \ 

|Z |fWI2= Z ' ^ - ^ Z Z ' 1 ^ • TV 

We are done by (2.4) and the fact that the arithmetic mean on the right hand 
side will also converge to B T. 
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Example 2.1. Let g = xi, I an interval. Then ||g, T\\ = (2r)1/2. To see this 
let / = (—a, a) and so 

\\g, T\\ = 4a - 2 J X / ( T + T ) X / ( T ) ^ T = 4a - 2(2a - r). 

Example 2.2. Let g be the de la Vallée-Poussin kernel (trapezoid function): 
g = 1 on [ — 6, b], a > b, g ^ 0, g = 0 off ( — a, a), and g linear on [ — a, —b]f 

[b, a]. Then 

A, v 2 cos wa — cos wfr 
* < » > = ; ? — ^ ^ — 

and so from Parseval's formula 

,, ,, 2 64 v ^ , l . 2 wr . 2 a + 6 .. 2 a — b 
US-HI = - ^ 7 ^ 2 : ^ s i n T s i n » - ^ - s i n n - ^ - . 

Consequently, 

||g,r|| =0{T), T - 0 . 

3. 4C'(T) and continuous functions. S u p p o s e / ~ T. li T £ MÇT) then 
T £ Afc(T) is characterized by the fact t h a t / is continuous. 

(a) We show by example that there are no such implications in the general 
setting of / ~ Tand T £ AC'(T). 

Example 3.1. Consider the Hardy-Littlewood function 

œ in log n 

f(y) - E —— e»y. 
i n 

f is an element of A1/2 and is not an element of ACT). We see from definition 
that if y —̂̂  T then T (? AC'(T). In light of Bernstein's theorem it is interesting 
that we can prove: if f ^ T and f Ç -4(T) then T £ AC'(T). 

Example 3.2. There are / £ DP L*(T)\L°°(T) such that f~T and 
T 6 ^4C'(T). For example take 

/ ( 7 ) ~ Ç *n^exp*7*[log*1-
In particular, / $ C(T). With some extra work / can be taken in Lœ(T). 

(b) Given Example 3.1 we wish to find conditions on continuous/ so that 
/ ~ r a n d r < E AC'(T). 

PROPOSITION 3.1. Let f £ C ( T ) , / ~ T. Assume there is g Ç L2(T) such that 

| U-r - / )M è g a.e. (/_T(7) = / ( T + T ) ) . 

r*«» r € ^C'(T). 
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Proof. Take e > 0. Since /_T —»/ pointwise (as r —> 0) there is ^4, m 4̂ < e, 
such that/_T —»/ uniformly on A~ (the complement of A). Now 

i|l/,r||2^ f Jf_r-f\\j=L^L\dy+ f 

g sup |/_T(T) ~ / ( T ) | f |g| +2||/|UM)*||g||,. 

The last expression yields the condition of Theorem 1.1(b). 

(c) Before pursuing the opposite question of finding conditions on / ~ T, 
T £ AJ(T), to ensure that / 6 C(T), it will be convenient to give some 
explicit non-trivial examples of / ^ T. 

A function / Ç L2(T) is of bounded deviation if for each (a, 6) C [0, 27r), 

£ / ( T K ^ T = O(^|) , |«|-oo. 

This notion w âs introduced by Hadamard (to generalize bounded variation) 
in his thesis (J. de Math. 8 (1892), 101-186, especially p. 154); and he proved 
that if / € -4(T) satisfies fin) = 0([\n\ log M] -1)* \n\ —» oo, then / is of 
bounded deviation. 

The following functions are of bounded deviation : 

(3.1) f(y) = 7 a s i n l / T
a , a> 0, 

(3.2) f(y) = sin log H , 

(3.3) f(y) = (1 - ^ ) - ' [ l - log (1 - e ^ ) ] - , « H 

(denned mod 2TT). (3.1) and (3.2) are due to Bray [8, pp. 156-157] who obtained 
them as examples from two general results, respectively. (3.3) is due to Hille 
[14] who also showed that this / is of bounded variation if and only if a > 0. 
Bray, in a Comptes Rendus note (t. 190, p. 1371) translated some of his results 
from [8] to generalize Hadamard's theorem: / Ç L°°(T) and f(n) — 
0([|n| log |w|]_1), \n\ —> oo, i m p l y / is of bounded deviation. Also, if/ is of 
bounded deviation then / £ L°°(T). For perspective, note that there are 
/ ^ T (even with only countable support!) which are not in L°°(T) [3], 

(d) We start to investigate continuity properties of / , given / ~ T and 
T £ Ae'(T), with the following 

PROPOSITION 3.2. Letf~T and T G AC'(T). 
(a) / has no jump discontinuities. 
(b) supp T is perfect. 

Proof, (a) Suppose x0 is a jump discontinuity so t h a t / ( x 0 + ) exist, and 
| / (*o+) — f(xo — )| = 2a > 0. Take r0 so that if r < r0 and x G [x0 — r /2 , x0), 
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| / (x + r) - / ( x ) | > a. Thus 

i | | / , r | | 2 > a 2 / 2 > 0 > 

and this contradicts Theorem 1.1(b). 
(b) If supp T has an isolated point, / must have a jump discontinuity. 

Example 3.3. Set f(x) = x sin (1/x) on [-TT, TT]. Then / is continuous, 
f~T, and T 6 -4 / (T) . We need only verify Theorem 1.1(b). Note that 

i M , I |2 2 r 2 . i / . i . _ i \ 
~ /> T = ~ I x sin - I sin - — sm—;—I 
r " J " T J-.T x \ x x + T! 

c . i i 
— 2 I x sin —;— sin - dx, 

J-v X + T X so that since 

£ x sin - dx = 0 

and 

I x2 sin - cos - dx = 0, 

we are done. 

Example 3.4. Beginning with t h e / of (3.2), take a Cantor set E, raE > 0, 
and define a function /„ on each contiguous interval in terms of / so that 
g = Y^fn is not continuous a.e. and gf Ç A''(T). We observe that g' g ^4C'(T). 
I t is enough to prove/ ' Ç? 4̂ / (T) and this follows using Theorem 1.1 (b) and a 
routine estimate with the mean value theorem. 

Some routine calculations yield the following criteria for the continuity of/ 
given information related to the continuity of 7\ where/ ~ T. 

PROPOSITION 3.3. Suppose f ~ T. 
(a) If for some e > 0 

A | | / ) T | | 2 = 0(r<), r ^ O , 
T 

thenf e ACT). 

implies f 6 -4(T). 

(c) l im^Vr E l»^(»)l=0 

implies f G ^4(T). 
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Part (a) is really a translation of Bernstein's theorem. 

Example 3.5. Let {an} Ç R decrease and assume / has the Fourier series 
J2an sin ny\ t h e n / G C(T) if and only if f ~ T and T G AJÇT). 

4. Strong uniqueness sets. 

THEOREM 4.1. (a) A'(T), normed by M, is not complete. 
(b) If A' (E), normed by M, is complete then E is a U set. 

Proof, (a) If Af (T) is complete under M then M is equivalent to || ||A> by 
the open mapping theorem. Then if T G AC'(T) we use Theorem 1.1 and 
Proposition 1.1 to obtain T G A0'(T). This is obviously false generally, even 
for measures. 

(b) Assume E is not U and take a non-zero T G A0'(E). Set Sn = emTt so 
that Sn(m) = T(m — n), Sn G AQ(E), and \\T\\A> = HSJU' for all n. We prove 
M(Sn) —» 0. This yields the desired contradiction, for, by hypothesis, the M 
and A' norms are equivalent and so {M(Sn)} is bounded away from 0. For 
notational convenience let ak = |?X&)|, so that we show 

lim sup OA7 , 1 X) an-k = 0. 

Let aj0 = sup ai and set bj = aj0 if \j\ ^ \jQ\. Let an = sup {dj : \j\ > \j0\] 
and set b3 = ajl for all |ji| jg \j\ > | j 0 | , etc. Hence {bj} is symmetric and 
monotone decreasing to 0 as | j | —> oo. Also fr .,• ̂  aj for all j and thus we need 
only prove that 

lim sup ^7 -7 -7 X) hn-k = 0. 

Fix k; then 

-J -j iVfc—k 

sup 27V i 1 JLI bn-k — 97VT 1 1 ^ ^ ' 

1 / iVfc iV& - i V j f c - 1 \ 

^ ^ T + T ( E - E + Z M 

* + 1 lit 2Nk + 1 î ĵ jvfc 

The last term tends to 0 as k —* 00 since fr;- —> 0 and by a property of Cesàro 
sums. 

We say that £ is a strong U set if A' (E), normed by M, is complete (i.e., if 
there is KE so that for all T G A'(E), \\T\\A. S KEM(T)). 
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Example 4 .1 . Set Tk = k2eik\ Then M(Tk) -> 0 as fe -> oo whereas r * -T^ 0 
in the weak * topology (cr (4 ' (T) , A ( T ) ) ) . In fact, ikf(r*) = &2/(2&3 + 1) - > 0 
and for each k, ^2nTk(n)an = 1 for 

Example 4.2. Every finite set is strong U since, in this case, A' ' ( £ ) = C n 

and all norms on Cn are equivalent. 

Recall t h a t discrete measures are not in ilfo(T) and note, more generally, 
t h a t if ix is discrete and fi(n) —> a then fx = a<5. 

Remark. From the definition of strong f /and the results of § 1 it is interesting 
to inquire if M{ix — ny) —> 0 implies ||/x — MTIU' —> 0 as 7 —» 0 for fx G MC(E) 

and £ strong Z7. The fact t ha t this phenomenon can not happen follows from 
Proposition 1.1 and Theorem 4.1 (which prove E is of str ict multiplicity when 
we assume M(fx — jur) —> 0 and E s trong U). Observe t h a t if such an implica­
tion of "cont inu i ty of t ransla t ion" were t rue then each strong U set would be 
countable (for if not take non-0 [x G MC(E), e tc . ) . A fortiori, we have the 
incompatibi l i ty of M(/x — M7) —• 0 and ||/x — M7IL' —• 0, ju G MC(E), once we 
know t h a t E contains a perfect Helson set (since such sets are not of str ict 
mult ipl ici ty) . 

We shall not include the details of the following proposition, since, modulo 
trivialities, the original technique of Kahane and Salem to give examples of 
sets support ing no true pseudo-measures (e.g., [4, 15]) goes through. 

PROPOSITION 4.1 . Let E Ç T be perfect and take a G E. There is a perfect 
H QE satisfying M(H) = A'(H) and a G H. 

I t is also not difficult to show t h a t every infinite closed set E has a countably 
infinite Helson subset. 

In any case when E is uncountable and closed, MC(E)\M0(E) ^ 0. More 
amusing, perhaps, is 

PROPOSITION 4.2. Let E be a perfect totally disconnected set. Then there is 
ix G MC(E)\M0(E) such that supp \x = E. 

Proof. Let {an} C £ b e a countable dense subset (of E) of inaccessible points. 
Choose a perfect Hi, Helson with a\ G H\. Suppose an2 is the "next a " which 
is outside of H\. Then there is a perfect open and closed F such t h a t an2 G F 
and F r\ Hi = 0. Choose H2 C F, Helson with anl G H2. We proceed in this 
way to form {Hj}, {an) C \J Hh so t ha t \Hf\ is a disjoint collection and 
U Hj = E. Let Mi G Mc(Hj), supp /x̂  = Hj, so t h a t /x̂  G M0(Hj) since i 7 , is 
Helson. Set 

Xi = lim |j&i(w)| > 0 
|n|->oo 
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and define 

oo -i 

M
 Xl^ % 2*i i / . ,nr 

Clearly supp n = E and n € ikf„(.E). Take % -> oo so that lim* |jûi(%)| = xi. 
Then for k large 

i 4 yi > 1 *("*>! _ I y ±h&û I > 1 
|M(Wfc)l> *i I à 2>|M|il >4 

since the infinite sum is less than 1/2. Thus n (? Mo(E). 

m(U -ff̂ ) = 0 since mi7 ; = 0, although, naturally, m{E) need not be 0. 

5. Spectral synthesis and integration. S u p p o s e / ~ T and <t> Ç C(T). 
The Beurling integral of 0 with respect to / is 

(5.1) B(4>J) = I £ \ ( j o (4>-r- <t>)(x)H * (f-r-f)(x)dx)dr 

where H is the "conjugate distribution" 

TT ' "V^ inx 
H ~ —I 2-j s g n ne • 

Naturally we define/ periodically over ( — oo , oo ). 

Remark. The question arises as to the motivation of (5.1). The answer 
centers about a solution to synthesis. To give more detail let us consider a 
trivial case where it is known that synthesis holds. Each JJL G M(T) is 
synthesizable. Thus for any 4> Ç A (T) satisfying supp JJL C Z#, we have 
(/x, <j>) = 0. If M(0) = 0 a n d / ~ n t h e n / is of bounded variation and so 

J&f = (M, </>> = 0. 

The key for us now is to deduce that f<t>df = 0 from first definitions. / is con­
stant on any open interval contiguous to supp JU and so when we write out the 
Stieltjes integral we see that 20(i^)(/(#y) — f(Xj-i)) = 0 when xjt x^i are 
in the same contiguous interval. In the limit, the fact that <t> = 0 on supp p 
assures that the other terms in such sums are 0. 

Consequently, and generally, we see that if the inner product (T, <j>), 
T Ç ^ ' ( T ) , $ € A(T), has a "Stieltjes-integral" representation and <j> = 0 
on supp T then there is a good chance that synthesis holds, i.e., (T, </>) = 0. 
(Recall that if J<t>df or jfdcfr exists then they both exist and J<t>df = —JfdQ.) 

The first step from this integral representation point of view, then, is to see 
in what way and when we can write (T, </>) as an integral. We have no choice 
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but to start with Parseval's formula. For f ~ T, 0 6 ^4(T), B(4>, f) is 
formally 

(5.2) ^ £ \ ( S 4>(n)fî(-n)K-n)(etnT - Die-"" - l))dr 

\|W|7r J o r / 

= -*E'*W/(-»)»= <r,*>. 
The presence of fl" is accounted for simply because without it the penultimate 
term in the previous calculation turns up an \n\. 

PROPOSITION 5.1. Letf~ T and <j> £ A (T). Then B(4>,f) exists and 

(5.3) Bfaf) = <7\*>. 

Proof. We must verify that we can integrate under the summation sign in 
the first term of (5.2); but 

oo E'l*(»)/(-«)l p M ^ * < 
«7 0 T 

so that we can use Fubini's theorem. 

Clearly, 5 (0 , / ) will exist for 0 6 C(T) a n d / ~ T if 

(5.4) | B | ( * , / ) s -i J f A ( J / K*-r - <*>)(*)# * (/-r - / ) ( * ) | < k ) d r 

< oo. 

For any function <£ £ L2(T) define (with Beurling [6; 7]) the circular 
contraction 

!

*(*)» # | 0 ( * ) | < P 
0(^) -, , ., x, . 

pï*ÔôT */!*<*>! > ' • 

p > 0. A straightforward calculation shows that 

|*p(* + r) - 0P(*)| ^ |0(* + r) - 0(x)| 

for any p > 0, x, r. 
PROPOSITION 5.2. Gii/e» f~T and <j> G C(T) /or w/wc* |-B|(0, / ) < oo, 

/fee» | 5 | (0p, / ) < oo a/zd 

(5.5) l i m | B | ( * „ / ) = 0 . 
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Proof. \B\(<t)PJ f) ^ |^ | (0 , / ) by the way we have defined <j>p. From a 
Lebesgue dominated convergence theorem argument, the result follows. 

Remark. We are now in a position to clarify the situation. Take f ~ Ty 

<£Ç^4(T), supp T C Z#, and assume (5.4). From Proposition 5.1 and 
Proposition 5.2 we have (5.3) and (5.5). Now, $p = # on a neighborhood of 
supp T. Consequently it is not unreasonable to expect (in light of (5.3)) that 
with a strengthening of (5.4) we could further conclude that 

(5.6) Bfaf) =B(4>p,f) 

(even though generally 0P G C(T)V4(T)). Obviously, (5.3), (5.5), and (5.6) 
yield the yearned for annihilation, (T, 0) = 0. 

THEOREM 5.1. Given f ~ T, # G A ( T ), supp T C Z#, and assume that 

(5.7) | 5 2 | ( * , / ) s r A | | 0 , r | | | | / , r ! | ^ r <oo. 

Then (T, <£> = 0. 

Proof. \B\ (<£, f ) = \Bz\ (4>, / )• In light of the previous remark we need only 
show that (5.7) implies (5.6). Set ^ = 0P — <t> so that \f/ = 0 on a neighborhood 
of Z<j>. Choose a C°°-approximate identity dn so that ^n = \f/ * £w is 0 on a 
neighborhood of Z<j>. Since |ôre(m)| rg 1 we have 

l l ^ - r l l 2 = 4 Z | ^ ) U m ) | 2 s i n 2 ^ T < | |* ,r | f . 
m & 

Consequently from (5.7) we can use the dominated convergence theorem and 
have 

l i m B ( * n - * , / ) = 0. 

Now B(ypn,f ) = (T, ypn) from Proposition 5.1 so that 

B(+n,f) =0. 

Hence, £(<*>,/) = 5 ( * P f / ) . 

Obviously, in order to apply Theorem 5.1, we need only check the finiteness 
of the integral in (5.7) over the range of integration (0, 1). 

The Beurling-Pollard result then follows: 

PROPOSITION 5.3. Let < j » a a , « > 1/2. For all T 6 A'(Z4>), (T, <j5>) = 0. 

Proof. This follows as |^2|(^>,/ ) < 00 by Proposition 2.1(c). 

As an obvious generalization we have 
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PROPOSITION 5.4. If 4> = 0 on supp T, <j> G A (T), T 6 A'(T), and 

6>2(0, T ) 

x 372— dr < co , 
0 r 

Proposition 5.4 remains true if the integral condition is replaced by 

% * cOoo(0, r ) dr J < 0 0 . 

In this form every bounded variation function <f> G Aa, a > 0, is synthesizable 
(0 is automatically in A (T) with these hypotheses); of course, this does not 
yield the complete Katznelson result that each bounded variation function 
in A (T) is synthesizable. 

It is easy to check that if <j> Ç C(T) , / ~ T, T Ç itf(T), and |£2 | ( 0 , / ) < 00 , 
then 

£(*./) = J *df= - ffdd>. 

I f / 6 C(T) then 

Jxc«.»rf/ =/(&) - / ( « ) = 5(xca .« , / ) . 

Thus, we have 

PROPOSITION 5.5. If f~ T,f £ C(T), awrf {x} = O /„, A 0» interval, then 
\\mnB(Xln,f) = 0 . 

Consequently, i f / ^ T, f £ C(T), we have ^({x}) = 0. 

Remark. The Beurling integral with its Lebesgue dominated convergence 
theorem can obviously only give point mass 0 if such is to exist. This suggests 
a closer adherence to Stieltjes integral representation for the solution of syn­
thesis problems not dealt with in this section. 

Recalling that 

Km4? £ *(»)«*" =/(*+) - / (*-) , 

f o r / ~ /*, M 6 -M(T), we note that 

for T e Ae'(J). In this regard we know that for T € -4'(T), T is almost 
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periodic if supp T is countable whereas supp T is perfect if T Ç Ae'(T). 
Also if f(xdz) exist for / ~ 2" we can well-define 7X{#}) = / ( # + ) — f(x — ) by 
a de la Vallée-Poussin kernel calculation. 

Epilogue. Because of the limited application of Beurling's integral to syn­
thesis problems, and the relation between synthesizable pseudo-measures and 
an adequate Stieltjes integral representation for the operation of T Ç A'(T) 
on <j> £ -4(T), we have developed a theory of integral for synthesis. These 
results involve an inversion theory of convolution transforms on certain Bohr 
compactifications. A special case of this is the Denjoy-Kempisty integral [9] 
generalized and combined with a Beurling technique [6, pp. 1984-5]. This 
work is forthcoming. 
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