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Abstract

We describe the group of all reflection-preserving automorphisms of an imprimitive complex reflection
group. We also study some properties of this automorphism group.
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1. Introduction

Let N (respectively, Z, R, C) be the set of all positive integers (respectively, integers,
real numbers, complex numbers). For any k ≤ n in N, we use the notation [k, n] :=
{k, k + 1, . . . , n} and [n] := [1, n]. Shephard and Todd classified all finite complex
reflection groups (see [5]). There are two families of such groups: primitive and
imprimitive. For any m, p, n ∈N such that p | m (read ‘p divides m’), let G(m, p, n)
be the group consisting of all n × n monomial matrices whose nonzero entries
a1, . . . , an are the mth roots of unity with (

∏n
i=1 ai )

m/p
= 1. In [2], Cohen proved

that any irreducible imprimitive reflection group is isomorphic to some G(m, p, n)
(see [2, Subsection 2.4]). We see that G(m, p, n) is a Coxeter group if either m ≤ 2
or (p, n)= (m, 2).

By an automorphism φ of a reflection group G, we mean that φ is an automorphism
of the group G as an abstract group which sends any reflection of G to a reflection.
In the present paper, when we mention an automorphism of G, we always mean that
G is regarded as a reflection group. Denote by Aut(G) the group consisting of all
automorphisms of G.

The aim of this paper is to describe the group Aut(m, p, n) := Aut(G(m, p, n)).
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Set
Int(m, p, n) := {τg | g ∈ G(m, p, n)},

where τg : x 7→ gxg−1 is the inner automorphism of G(m, p, n) determined by g. The
structure of Aut(m, p, n) is well known in the case where G(m, p, n) is a Coxeter
group. More precisely, when m ≤ 2,

G(m, p, n) ∈ {Ah, Bk, Dl | h ≥ 1, k ≥ 2, l ≥ 4}

and

Aut(m, p, n)∼= Int(m, p, n) · 0

with 0 the graph automorphism group of G(m, p, n). On the other hand, we have
G(m, m, 2)= I2(m), the dihedral group generated by two reflections sα , sβ , where
α, β are two unitary vectors in a plane with inner product (α, β)=− cos(π/m).
Then Aut(m, m, 2) consists of all transformations which send sα to any reflection
sα′ of I2(m) and sβ to another reflection sβ ′ for some unitary vectors α′, β ′ satisfying
(α′, β ′)= cos(kπ/m) for some 1≤ k < m with gcd(k, m)= 1 (see [3]).

So we need only consider the case of m > 2 and n > 1 and (p, n) 6= (m, 2) for
Aut(m, p, n) in this paper. Our results can be stated briefly as follows. Set

Int(m, 1, n)p = {τ
(p)
g | g ∈ G(m, 1, n)},

where τ
(p)
g denotes the restriction of τg to G(m, p, n). For any k ∈ [m] with

gcd(k, m)= 1, the transformationψk : (ai j ) 7→ (ak
i j ) on G(m, p, n) is in Aut(m, p, n)

(see Lemma 3.5). Let

9(m) := {ψk | k ∈ [m], gcd(k, m)= 1}.

We have
Aut(m, p, n)= Int(m, 1, n)p o9(m)

for (m, p, n) /∈ {(3, 3, 3), (4, 2, 2)}. In particular,

Aut(m, p, n)= Int(m, p, n)o9(m)

if gcd(p, n)= 1. We also determine the structure of Aut(m, p, n) in the exceptional
cases (see Theorem 7.1). As a consequence, we obtain the order of Aut(m, p, n) in all
cases (see Proposition 7.2).

The above description for the group Aut(m, p, n) is also applicable to most cases
of G(m, p, n) being a Coxeter group (see Remark 7.3).

We also study some properties of Aut(m, p, n). Among others, we give an
explicit description of its centre (see Propositions 7.4–7.6, Subsections 7.7 and 7.8
and Corollary 7.9).

This paper is organized as follows. In Section 2, we collect some concepts and
results for later use. We study some general properties of Aut(m, p, n) in Section 3. In
Sections 4–6, we describe Aut(m, p, n) explicitly in three cases: p = 1 and p = m and
p ∈ [2, m − 1], respectively. In Section 7, we study some properties of Aut(m, p, n).
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2. Preliminaries

2.1. Let V be a Hermitian space of dimension n. A reflection in V is a unitary
transformation of V of finite order with exactly n − 1 eigenvalues equal to 1. A
reflection group in V is a finite group generated by reflections in V . A reflection
group G is called a real group or a Coxeter group if there is a G-invariant R-subspace
V0 of V such that the canonical map C⊗R V0→ V is bijective. Call G a complex
group otherwise (according to this definition, a real group is not complex).

2.2. A reflection group G in V is called imprimitive if G acts on V irreducibly
and if V is a direct sum V = V1 ⊕ V2 ⊕ · · · ⊕ Vt of nontrivial proper subspaces
Vi (i ∈ [t]) of V such that G permutes the set {Vi | i ∈ [t]}. In this situation, the
family {Vi | i ∈ [t]} is called a system of imprimitivity for G. Cohen [2] showed
that any imprimitive complex reflection group is isomorphic to G(m, p, n) for some
m, p, n ∈N with p | m and m > 2 and n > 1 and (p, n) 6= (m, 2); he also showed that
G(m, p, n) (p | m and n ≥ 2) has a unique system of imprimitivity if it is irreducible
under the natural action on Cn and

(m, p, n) /∈ {(2, 1, 2), (4, 4, 2), (3, 3, 3), (2, 2, 4)} (see [2, Lemma 2.7]).

The group G(1, 1, n) (n ≥ 2) is reducible and hence is not imprimitive.
In this paper, when the group G(m, p, n) is mentioned, we always assume p | m

and m > 2 and n > 1 and (p, n) 6= (m, 2) unless otherwise specified.

2.3. Any w ∈ G(m, p, n) can be expressed in the form w = [a1, . . . , an | σ ] with
some σ ∈ Sn , where Sn is the symmetric group on the set [n] and ai ∈ Z for i ∈ [n],
such that the entry of w in the (k, (k)σ )-position is exp((2πak

√
−1)/m) for k ∈ [n].

We have p |6n
k=1ak .

An element w = [a1, . . . , an | σ ] of G(m, p, n) is a reflection if one of the
following conditions holds.

(1) We have σ = (i, j), a transposition of i and j for some i 6= j in [n] and also
ai + a j ≡ 0 and ak ≡ 0 mod m for k 6= i, j . In this case, denote w by s(i, j; ai ) and
call it a reflection of type I. Clearly, any reflection of type I has order 2. We also
have s(i, j; ai )= s( j, i; −ai ). All reflections of type I are contained in the subgroup
G(m, m, n) of G(m, p, n);

(2) We have σ = 1, and there exists k ∈ [n] with ak 6≡ 0 and ai ≡ 0 mod m for all
i ∈ [n] \ {k}. In this case, denote w by s(k; ak), and call it a reflection of type II.
The reflection s(k; ak) is a diagonal matrix with order m/gcd(m, ak). Such reflections
exist only when p < m.

By [1], we know that G(m, p, n) has a generating set S0 consisting of:

(i) n + 1 reflections s0, s′1 and si for i ∈ [n − 1] if p ∈ [2, m − 1];
(ii) n reflections s0 and si for i ∈ [n − 1] if p = 1;
(iii) n reflections s′1 and si for i ∈ [n − 1] if p = m,

where s0 = s(1; p) and s′1 = s(1, 2; −1) and si = s(i, i + 1; 0).
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2.4. Let G be a reflection group. Following Shi in [6, Subsection 1.9], a presentation
of G by generators and relations (or just a presentation of G for short) is by definition
a pair (S, P), where:

(1) S is a finite generating set for G which consists of reflections, and S has
minimally possible cardinality with this property;

(2) P is a finite set of relations on S, and any other relation on S is a consequence of
the relations in P .

We say that S is a generating reflection set of G if S satisfies (1).

2.5. For i 6= j and i ′ 6= j ′ in [n], and k, k′, l ∈ Z with m - l, denote t = s(i, j; k),
t ′ = s(i ′, j ′; k′) and s = s(i ′; l). Then

tt′ = t ′t if {i, j} ∩ {i ′, j ′} = ∅,

tt′t · · · = t ′tt′ · · · (m/gcd(k − k′, m) factors on each side) if (i, j)= (i ′, j ′),

tt′t · · · = t ′tt′ · · · (m/gcd(k + k′, m) factors on each side) if (i, j)= ( j ′, i ′),

tt′t = t ′tt′ otherwise.{
ts= st if i ′ /∈ {i, j},

stst = tsts if i ′ ∈ {i, j}.

From the above relations, we see that two noncommuting reflections r, r ′ ∈
G(m, p, n) satisfy the relation rr ′rr ′ = r ′rr ′r if and only if either exactly one of
r, r ′ has type II, or r = s(i, j; k) and r ′ = s(i, j; k′) for some i 6= j in [n] and some
k, k′ ∈ Z with m/gcd(k − k′, m)= 4. This fact will be useful in the subsequent
discussion.

2.6. Denote by o(s) the order of s ∈ G(m, p, n). We have a presentation (S0, P0)

of the group G(m, p, n), where S0 is the generating reflection set as in Subsection 2.3
and P0 is a relation set on S0 given as follows (see [1]).

(1) When p = 1, the set P0 consists of the relations: o(s0)= m and o(si )= 2
for i ∈ [n − 1]; si si+1si = si+1si si+1 for i ∈ [n − 2]; si s j = s j si for |i − j |> 1;
s0s1s0s1 = s1s0s1s0.

(2) When p = m, the set P0 consists of the relations: o(s′1)= o(si )= 2 for
i ∈ [n − 1]; si si+1si = si+1si si+1 for i ∈ [n − 2]; si s j = s j si for |i − j |> 1; s′1si =

si s′1 for i > 2; s′1s2s′1 = s2s′1s2; o(s′1s1)= m; s′1s1s2s′1s1s2 = s2s′1s1s2s′1s1.
(3) When p ∈ [2, m − 1], the set P0 consists of the relations: o(s′1)= o(si )= 2

for i ∈ [n − 1]; o(s0)= m/p; si si+1si = si+1si si+1 for i ∈ [n − 2]; si s j = s j si for
|i − j |> 1; s′1si = si s′1 for i > 2; s′1s2s′1 = s2s′1s2; o(s′1s1)= m; s′1s1s2s′1s1s2 =

s2s′1s1s2s′1s1; s0s′1s0s′1 = s′1s0s′1s0; s0s1s0s1 = s1s0s1s0; s0s′1s1 = s′1s1s0; (s′1s1)
p−1
=

s−1
0 s1s0s′1.
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3. Automorphisms of a reflection group

3.1. Denote by Aut(G) the automorphism group of G. The aim of this paper is
to describe the automorphism group Aut(m, p, n) := Aut(G(m, p, n)) of the group
G(m, p, n).

LEMMA 3.2 (See [7, Subsection 2.10 and Lemma 2.1], [8, Lemma 2.2]). Let S be a
generating reflection set of the group G(m, p, n).

(1) If p = 1, then S consists of n − 1 reflections of type I and one reflection of type
II and order m.

(2) If p = m, then S consists of n reflections of type I.
(3) If p ∈ [2, m − 1], then S consists of n reflections of type I and one reflection of

type II and order m/p.

Denote by |X | the cardinality of a set X .

LEMMA 3.3. Let S0 be the generating reflection set of G(m, p, n) as in
Subsection 2.3. Then for any η ∈ Aut(m, p, n), the image of S0 under η can be
displayed as follows.

(1) When p = 1, the n-tuple (η(s0), η(s1), . . . , η(sn−1)) is equal to

(s((1)σ ; k), s((1)σ, (2)σ ; k1), . . . , s((n − 1)σ, (n)σ ; kn−1)) (3.3.1)

for some σ ∈ Sn and k, k1, . . . , kn−1 ∈ Z with k coprime to m.
(2) When p = m and (m, m, n) 6= (3, 3, 3), the n-tuple (η(s′1), η(s1), . . . , η(sn−1))

is equal to

(s((1)σ, (2)σ ; k′1), s((1)σ, (2)σ ; k1), . . . , s((n − 1)σ, (n)σ ; kn−1)) (3.3.2)

for some σ ∈ Sn and k′1, k1, . . . , kn−1 ∈ Z with gcd(k1 − k′1, m)= 1.
(3) When p ∈ [2, m − 1] and (m, p, n) 6= (4, 2, 2), the (n + 1)-tuple (η(s0), η(s′1),

η(s1), . . . , η(sn−1)) is equal to

(s((1)σ ; pk), s((1)σ, (2)σ ; k′1), s((1)σ, (2)σ ; k1), . . . , s((n − 1)σ, (n)σ ; kn−1))

(3.3.3)

for some σ ∈ Sn and k, k′1, k1, . . . , kn−1 ∈ Z such that gcd(k1 − k′1, m)= 1 and
k1 − k′1 ≡ k mod m/p (hence, gcd(k, m/p)= 1).

PROOF. Let (S0, P0) be the presentation of the group G(m, p, n) as in Subsection 2.6.
Then for any η ∈ Aut(m, p, n), the pair (η(S0), η(P0)) is again a presentation of
G(m, p, n), where η(P0) is the relation set on η(S0) which is obtained from P0 by
substituting the elements of S0 by the corresponding elements of η(S0).

(1) By the relation o(η(s0))= o(s0)= m > 2 in Subsection 2.6, we see that η(s0)

is a reflection of type II. Now by Lemma 3.2(1), the images of all reflections in
S0 \ {s0}must be of type I. We claim that there exist some permutation h1, h2, . . . , hn
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of 1, 2, . . . , n and some k, k1, . . . , kn−1 ∈ Z with gcd(k, m)= 1 such that η(sl)=

s(hl , hl+1; kl) for l ∈ [n − 1] and η(s0)= s(h1; k). This can be seen by Subsection 2.5
and the relations:

(i) η(si )η(si+1)η(si )= η(si+1)η(si )η(si+1) for i ∈ [n − 2];
(ii) η(si )η(s j )= η(s j )η(si ) for i, j ∈ [0, n − 1] with |i − j |> 1;
(iii) η(s0)η(s1)η(s0)η(s1)= η(s1)η(s0)η(s1)η(s0).

So (1) is proved by taking σ ∈ Sn with ( j)σ = h j for j ∈ [n].
(2) Recall that all reflections in G(m, m, n) are of type I. By Subsection 2.6, we

have the relations:

(i) η(si )η(si+1)η(si )= η(si+1)η(si )η(si+1) for i ∈ [n − 2];
(ii) η(si )η(s j )= η(s j )η(si ) for i, j ∈ [n − 1] with |i − j |> 1;
(iii) o(η(s′1)η(s1))= m ≥ 3;
(iv) η(s′1)η(s2)η(s′1)= η(s2)η(s′1)η(s2);
(v) η(s′1)η(sl)= η(sl)η(s′1) for l ∈ [3, n − 1].

Then by the assumption that (m, m, n) 6= (3, 3, 3), there is a unique system of
imprimitivity of G(m, m, n) which is necessarily fixed by any automorphism
(see Subsection 2.2). So we see by Subsection 2.5 that there exist some
permutations h1, h2, . . . , hn of 1, 2, . . . , n and some k′1, k1, . . . , kn−1 ∈ Z with
gcd(k1 − k′1, m)= 1 such that η(si )= s(hi , hi+1; ki ) for i ∈ [n − 1] and η(s′1)=
s(h1, h2; k′1). So we obtain (2) by taking σ ∈ Sn with ( j)σ = h j for j ∈ [n].

(3) We claim that η(s0) is of type II. For otherwise, we would have o(η(s0))=

m/p = 2 and exactly one reflection (say t) of type II in the set 1= {η(s′1), η(si ) | i ∈
[n − 1]} by Lemma 3.2(3). If n > 2, then there is also some t ′ ∈1 \ {t} with {t, t ′} 6=
{η(s1), η(s′1)} and tt′ 6= t ′t by the assumption of n > 2. By Subsection 2.5, we would
have tt′tt′ = t ′tt′t , which gives rise to a contradiction by Subsection 2.6(3). If n = 2,
then S0 = {s0, s1, s′1}. By Lemma 3.2(3) and the symmetry of s1, s′1 in S0, we may
assume that η(s0) and η(s′1) have type I, and η(s1) has type II without loss of generality.
So η(s1)= s(h1; k) and η(s0)= s(h1, h2; k1) and η(s′1)= s(h1, h2; k′1) for some
permutation h1, h2 of 1, 2 and some k1, k′1, k ∈ Z. Hence m = o(η(s1)η(s′1))= 4 by
Subsections 2.5 and 2.6, which would imply (m, p, n)= (4, 2, 2), contradicting our
assumption. So the claim is proved.

Now η(s0) is of type II. Then all reflections in 1 are of type I by Lemma 3.2(3).
By the same arguments as that in (1) and (2), we see by Subsections 2.5 and 2.6(3)
that there are permutations h1, . . . , hn of 1, . . . , n and some k, k′1, k1, . . . , kn−1 ∈ Z
with gcd(k, m/p)= 1 and gcd(k1 − k′1, m)= 1 such that η(si )= s(hi , hi+1; ki ) for
i ∈ [n − 1], that η(s0)= s(h1; pk) and that η(s′1)= s(h1, h2; k′1). Furthermore, by
the relation

(η(s′1)η(s1))
p−1
= η(s0)

−1η(s1)η(s0)η(s
′

1),

we have k1 − k′1 ≡ k mod m/p. Hence, we obtain (3) by taking σ ∈ Sn with (i)σ = hi
for i ∈ [n]. 2
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3.4. Set
8(m) := {i ∈ [m − 1] | gcd(i, m)= 1}.

Then 8(m) is a multiplicative group modulo m of order φ(m), an Euler number. For
any k ∈8(m) and any n × n matrix w = (ai j ), define ψk(w)= (ak

i j ). In particular,
when w = [a1, . . . , an | σ ] ∈ G(m, p, n), we have ψk(w)= [ka1, . . . , kan | σ ]

∈ G(m, p, n). So ψk can be regarded as a transformation on G(m, p, n) (we adopt
such a viewpoint from now on).

LEMMA 3.5.

(1) We have ψk ∈ Aut(m, p, n) for any k ∈8(m).
(2) The set 9(m) := {ψk | k ∈8(m)} forms a subgroup of Aut(m, p, n) of order

φ(m).

PROOF. Since G(m, p, n) consists of monomial matrices, we have

ψk(wy)= ψk(w)ψk(y) for any w, y ∈ G(m, p, n).

By the condition gcd(k, m)= 1, there exists some j ∈8(m) with k j ≡ 1 mod m. So
ψkψ j = ψ jψk = ψ1 is the identity transformation on G(m, p, n). By the description
of reflections in Subsection 2.3, we see that ψk stabilizes the reflection set of
G(m, p, n). So ψk ∈ Aut(m, p, n). Hence, (1) is proved and (2) follows by noting
thatψ : k 7→ ψk is an injective group homomorphism from8(m) to Aut(m, p, n)with
the image 9(m). 2

3.6. For any g ∈ G(m, p, n), define

τg : G(m, p, n)→ G(m, p, n)

by setting τg(x)= gxg−1 for any x ∈ G(m, p, n). Then τg is an inner automorphism
of G(m, p, n) which stabilizes the reflection set of G(m, p, n). Hence, τg ∈

Aut(m, p, n). Let

Int(m, p, n)= {τg | g ∈ G(m, p, n)}.

By a well-known result in group theory, we obtain the following result.

LEMMA 3.7. The subgroup Int(m, p, n) is a normal subgroup of Aut(m, p, n).

LEMMA 3.8. We have Int(m, p, n) ∩9(m)= 1.

PROOF. Assume τ ∈ Int(m, p, n) ∩9(m). Then there exist some g = [a1, . . . , an |

σ ] ∈ G(m, p, n) and k ∈8(m) with τ = τg = ψk . For any x = [b1, . . . , bn | σ
′
]

∈ G(m, p, n), we have τg(x)= [c1, . . . , cn | σσ
′σ−1
] for some c1, . . . , cn ∈ Z and

ψk(x)= [kb1, . . . , kbn | σ
′
]. The equation τg = ψk implies that σσ ′σ−1

= σ ′ for any
σ ′ ∈ Sn , that is, σ is in the centre of Sn . If n > 2 then σ = 1, hence g is diagonal. Take
any diagonal x = [b1, . . . , bn | 1] ∈ G(m, p, n)with b1, . . . , bn not all zero. We have

[b1, . . . , bn | 1] = τg(x)= ψk(x)= [kb1, . . . , kbn | 1].

This implies k = 1 and hence τ = 1, as required.
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It remains to consider the case where n = 2 and σ = (12). Then p < m by
the assumption at the end of Subsection 2.2. The equation τg(x)= ψk(x) for any
x = [b1, b2 | 1] ∈ G(m, p, n) amounts to the equation system kb1 ≡ b2 and kb2 ≡

b1 mod m for any b1, b2 ∈ Z with p | (b1 + b2). However, the latter does not always
hold by observing the case of b1 = 0 and b2 = p. So τg 6= ψk in this case.

So our result is proved. 2

3.9. For any g ∈ G(m, 1, n), the inner automorphism τg of G(m, 1, n) stabilizes the

normal subgroup G(m, p, n) of G(m, 1, n), with the restriction τ (p)g := τg|G(m,p,n)
being in Aut(m, p, n). We use the notation

Int(m, 1, n)p = {τ
(p)
g | g ∈ G(m, 1, n)},

which forms a subgroup of Aut(m, p, n) normalized by 9(m). We can show

Int(m, 1, n)p ∩9(m)= 1

by an argument similar to that for Lemma 3.8, hence

Int(m, 1, n)p9(m)= Int(m, 1, n)p o9(m).

Use the notation ι= τ (p)s with s = s(1; 1) ∈ G(m, 1, n).

LEMMA 3.10. For any x, y ∈ G(m, 1, n) and any divisor p ∈N of m, we have
τ
(p)
x = τ

(p)
y if and only if τx = τy .

PROOF. We need only show that τ (p)x = τ
(p)
y implies τx = τy . Now τ

(p)
x = τ

(p)
y if and

only if τx (g)= τy(g) for any g ∈ G(m, p, n). The latter holds if and only if y−1x lies
in the centralizer ZG(m,1,n)(G(m, p, n)) of G(m, p, n) in G(m, 1, n). Thus, to show
the equality τx = τy , we need only show that ZG(m,1,n)(G(m, p, n)) consists of scalar
matrices.

Take any z = [z1, . . . , zn | σ ] ∈ ZG(m,1,n)(G(m, p, n)) with some z1, . . . , zn ∈ Z
and σ ∈ Sn . By the equations

τz(s(i, i + 1; 0))= s(i, i + 1; 0) for all i ∈ [n − 1], (4)

we see that σ lies in the centre of Sn . We claim σ = 1 (that is, z is diagonal). It is
obvious in the case n > 2. If n = 2 and σ = (1, 2), that is, z = [z1, z2 | (1, 2)]. Then
the equations τz(s(1, 2; k))= s(1, 2; k) with k = 0, 1, imply that

z1 ≡ z2 mod m and z1 ≡ z2 + 2 mod m.

This is impossible by our assumption of m > 2. Hence, the claim is proved and so z is
diagonal. Then (4) further implies that

z1 ≡ z2 ≡ · · · ≡ zn mod m.

So z is a scalar matrix. Hence, our conclusion follows. 2
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4. The group Aut(m, 1, n)

THEOREM 4.1. We have Aut(m, 1, n)= Int(m, 1, n)o9(m).

PROOF. The group Aut(m, 1, n) has a normal subgroup Int(m, 1, n) and a subgroup
9(m) by Lemmas 3.5 and 3.7. So Aut(m, 1, n) has a subgroup

G := Int(m, 1, n)9(m)= Int(m, 1, n)o9(m)

by Lemma 3.8.
Take any η ∈ Aut(m, 1, n). Then by (3.3.1), the image of the generating set S0 of

G(m, 1, n) under η is as follows:

(η(s0), η(s1), . . . , η(sn−1))

= (s((1)σ ; k), s((1)σ, (2)σ ; k1), . . . , s((n − 1)σ, (n)σ ; kn−1))

for some σ ∈ Sn and some integers k, k1, . . . , kn−1 with k coprime to m. Identify σ
with [0, . . . , 0 | σ ] ∈ G(m, 1, n). Then

((τση)(s0), (τση)(s1), . . . , (τση)(sn−1))

= (s(1; k), s(1, 2; k1), . . . , s(n − 1, n; kn−1)).

There exists w := [p1, . . . , pn | 1] ∈ G(m, 1, n) satisfying that p j ∈ [m] for j ∈ [n],
and pi − pi+1 ≡−ki mod m for i ∈ [n − 1]. Then

((τwτση)(s0), (τwτση)(s1), . . . , (τwτση)(sn−1))= (s(1; k), s1, . . . , sn−1).

Since gcd(k, m)= 1, there exists a unique c ∈8(m) with kc ≡ 1 mod m. Then
ψcτwτση = 1. Hence η = τσ−1τw−1ψ−1

c ∈ G. So our equation is proved. 2

5. The group Aut(m, m, n)

We describe Aut(m, m, n) in two cases: (m, m, n)= (3, 3, 3) and (m, m, n) 6=
(3, 3, 3).

5.1. Let (S0, P0) be the presentation of G(3, 3, 3) with S0 = {s′1, s1, s2} and P0
as in Subsections 2.3 and 2.6 (2). Define µ : S0→ G(3, 3, 3) by setting µ(s′1)=
s(2, 3; −1), µ(s1)= s1 and µ(s2)= s2. We see that µ(S0) is a generating reflection
set of G(3, 3, 3) and that all relations in P0 remain valid when substituting s by µ(s)
for all s ∈ S0. So µ can be extended to an automorphism of G(3, 3, 3), still denoted
by µ.

THEOREM 5.2. We have Aut(3, 3, 3)= 〈τs1, µ, ψ2 · ι〉.

PROOF. This can be checked directly by GAP (see [4]). 2
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THEOREM 5.3. Let G1 := Int(m, m, n)o9(m) and G2 := Int(m, 1, n)m o9(m).
Then Aut(m, m, n)= G2 for any (m, m, n) 6= (3,3,3). In particular, if gcd(m, n)= 1,
then Aut(m, m, n)= G1.

PROOF. By Lemmas 3.5, 3.7, 3.8 and 3.10, we have G1 ⊆ G2 ⊆ Aut(m, m, n).
Take η ∈ Aut(m, m, n). Then by (3.3.2), the image η(S0) of S0 under η is as

follows:

(η(s′1), η(s1), . . . , η(sn−1))

= (s((1)σ, (2)σ ; k′1), s((1)σ, (2)σ ; k1), . . . , s((n − 1)σ, (n)σ ; kn−1))

for some σ ∈ Sn and k′1, k1, . . . , kn−1 ∈ Z with gcd(k1 − k′1, m)= 1. As before,
identifying σ with [0, . . . , 0|σ ] ∈ G(m, m, n), we obtain

((τση)(s
′

1), (τση)(s1), . . . , (τση)(sn−1))

= (s(1, 2; k′1), s(1, 2; k1), . . . , s(n − 1, n; kn−1)).

If gcd(m, n)= 1, then there exists a unique w := [p1, . . . , pn | 1] ∈ G(m, m, n)
satisfying that p j ∈ [m] for j ∈ [n], and pi − pi+1 ≡−ki mod m for i ∈ [n − 1], and
m |

∑n
i=1 pi . Then

((τwτση)(s
′

1), (τwτση)(s1), . . . , (τwτση)(sn−1))= (s(1, 2; k′1 − k1), s1, . . . , sn−1).

(5.3.1)

If gcd(m, n) > 1, then there exists w′ := [p′1, . . . , p′n | 1] ∈ G(m, m, n) satisfying
p′j ∈ [m] for j ∈ [n], and p′i − p′i+1 ≡−ki mod m for i ∈ [2, n − 1], and m |

∑n
i=1 p′i .

We have

((τw′τση)(s
′

1), (τw′τση)(s1), . . . , (τw′τση)(sn−1))

= (s(1, 2; k′1 + (p
′

1 − p′2)), s(1, 2; k1 + (p
′

1 − p′2)), s2, . . . , sn−1).

In this case,

((ιp
′

2−p′1−k1τw′τση)(s
′

1), (ι
p′2−p′1−k1τw′τση)(s1), . . . , (ι

p′2−p′1−k1τw′τση)(sn−1))

= (s(1, 2; k′1 − k1), s1, s2, . . . , sn−1). (5.3.2)

In each of the cases (5.3.1) and (5.3.2), we have gcd(k′1 − k1, m)= 1, hence there
exists a unique c ∈8(m) such that (k′1 − k1)c ≡−1 mod m. Then

η =

{
τσ−1τw−1ψ−1

c ∈ G1 if gcd(m, n)= 1,

τσ−1τ(w′)−1 ιk1+p′1−p′2ψ−1
c ∈ G2 if gcd(m, n) > 1.

So our conclusion follows. 2
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6. The group Aut(m, p, n) with p ∈ [2, m − 1]

In this section, we describe Aut(m, p, n) with p ∈ [2, m − 1]. We deal with two
cases: (m, p, n)= (4, 2, 2) and (m, p, n) 6= (4, 2, 2). Set q = m/p.

6.1. Let (S0, P0) be the presentation of G(4, 2, 2) with S0 = {s0, s′1, s1} and P0 as
in Subsections 2.3 and 2.6(3). Define ν : S0→ S0 by setting ν(s0)= s1 and ν(s1)= s0
and ν(s′1)= s′1. We see that all relations in P0 remain valid when substituting s by ν(s)
for all s ∈ S0. So ν can be extended to an automorphism of G(4, 2, 2) which is still
denoted by ν.

THEOREM 6.2. We have Aut(4, 2, 2)= 〈ι, ν〉.

PROOF. This can be checked directly by GAP (see [4]). 2

THEOREM 6.3. Let G1 := Int(m, p, n)o9(m) and G2 := Int(m, 1, n)p o9(m).
Then Aut(m, p, n)= G2 for any (m, p, n) 6= (4, 2, 2). In particular, if gcd(p, n)= 1,
then Aut(m, p, n)= G1.

PROOF. By Lemmas 3.5, 3.7, 3.8 and 3.10, we have G1 ⊆ G2 ⊆ Aut(m, p, n).
Take η ∈ Aut(m, p, n). Then by (3.3.3), the image η(S0) of S0 under η is as follows:

(η(s0), η(s
′

1), η(s1), . . . , η(sn−1))= (s((1)σ ; pk), s((1)σ, (2)σ ; k′1),

s((1)σ, (2)σ ; k1), . . . , s((n − 1)σ, (n)σ ; kn−1))

for some σ ∈ Sn and some k, k′1, k1, . . . , kn−1 ∈ Z with gcd(k, q)= 1 and
gcd(k1 − k′1, m)= 1 and k1 − k′1 ≡ k mod q . By identifying σ with [0, . . . , 0 | σ ] ∈
G(m, p, n), we obtain

((τση)(s0), (τση)(s
′

1), (τση)(s1), . . . , (τση)(sn−1))

= (s(1; pk), s(1, 2; k′1), s(1, 2; k1), . . . , s(n − 1, n; kn−1)).

When gcd(p, n)= 1, there exists w := [p1, . . . , pn | 1] ∈ G(m, p, n) such that
p j ∈ [m] for j ∈ [n], and pi − pi+1 ≡−ki mod m for i ∈ [n − 1], and p |

∑n
i=1 pi .

Then

((τwτση)(s0), (τwτση)(s
′

1), (τwτση)(s1), . . . , (τwτση)(sn−1))

= (s(1; pk), s(1, 2; k′1 − k1), s1, . . . , sn−1). (6.3.1)

When gcd(p, n) > 1, there exists w′ := [p′1, . . . , p′n | 1] ∈ G(m, p, n) such that
p′j ∈ [m] for j ∈ [n], and p′i − p′i+1 ≡−ki mod m for i ∈ [2, n − 1], and p |

∑n
i=1 p′i .

Then

((τw′τση)(s0), (τw′τση)(s
′

1), (τw′τση)(s1), . . . , (τw′τση)(sn−1))

= (s(1; pk), s(1, 2; k′1 + (p
′

1 − p′2)), s(1, 2; k1 + (p
′

1 − p′2)), s2, . . . , sn−1).
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In this case, let κ = ιp
′

2−p′1−k1τw′τση. Then

(κ(s0), κ(s
′

1), κ(s1), . . . , κ(sn−1))= (s(1; pk), s(1, 2; k′1 − k1), s1, s2, . . . , sn−1).

(6.3.2)

In each of the cases (6.3.1) and (6.3.2), we have gcd(k′1 − k1, m)= 1, hence there
exists a unique c ∈8(m) with (k1 − k′1)c ≡ 1 mod m. Hence, (k1 − k′1)c ≡ 1 mod q
as q | m. Since k1 − k′1 ≡ k mod q , we have kc ≡ 1 mod q . Then

η =

{
τσ−1τw−1ψ−1

c ∈ G1 if gcd(p, n)= 1,

τσ−1τ(w′)−1 ιk1+p′1−p′2ψ−1
c ∈ G2 if gcd(p, n) > 1.

So our conclusion follows. 2

REMARK 6.4. Suppose that (m, p, n) 6= (3, 3, 3), (4, 2, 2). We have

|Int(m, p, n)| = |G(m, p, n)|/|Z(m, p, n)| = n! mn−1/gcd(n, p)

and

|Int(m, 1, n)p| = |Int(m, 1, n)| = |G(m, 1, n)|/|Z(m, 1, n)| = n! mn−1
;

the latter follows by Lemma 3.10, where Z(m, p, n) is the centre of G(m, p, n).
Hence, gcd(p, n)= 1 if and only if Int(m, p, n)= Int(m, 1, n)p. Let G1, G2 be given
in Theorem 6.3 (respectively, Theorem 5.3). Then we see that gcd(p, n)= 1 if and
only if G1 = G2 if and only if ι ∈ G1.

7. Some properties of Aut(m, p, n)

In this section, we shall study some properties of Aut(m, p, n). Theorem 7.1
summarizes the main results in Sections 4–6. Proposition 7.2 provides the order
of Aut(m, p, n). In Propositions 7.4–7.6, we study the centre Z(Aut(m, p, n))
of Aut(m, p, n) with (m, p, n) /∈ {(3, 3, 3), (4, 2, 2)}. Then we study Aut(3, 3, 3)
and Aut(4, 2, 2) in Subsections 7.7 and 7.8, respectively. Finally, the order of
Z(Aut(m, p, n)) is summarized in Corollary 7.9.

THEOREM 7.1. We have:

(1) Aut(m, p, n)= Int(m, 1, n)p o9(m) if (m, p, n) /∈ {(3, 3, 3), (4, 2, 2)}; in
particular, Aut(m, p, n)= Int(m, p, n)o9(m) if gcd(p, n)= 1;

(2) Aut(3, 3, 3)= 〈τs1, µ, ψ2 · ι〉;
(3) Aut(4, 2, 2)= 〈ι, ν〉.

PROPOSITION 7.2. The order of the group Aut(m, p, n) is equal to mn−1
· n! ·

φ(m) if (m, p, n) /∈ {(3, 3, 3), (4, 2, 2)}, to 432 if (m, p, n)= (3, 3, 3), and to 48
if (m, p, n)= (4, 2, 2).
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PROOF. The result in the case of (m, p, n) ∈ {(3, 3, 3), (4, 2, 2)} can be checked by
GAP (see [4]). Now assume (m, p, n) /∈ {(3, 3, 3), (4, 2, 2)}. By Remark 6.4, we have
|Int(m, 1, n)p| = n! mn−1. This implies the result by Theorem 7.1(1). 2

REMARK 7.3. Recall the description of Aut(m, p, n) when G(m, p, n) is a Coxeter
group (see the introduction). We see that Theorem 7.1 and Proposition 7.2 also hold
when G(m, p, n) is a Coxeter group with (m, p, n) /∈ {(2, 2, 4), (2, 1, 2), (1, 1, 2)},
where each of G(2, 2, 4), G(2, 1, 2) has more than one system of imprimitivity (see
Subsection 2.2). We see that

Int(2, 1, 4)2 o9(2)= Int(2, 1, 4)2

is a subgroup of Aut(2, 2, 4) of index 3 and, hence, |Aut(2, 2, 4)| = 576. We also see
that

Int(2, 1, 2)o9(2)= Int(2, 1, 2)

is a subgroup of Aut(2, 1, 2) of index 2 and, hence, |Aut(2, 1, 2)| = 8. Also,

Aut(1, 1, 2)= Int(1, 1, 2)= 1.

In Propositions 7.4–7.6, we assume (m, p, n) /∈ {(3, 3, 3), (4, 2, 2)}.

PROPOSITION 7.4. The group Z(Aut(m, p, n)) is trivial when n > 2.

PROOF. Take η ∈ Z(Aut(m, p, n)). Then η · τg = τg · η for any g ∈ S0 (see
Subsection 2.3 for S0). This implies that τη(g)·g−1 is the identity automorphism of
G(m, p, n). Hence, η(g) · g−1

∈ Z(m, p, n), that is,

η(g)= [ag, . . . , ag | 1] · g for some ag ∈ [0, m − 1] with nag ≡ 0 mod p.

(7.4.1)

By Lemma 3.3, we see that both g and η(g) are reflections of G(m, p, n) with
the same type and order and hence the same eigenvalue multi-set. By the assumption
n > 2 and by comparing with the eigenvalue multi-sets on both sides of (7.4.1), we
obtain ag ≡ 0 mod m for any g ∈ S0. So η = 1. The result follows. 2

Next we consider Z(Aut(m, p, 2)). We deal with the cases of p being odd and even
separately.

PROPOSITION 7.5. Assume that p is odd. Then

Z(Aut(m, p, 2))=

{
{1, τ[0,m/2|1], τs1 · ψm−1, τ[0,m/2|(12)] · ψm−1} if m is even,

{1, τs1 · ψm−1} if m is odd.
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PROOF. Since p is assumed to be odd,

Aut(m, p, 2)= Int(m, p, 2)o9(m)

by Theorem 7.1(1). Take η ∈ Z(Aut(m, p, 2)). Then η has a unique expression of the
form τg · ψc for some g ∈ G(m, p, 2) and some c ∈8(m).

We have η · τs = τs · η for any s ∈ S0. This implies that τg−1s−1gψc(s) = 1, that
is, g−1s−1gψc(s) ∈ Z(G(m, p, 2)). Write g = [a, b|σ ] for some σ ∈ S2 and some
a, b ∈ [0, m − 1] with p | (a + b). Then by a direct computation with s ranging over
S0, we obtain that modulo m:

(i) 2a ≡ 2b;
(ii) 2c ≡ 2 and pc ≡ p if σ = 1;
(iii) 2c ≡−2 and pc ≡−p if σ = (12).

By (i), we have a ≡ b mod m if m is odd, and a ≡ b mod m/2 if m is even. Let H be
the set {[0, 0|σ ] | σ ∈ S2} if m is odd, and {[0, 0|σ ], [0, m/2|σ ] | σ ∈ S2} if m is even.
Then the condition (i) implies that τg ∈ {τs | s ∈ H}. By (ii)–(iii), we get c ≡ 1 mod m
if σ = 1, and c ≡−1 mod m if σ = (12) by the assumption of p being odd.

So far we have proved that Z(Aut(m, p, 2)) is contained in

Ho := {1, τs1 · ψm−1}

if m is odd, and in

He := {1, τs1 · ψm−1, τ[0,m/2|1], τ[0,m/2|(12)] · ψm−1}

if m is even. Since Ho for m odd (or He for m even) is obviously in Z(Aut(m, p, 2)),
our result follows. 2

PROPOSITION 7.6. Assume that p is even. Then

Z(Aut(m, p, 2))= {1, τ (p)
[0,m/2|1], τs1 · ψm−1, τ

(p)
[0,m/2|(12)] · ψm−1}.

PROOF. Since p is assumed to be even,

Aut(m, p, 2)= Int(m, 1, 2)p o9(m)

by Theorem 7.1(2). Take η ∈ Z(Aut(m, p, 2)). Then η has a unique expression of the
form τ

(p)
g · ψc for some g ∈ G(m, 1, 2) and some c ∈8(m).

We have η · τ
(p)
s = τ

(p)
s · η for any s ∈ S0, where S0 is the generating set of

G(m, 1, n) as in Subsection 2.3. This implies that

τ
(p)
g−1s−1gψc(s)

= 1, that is, g−1s−1gψc(s) ∈ ZG(m,1,2)(G(m, p, 2)).

Write g = [a, b | σ ] for some σ ∈ S2 and some a, b ∈ [0, m − 1]. Then by a direct
computation with s ranging over S0, we obtain that modulo m:
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(i) 2a ≡ 2b;
(ii) c ≡ 1 if σ = 1;
(iii) c ≡−1 if σ = (12).

By (i), we have a ≡ b mod m/2 since m is even. So Z(Aut(m, p, 2)) is contained in

H := {1, τs1 · ψm−1, τ
(p)
[0,m/2|1], τ

(p)
[0,m/2|(12)] · ψm−1}.

Since H is obviously in Z(Aut(m, p, 2)), our result follows. 2

Finally, we consider Aut(3, 3, 3) and Aut(4, 2, 2).

7.7. Recall the element µ ∈ Aut(3, 3, 3) that was defined in Subsection 5.1. By
Theorem 5.2, we have Aut(3, 3, 3)= 〈τs1, ψ2 · ι, µ〉 with o(τs1)= o(ψ2 · ι)= 2 and
o(µ)= 3. The group 〈τs1, ψ2 · ι〉 is isomorphic to the dihedral group of order 12; the
elements τs1 and µ commute; while 〈ψ2 · ι, µ〉 has order 48, which can be presented
as

〈ψ2 · ι, µ | (ψ2 · ι)
2
= µ3

= ((ψ2 · ι)µ(ψ2 · ι)µ(ψ2 · ι)µ
−1)2 = 1〉.

The centre of Aut(3, 3, 3) is trivial.

7.8. By Theorem 6.2, we have Aut(4, 2, 2)= 〈ι, ν〉 with ν as defined in
Subsection 6.1, which can be presented as

Aut(4, 2, 2)= 〈ι, ν | ι4 = ν2
= (ι · ν)6 = 1, (ι · ν)3 = (ν · ι)3〉.

The centre of Aut(4, 2, 2) is a cycle group of order 2 and is generated by (ι · ν)3.
From Propositions 7.4–7.6 and Subsections 7.7 and 7.8, we obtain the following

result immediately.

COROLLARY 7.9. The cardinality of the group Z(Aut(m, p, n)) is 1 if n > 2 and
2 · gcd(m, 2)/(1+ δ4,mδ2,p) if n = 2, where δxy is 1 if x = y and 0 otherwise.
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[3] B. Franzsen and B. R. Howlett, ‘Automorphisms of nearly finite Coxeter groups’, Adv. Geom. 3

(2003), 301–338.
[4] A. Hulpke, Homomorphism Search, Module of GAP computer software package available at

http://www.gap-system.org.
[5] G. C. Shephard and J. A. Todd, ‘Finite unitary reflection groups’, Canad. J. Math. 6 (1954),

274–304.

https://doi.org/10.1017/S1446788708000748 Published online by Cambridge University Press

http://www.gap-system.org
https://doi.org/10.1017/S1446788708000748


138 J.-Y. Shi and L. Wang [16]

[6] J. Y. Shi, ‘Simple root systems and presentations for certain complex reflection groups’, Comm.
Algebra 33 (2005), 1765–1783.

[7] , ‘Congruence classes of presentations for the complex reflection groups G(m, 1, n) and
G(m, m, n)’, Indag. Math. (N.S.) 16(2) (2005), 267–288.

[8] , ‘Congruence classes of presentations for the complex reflection groups G(m, p, n)’,
J. Algebra 284(1) (2005), 392–414.

JIAN-YI SHI, Department of Mathematics, East China Normal University,
Shanghai, 200241, PR China
e-mail: jyshi11@yahoo.com

LI WANG, Mathematical and Science College, Shanghai Normal University,
Shanghai, 200234, PR China
e-mail: wl.ecnu@163.com

https://doi.org/10.1017/S1446788708000748 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000748

