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Abstract

In this note a characterization of semigroups with atomistic congruence lattices, given for weakly
reductive semigroups, is generalized to arbitrary semigroups. Also, it is shown that there is a
complete congruence on the congruence lattice of such a semigroup that decomposes it into a
disjoint union of intervals of the partition lattice.

1991 Mathematics subject classification (Amer. Math. Soc.) 20 M 10, 08 A 30.

1. Introduction and preliminaries

A lattice L is atomistic if each element of L is the supremum of the
atoms it contains. In [2] the author characterized weakly reductive semi-
groups whose congruence lattices are atomistic. These semigroups can be
constructed by means of a locally finite tree X, 0-simple semigroups Ia in-
dexed by the elements of X and partial homomorphisms fa p between cer-
tain of the non zero parts of the semigroups Ia . A semigroup so constructed
is a tree of 0-simple semigroups. In [2] then it is shown that a semigroup with
atomistic congruence lattice is an inflation of a tree of 0-simple semigroups.
In addition, for a weakly reductive tree of 0-simple semigroups, necessary
and sufficient conditions in order that its congruence lattice be atomistic are
obtained. The purpose of this paper is to extend this characterization to the
class of all semigroups.

For the remainder of this section we collect some definitions and results
needed for our considerations. In Section 2 we obtain necessary and suffi-
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[2] Semigroups with atomistic congruence lattices 89

cient conditions for a semigroup S to have an atomistic congruence lattice.
In section 3 we study a complete congruence D on the congruence lattice of
5 . The greatest and least elements of the Z)-classes are determined. Further-
more, these classes coincide with the respective intervals in the lattice of all
equivalence relations on S.

A semilattice Y is a (locally finite) tree if each interval of the form
[x, y] = {z e Y \ x < z < y} is a (finite) chain. For a semigroup S,
S* = S if S has no zero and S* = S \ {0} if 0 is the zero of S . Let
S be a subsemigroup of a semigroup T. Then T is an inflation of S if
there exists a function / : T —> 5 such that f\S = ids and ab = (af){bf)
for all a, b e T. In this case / is an inflation function. A semigroup S
is weakly reductive if for a, b e S, za = zb and az = bz for all z e S
imply a — b. A semigroup S is globally idempotent if S = S. If X is
a partially ordered set then for x, y e X we say that y covers x or x is
covered by y, to be denoted by y y x or j c - s y if x < y and x < z < y
imply z = y. The lattice of all congruences on a semigroup S is denoted by
^(S). The identical and the universal relations on S are denoted by e = es

and co = cos, respectively. A congruence p on S is an atom in W(S) if
it covers es . The set of all atoms of ^(S) is denoted by At(S). For an
arbitrary set X let ^(X) be the lattice of all equivalence relations on X and
&(X) the power set lattice of X. For an arbitrary binary relation R on S,
R* denotes the congruence generated by R, that is, the least congruence on
S which contains R.

For 0-simple semigroups we have the following

RESULT 1 ([3]). A 0-simple semigroup is congruence free if and only if for
any two distinct elements x, y € S there exist u, v e S such that either
uxv = 0 and uyv / 0 or uxv / 0 and uyv = 0.

The most important tool to describe the structure of semigroups with atom-
istic congruence lattice is the following.

CONSTRUCTION. Let X be a locally finite tree. To each aeX associate a
0-simple semigroup Ia ^ {0} so that Ia n Ip = 0 if a ^ /?. For a e X* let
fa'-I*a-* I*a, be a partial homomorphism where a denotes the unique element
of X which is covered by a. Now let fa a = idr and fap—fafa ---fa
where the elements at are defined by a = a , >- a2 • • • >- an >- /?. Suppose
that for arbitrary a e /* and b e I*p the set

A(a,b) = {yeX\ (afay){bfpy) is defined in I*y)
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is not empty. Let d(a, b) denote the greatest element of A(a, b). Then let
S = \J{I^ | a e X} and define a multiplication * on S by the rule

,s(a,)p,6(a,b)) (ael*a,be I*)

where the right hand side product is computed in I*S(a b,.

DEFINITION. The groupoid S of the construction is a tree of 0-simple semi-
groups to be denoted by S = (X; Ia, fa fi). If each 0-simple semigroup Ia,
a G X, is congruence free then S is a tree of congruence free semigroups.

If X has a least element fi then by definition /* is closed under mul-
tiplication and thus is a simple semigroup. If, in addition, S is a tree of
congruence free semigroups then the congruence freeness of /* U {0} implies
that /* consists of exactly one element. A straightforward verification shows
that S is a semigroup. This construction also appears in [1] and [2], a similar
one in [4]. By the latter paper it follows that each ideal of such a semigroup
is a retract.

The importance of this construction for the characterization of the semi-
groups under study is given by the following results.

RESULT 2 [2, Lemma 6, Theorem 1]. Let S be a semigroup with atomistic
mgruence I

semigroups.
congruence lattice. Then S is an inflation of S2 and S2 is a tree of 0-simple

RESULT 3 [2, Theorem 2]. Let S be a weakly reductive semigroup. Then
{S) is atomistic if and only if S is isomorphic to one of the following:

(1) a simple semigroup I such that ^(1) is atomistic,
(2) a tree of congruence free semigroups (X; Ia, fa „) such that for each

xel*,y€l*fi there exists y <a, 0 satisfying xfay = yfp<y,
(3) a tree of 0-simple semigroups (X;Ia,fa „) where X has a least

element JX such that /* is a semigroup of type (1) and 51//* is a
semigroup of type (2).

2. Necessary and sufficient conditions
for the not weakly reductive case

We first consider the globally idempotent case. If ^{S) is atomistic for
the globally idempotent semigroup S then by Result 2, S — (X; Ia, fa p), a
tree of 0-simple semigroups Ia . The goal is to derive necessary and sufficient
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conditions for the mappings fa and fa p , respectively, and the semigroups
Ia in order that &(S) be atomistic. We first need the following

DEFINITION. On the partial semigroups I* let x and 8 , respectively, be
the following equivalence relations:

(uxv € /* •» wyu G /* VM , v e / * ) ,

x 8a y <=>• zx = zy and xz =yz Vz e /*.

In the definition of Sa equality means that if one side is defined in /*
then the other is also and both sides are equal. Obviously we have Sa C xa .
Furthermore, xa U {(0o, 0a)} is the greatest non universal congruence on
Ia . If pa denotes the greatest congruence on S which saturates /* , that is,
the greatest congruence p on S such that /* is a union of /(-classes, then
Pa\C = r

a ( s e e I2' Lemma 8]).

LEMMA 1 [1, Lemma 9]. Let S = (X; Ia, fa .) be a tree of 0-simple
semigroups, a> fi >y >S e X, p e ^(S) and x py for some x e /* and
yelg. Then z p zffi y for all z€l*.

In the following statements let the congruence lattice of S = (X; Ia, fa „)
be atomistic.

LEMMA 2 [2, Lemma 8]. Let a € X*. If x xa y and xfa = yfa then
x = y. In particular, the restriction of fa to an arbitrary xa-class is injective.

LEMMA 3. Let a e X* and x, y e /*. If x xay then xfa „ <$„ yfa „ for
all fi < a. In particular,

PROOF. Let x, y e /* be such that x xa y. Then by [2, Lemma 8]
x pay where pa is the greatest congruence which saturates /*. Now there
exist px, p2...pn € At(S) and z 0 , z{... zn e S such that x = zQ px zx p2

z2... pn zn = y and pi c pa for all / . The congruences pt saturate /*.
Thus we may assume that zi G /* and zjpi ^ {z(} for all / . Since each pi

is an atom we conclude that pt\Ip = er for all fi < a. Now let z G I*p for
some fi < a. Multiplying the above sequence by z from the right and the
left, respectively, yields
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and
z(xfa,p) = zx = --- = zy = z(yfa?).

Hence xfaJdpyfa p.

COROLLARY 1. If a is not minimal in X then xa = da.

PROOF. Let x, y, z e /* be such that x Ta y and xz, zx € /*. Then
also yz, zy e /*. Let /? < a. By Lemma 3,

and

Also, x TQ y implies xz xa yz and zx ra zy. By Lemmas 2 and 3 we
obtain that xz = yz and zx = zy.

LEMMA 4. Let p€W(S). Then p is an atom in W{S) if and only if either
p is an atom that saturates /* for all a € X or there exists an a e X* such
that /? = ( e u / j ( e u / - 1 ) .

PROOF. Let p be an atom of W(S) which does not saturate each /*.
There exist x e /*, y e Ip for some a ^ /? such that x p y. We may
assume that a ^ /?. Let z € /* be such that zx e I \ Then zx p zy
and zy e /* for some y < a. By Lemma 1 we obtain that u p ufa for
all u e I*. Now let £ = (e U fa)(e U y^"1). It can be seen easily that £ is a
congruence on S. Since ^ is an atom, ^ Q p implies p — £.

LEMMA 5. Let a e X. For x, y € /* there exists y < a such that

PROOF. Let x, y e /*. We consider the congruence generated by the
elements x and y, to be denoted by (x, y)*. There exist atoms pi c
(x, y)*, 1 < i < n, and zQ, z , , ...zn such that x = z0 px z, p^ z 2 . . . pn

zn — y and we may assume that n = n(x, y) is the shortest possible length
of such a sequence. If n = 1 then by Lemma 4 either x xay or xfa = yfa .
Let n > 1 and suppose that the assertion is proved for arbitrary elements
u, v G II and arbitrary /? e X for which «(M, U) < n. If x TQ y then
nothing has to be proved. Let z; e /* . Then pi C (x, y)* implies a, < a
for all /. If a(. = a for all i then x ta y. If not then let / and j be
the least and the greatest indices, respectively, such that at-^ a ^ a . Then
by Lemma 4 a. = a}; = a , the unique element of X which is covered by
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a . By hypothesis there exists y < a such that zjal y xy Zjfal . Then
z. = z,._,/a and z. = zj+lfa and so 2,_,/Q>), = z ^ / X . y = z[fa, y and
Zjfa,,y = zj+xfjal,y = V » , r Furthermore, x xa z,_, and zj+l xay.
By Lemma 3 we have xfay xy z{_Jay and zj+lfa>y xy yfa>?. Hence

From these results we obtain the following consequence for semigroups
without kernel.

PROPOSITION 1. If X has no least element then xa — er for all a € X.
In particular, all semigroups Ia are congruence free.

PROOF. First, by Corollary 1, xa = Sa for all a e X. Let a be the least
simple congruence on 5 . Then x a y if and only if xfa = yf» for some
7 < a, y? (x G /*, y G fy. Let x e I*, y e I*, z e I*. Then there exists
v <a, 0 such that xfa v 8u yffi v . Let A < a, 0, y, v . Then

and

In S/a therefore xaya — uava holds for arbitrary xa, ya, ua, va G S/a .
Since S/a is globally idempotent this implies that \S/a\ = 1 and so a = (o.
But if x 5a y for some distinct elements x , y G /* then xfa ^ ^ yfa p for
all ft < a. Hence 8a = xa = e / . . Now by Result 1 each Ia is congruence
free.

PROPOSITION 2. If S has a weakly reductive kernel, that is, X has a least
element fi and I* is a weakly reductive semigroup then xa = e r for all
a G X*.

PROOF. Let a e X* and x xa y. Then by Lemma 3, xfa 5 yfa .
Since /* is weakly reductive xfa = yfa . By Lemmas 2 and 3 then
x = y.

In other words, if S - (X; Ia, fa „) either has a weakly reductive kernel
or no kernel at all then S is weakly reductive and we may apply the results
of [2] . We still have to identify those inflations of S which have atomistic
congruence lattices.
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DEFINITION. Let T be an inflation of a semigroup S with inflation func-
tion f. Then f is trivial if\(T\ S)f\ = 1.

Roughly speaking, / is trivial if only one element of S is inflated by / .

LEMMA 6. Let S be weakly reductive and T be an inflation of S. IfW(T)
is atomistic then the inflation function f is trivial.

PROOF. We consider the congruence £, defined by

xiy&{x,y}cS or {x,y}CT\S.

Then £ is the supremum of atoms which saturate the sets 5 and T \S.
Let x ,y e T \S. Then x = z0 px zl... pn zn = y for certain zj e T
and pt e At{S), /?, c ^ . Since each p{ saturates T \ S it follows that
z( e T\S for all / . Since pt is an atom we have pt\S = es . For arbitrary
z e S we obtain that zz{ = zzj+1 and z{z = zi+lz for all i and thus
zx = z(xf) = z(yf) — zy and xz - (xf)z - {yf)z = yz. By weak
reductivity of S then xf = yf.

LEMMA 7. If S is weakly reductive and W(S) atomistic then S/p is weakly
reductive for each p e %?(S)

PROOF. Let p e &(S), x, y e S and suppose that zx p zy and xz p yz
for all z e S. Let £ = p n (x, y)*. If ̂  ^ (x, y)* then there exists an atom
n € At(S) such that n c (JC, y)* but r\ g £,. Let u n v and u ^ v . Then
u (x, y)* v and hence zu £ zv and uz £, vz for all z e S. Since £ n >/ = e
we have zu = zv and wz = wz for all z 6 5 which is a contradiction to
weak reductivity.

We therefore may apply

LEMMA 8 [2, Proposition 4]. Let T be an inflation of a semigroup S
such that each homomorphic image of S is weakly reductive. Then ^(T)
is atomistic if and only if %?(S) is atomistic and the inflation function f is
trivial.

We thus obtain using Result 3

THEOREM 1. Let S be a semigroup which has either a weakly reductive
kernel or no kernel at all. Then 9{S) is atomistic if and only if S is one of
the following:

(1) a simple semigroup I with atomistic congruence lattice
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(2) a tree of congruence free semigroups (X; Ia, fa „) such that for x e
7 a > y € 7 / ? t h e r e e x i s t s y^a>P so tnat xfa,y = yfp,y<

(3) a tree of 0-simple semigroups (X; Ia, fa „) such that X has a least
element ji, I* is of type (1) and S/I* is of type (2),

(4) an inflation of a semigroup of types (1),(2) or (3) with a trivial inflation
function f.

DEFINITION. A congruence p on a semigroup S is weakly reductive if S/p
is a weakly reductive semigroup.

LEMMA 9. Let S be an inflation of a globally idempotent semigroup. Then

8 = Ss = {{x, y) | xz = yz, zx = zy Vz e S}

is the least weakly reductive congruence on S.

PROOF. The proof is straightforward.

Semigroups S with the property that each homomorphic image of S has
an atomistic congruence lattice now can be described easily.

COROLLARY 2. Let S be a semigroup. Then each homomorphic image of
S has an atomistic congruence lattice if and only if S is one of the following:

(1) a simple semigroup I such that each homomorphic image of I has
an atomistic congruence lattice,

(2) a tree of congruence free semigroups (X; Ia, fa «) such that for x e
I*, yelp there exists y<a,fi so that xfa y=yfpy,

(3) a tree of 0-simple semigroups (X; Ia, fa „) such that X has a least
element /a, /* is of type (1) and 51//* is of type (2),

(4) an inflation of a semigroup of types (1 ),(2) or (3) with a trivial inflation
function f.

PROOF. Necessity. Suppose each homomorphic image of the semigroup S
has an atomistic congruence lattice. If S has no kernel then S is of type (2)
or an inflation thereof with trivial inflation function. Suppose that S has a
kernel / . Since / is a retract ideal each homomorphic image of / has an
atomistic congruence lattice. We have to show that / is weakly reductive.
Let K be a subdirectly irreducible homomorphic image of / . Then W(K)
is atomistic. On the other hand, %?(K) has exactly one atom since K is
subdirectly irreducible. Hence K is congruence free. If 8K = co then K
is a null semigroup which is impossible since K is simple. Hence K is
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weakly reductive. Therefore, / is a subdirect product of weakly reductive
semigroups and hence itself is weakly reductive.

Sufficiency. It is clear that a semigroup of type (1) has the desired property.
For semigroups S of types (2)-(4) it can be seen easily that each homomor-
phic image of S is again of the respective type or a less complicated one.
Then by Theorem 1 each homomorphic image of S has an atomistic con-
gruence lattice. (See also Theorem 3 of the next section where an alternative
proof for this part is given).

It remains to treat the problem for semigroups S which do have a non
weakly reductive kernel.

LEMMA 10. Let T be an inflation of a semigroup S with inflation function
f. If W(T) is atomistic then (af) Ss (bf) for all a, b e T\S.

PROOF. This is proved in the same way as Lemma 6.

LEMMA 11. Let S = (X; Ia, faJj) be such that (xSa)fa p c (xfa p)Sfi

foralla>peX,xeI*a. Then 8a C 5S for each a€X.

PROOF. Let x day, z e Ip, xz e /* and yz e /*. Then y and v are
comparable. We assume y > v . By hypothesis, {xfa y) 8y (yfa y) and hence

This implies that y — v and thus xz -yz . Dually also zx-zy.

Recall the definitions of the relations <5Q and ia given at the beginning
of this section, and of the mapping / a o n a tree of 0-simple semigroups
(X; Ia, fa „). The remaining case then is answered by

THEOREM 2. Let S be a semigroup subject to the following conditions:

(1) S is an inflation of S2 with inflation function f,
(2) S2 — (X; Ia, fa p), a tree of 0-simplesemigroups,
(3) X has a least element n,
(4) $?(/*) is atomistic,
(5) da = raforaeX*.
(6) (xda)faQ(xfa)dalforxeC,aeX*,
(7) if x8ay and xfa = yfa then x = y for x, y e /*, a e X*,
(8) (af) dS2 (bf) for all a,beS\S2,
(9) if x e S\S2 ,y € S2,y i (xf)Ssi then there exists z € (xf)Ssi

such that (z, y) e {(uz, uy), (zu, yu) \ u e S2}*.
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Then ^(S) is atomistic. Conversely, each semigroup S with kernel I* and
atomistic congruence lattice ^{S) can be so constructed.

PROOF. Suppose 5 has an atomistic congruence lattice. If S has a kernel
/ then by Result 2 / is a retract ideal. Thus

where pl denotes the Rees congruence with respect to / . Therefore
is atomistic. Hence the necessity of the conditions (l)-(8) is obtained by
Results 2,3, Lemmas 2,3,5,10 and Corollary 1. Now let x eS\S2, y e S2

and {y, xf) £ SS2. The congruence (x, y)* is a supremum of atoms. For
1 < i < n let pi e At(S), pi c (JC , y)* ,xteS be such that

If k is the least index such that xk e S then

xplxlp2-pnxn= y.

:h that xk e S2 then

(xf)SS2...(xk_if)dS2Xk.

Let z = xk . Then we have (z, y) e (x, y)*. Since x cannot be written
as a product we obtain that (z, y) e {{xu, yu), (ux, uy) \ u e S}* and
hence (z, y) e {(zu, yu), (uz, uy) \ u e S2}* since ux = u(xf) = uz and
xu = (xf)u — zu for all u e S2 which proves the necessity of condition (9).

In order to prove sufficiency we show that each congruence of the form
(x, j>)* is a supremum of atoms. Let x, y e S. If x, y e S\S2 then by
condition (8) (x, y)* — {(x, y), (y, x)}l)es which trivially itself is an atom.

If x e S \ S2 and y e S2 then by condition (9) there exists z e (xf)dsi
such that (z, y) € (x, y)*. Then {(z, x), (JC, z)}Ues is an atom contained
in (x, y)*. Hence it remains to show that (z, y)* is a supremum of atoms
for arbitrary z, y € S2 . Let z e /*, y e I*p and p = (z, y)*. We have,
using Lemma 1, that a p afa ap and b p bL ajg for all a € /*, b € /^ .
L e t M = zfaap a n d v = y'fPyOlfi- S u p p o s e t h a t ( u , v ) <£ x a f i . T h e n
by definition there exist r,sel*fi such that rus € /*^ and rvs $ 7*^,
or conversely. In any case, by Lemma 1 we obtain that t p tfa^ for all
t € 1*0 and ufap p vfafi . Now either ufafj x{ap)l vfafi or we may apply the
same procedure to the pair {ufa^, vfa^). Iterating this process we obtain
that ufn pupvpvfapy where y denotes the greatest element of X
such that uf» xy vfap . Since T^ = cor the element y surely exists

(and is well defined). For X e X* denote by <j>x the atom <j>x = (es U
fx^sVfx1)- T h e n (z> zfa,Y) G Va>x>y<Px and analogously, {y,yfp>y)e
V'B>k>y<Px- AJS0' t n e atoms <j>x are contained in ( z , y)* if a > X > y and
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fl>X>y.\fy>n then by condition (5) and Lemma 11 we recognize that

{(zfa,y>yffi,y)> (yfft.y zfa,y)}Ues is an atom in W(S) which is contained
i n (z, y ) * . If y = /i t h e n t h e r e e x i s t a t o m s p { , p 2 , ...pn e ^ ( / * ) s u c h

that p. C {zfay,yfp<yT and {zfay,yfPty) e \Ja
i=1pr The congruences

pt U es then are atoms in W{S) and contained in (z, y)*. In any case, we
have found (a finite number of) atoms y/( Q (z, y)* such that z\J y/ty.

PROBLEMS. (1) Are the semigroups with kernel characterized by Theorem
1 a proper subclass of those given by Theorem 2? In order to answer this
question it is sufficient to prove (the impossibility of) the existence of a non
weakly reductive, simple semigroup whose congruence lattice is atomistic.

(2) Can the conditions (5)-(7) in Theorem 2 be replaced by "7Q is con-
gruence free for all a e X*"? A negative answer of (1) implies a positive
answer of (2).

3. Decompositions of the congruence lattice

In this section we study a complete congruence on an atomistic congruence
lattice which decomposes it into a disjoint union of intervals. These are
intervals in the lattice of all equivalence relations of S. The situation for
semigroups with weakly reductive kernel or without kernel is described in

THEOREM 3. Let S be a semigroup characterized by Theorem 1. Then

s g(S/S2) x &>{X*) x

for the locally finite tree X = S2/^ and the simple semigroup I - kernel^)
or I = {0} if S has no kernel.

PROOF. Let x e S\S2, y € S2 and p 6 W(S) be such that x p y.
Then {xf)z p yz and z(xf) p zy for all z € S2 and hence xf p y
since by Lemma 7 S2/p is weakly reductive. This ensures that the mapping
p i-> (p\S2, p\[S\S2U{xf}]) is injective and thus is an isomorphism between
W(S) and W(S2) x g'(S\S2U{xf}) where xf denotes the unique element
of S2 which is inflated by / . Moreover, by [2, Lemmas 13-15] it follows
that &(S2) ^&>(X*) if S2 has no kernel and &{S2) ^&>{X*)xW{I) where
/ is the kernel of S2 if it exists.

This factorization immediately implies that for this kind of semigroup
^(S/p) is atomistic for each p e &(S) if and only if %?(I/£) is atomistic
for each £ e
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Now to the general case characterized by Theorem 2. Let S1 be a semigroup
with atomistic congruence lattice ^ (5 ) and 8 denote the congruence on S
given by

x 8 x •*=> zx = zy and xz = yz Vz e S.

DEFINITION. Let p e W(S). Then At(p) = {n e At(S) \ n C p} and
38 = At(S) \ At(S) = {pe At(S) \p<£S}.

Let p e &(S). Then p e At{S) if and only if p = {(x,y),{y, x)} U
es for x ^ y and x <5 y . If 38 = 0 then ^ = co so that 5 is a null
semigroup and hence an inflation of the trivial semigroup. Then S satisfies
the conditions of Theorems 1 and 3, respectively. Hence we may assume
that 38 / 0 . Let ̂  denote the set of all congruences which are joins of
arbitrary subsets of 38 . In the next statements we prove that ^ is a lattice
isomorphic to

LEMMA 12. Let G,H Q& . Then

\JGc\J H^8v\/GQd\l\l H.

PROOF. The direct implication is trivial. For the converse, let p e G.
Then p c 5 V V H. Let x ^ y be such that x p y. Then x = zQ £,x
z\"" ^n zn= y f° r c e r t a m zi e S and £( =8 or £.; € H. We obtain that
xz V H yz and zx\j H zy for all z £ S. Since p £ 38 there exists z
such that xz ^ yz or zx ^ zy. Assume xz ^ yz. Now p is an atom so
p = (xz, yz)*. Therefore pQ\JH which implies that \JGC\/H.

We therefore obtain

PROPOSITION 3. The mapping d : & -> W(S/8) defined by p i-> (/> v
<?)/(? w a/i isomorphism between W and W(S/S). In particular, W(S/8) is
atomistic. The atoms in &{S/8) are precisely the elements (p V S)/8 for

PROOF. Since each congruence p € [8, OJ] is the supremum of the atoms
contained in p, d is surjective. By Lemma 12, d is injective. Also by
Lemma 12, d and its inverse d~l are monotone and so d is a lattice iso-
morphism.

NOTATION. For arbitrary sets A, B let A A B = AuB\AnB - A\BuB\A .
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DEFINITION. For p,£e W(S) let

At(p) A At(i) c At{8).

Roughly speaking, p D £, if the atoms in which these congruences are
different are contained in 8 .

LEMMA 13. The relation D is a complete f)-congruence on %?(S).

PROOF. The relation D clearly is reflexive and symmetric. Let p D £, and
£ D n. Then

At(p) A At(ri) C At(p) A At(£) U At(£) A At(n) C At(S)

implies that D is transitive. Now let {pt \ i e 1} and {£, | / e /} be subsets
of W(S) such that p. D £. for all i e I. Let p = f)pi and £ = (X-• I f

X e At{p)\At{£.) then x € At(pt) for all / and x i A^j) for some j e I.
Then x e At(Pj)\At(Zj) and hence * € ^(<5). Dually also At(£)\At(p) C

The following lemma gives an alternative characterization of D.

L E M M A 1 4 . L e t p , £ e & ( S ) . Then p D £ if and only if p v S = £ v S .

PROOF. Let pv 8 — ^ v 5 and suppose {p, £) £ D. Then there exists
r\ € & such that r\ C p and r\ <£ £ (or conversely). By pV 8 = £\/ 8 we
obtain n c £ v 8. Since 7/ e £8 by the same argument as in the proof of
Lemma 12 we obtain r\ c £, a contradiction.

Conversely, let p D £,. We shall prove that A ( p V ^ ) = ^ v J ) . Let
r\ e At(p V J ) . If n e ^r(<5) then clearly >/ e ?̂(<^ V 8). If >/ £ ,4*(<J) then
rj e& and by the same argument as in the proof of Lemma 12 we recognize
that n Q p and hence ?/ e ^*(/>) • Then p D £ implies that r\ € At(£)
and therefore, n € ^r(^ V <5). Dually also At(£ V 8) c ^;(/? v ^) and thus

Summarizing Lemmas 12-14 we may formulate

THEOREM 4. If ^(S) is atomistic then the relation D is a complete con-
gruence on W(S) and W(S)/D s W(S/d) s f .

The lattices [^, w] and ^ are two complete sublattices of 'S'(S) and
isomorphic copies of W(S)/D. By Theorem 3 these lattices are isomorphic
to 3O(X*) x W{I) where X = [Sj8)lf and / is the kernel of S/8 if it
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exists and is the trivial semigroup otherwise. On the other hand, each D-
class pD has a greatest and a least element, p and pD , respectively. Then
[8, co] is precisely the set of all greatest elements pD whereas f is the set
of all least elements pD . By definition of D and Lemma 14 it follows that
pD = py 8 and pD = M{At{p) n3S) for each p € &(S). Furthermore, the
D-class pD = [pD, pD] coincides with the respective interval in the lattice
of all equivalence relations on 5 .

THEOREM 5. For each p e &(S), pD = {t] e ^{S) \ pD c r\ c pD] .

PROOF. Let tj e &{S) be such that pD C r\ C pD and x t\ y. Then
x pDV6 y implies zx pD zy and xz pD yz. Therefore, zx r\ zy and
xz r\ yz for all z e S.

The greatest element eD of eD is given by eD = 8. For the least element
of coD we obtain the following explicit form.

PROPOSITION 4. wD = \f £& = cosi u es.

PROOF. We have o)D V 8 = (oD — to. For arbitrary x, y e S we have
x wD V 8 y which implies that zx coD zy and xz coD yz for all z e S.
Hence S/(oD is a null semigroup. By Result 2 S2 is globally idempotent. So
we obtain that coD\S2 = cos2. On the other hand, coD = \j3§ . Let x e S\S2

and x p y for some atom p and x ^ y. Now p\S2 — esi and therefore
zx = zy and xz = yz for all z £ S. In this case p Q 8. From this we
conclude that

for all / ? e J . Hence

and we obtain that (OD = a>si U es.

For semigroups S characterized by Theorem 1 the relation D simply is
given by p D £, if and only if ^ | 5 2 = £\S2. Furthermore, Theorem 3 implies
that in this case W(S) = ^{S)/D x pD for each p 6

Now let r\ e [e, 8] and W = {rj V p | p 6 %?}. In the same way as in
Lemma 14 it can be seen that V <? c V H if and only if t]W\J G Q tjv\f H
for all G, H c 38 . By the same reason as in Proposition 3 it follows that
^' = %. Also, W is a complete sublattice of ^ (5 ) with least element r\
and greatest element r\ V wsi and ^ = [<5, a>] and 8^ = 8 s .
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We therefore have two interpretations of ^ (5 ) as a union of sublattices:
on the one hand, &{S) is the disjoint union of the lattices [pD, p ] which
are intervals in the partition lattice of S. These intervals naturally are in-
dexed by the elements of the atomistic congruence lattice [d, a)] = ^{S/6) =
£P(Xg,s) x ^{Igig) • On the other hand, ^{S) is the union of the complete
sublattices %? . Each of these lattices is isomorphic to the atomistic con-
gruence lattice ^(Xg,s) x &(IS,S) • These sublattices of ^{S) naturally are
indexed by the elements of [e, d] which is an interval in the partition lattice
of S.

If S2 is not weakly reductive then, since \j & = cosi ues , the lattices &

are not pairwise disjoint. If S is weakly reductive then by Theorem 3 it
follows that

% = {pe W(S) 11/|(5 \ S2 U {*/}) = p\(S \ S2 u {xf})}.

Therefore, in this (and only in this) case the lattices W are pairwise disjoint
and the partition {%" \ r\ Cd} induces a complete congruence on
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