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Abstract

We discuss the projective geometry defined in terms of the hollow factor modules of a given module.
In particular, we derive an explicit expression for the division ring obtained in coordinatizing such a
projective geometry.
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In [2] an independence structure was defined on the set of uniform submodules of
a module, and was shown to be modular. Thus, if it is connected and of rank at
least 3, it corresponds naturally to a projective geometry, which is Desarguesian.
The division rings obtainable by coordinatizing such projective geometries were
discussed there in detail. Dually, in [3], an independence space, also modular, was
defined on the set of hollow factor modules of a module. In this paper we discuss
the division rings obtained by coordinatizing the associated projective geometries.

An independence structure & on a set E is a collection of subsets (the independent
sets), satisfying certain axioms, not unlike the properties of linear independence
when E is a subset of a vector space (see [7] for full details). The rank of A C E is
the cardinality of any maximal independent subset of 4, and for r finite, an r-flar
is a maximal set of rank r. If rk(A) = r, then [A] denotes the unique r-flat
containing 4, and we may write [a, b] for [{a, b}], for example. The 1-flats
partition E; by collapsing each to a single element we get the simple independence
space naturally associated with &. A pair of elements e, f € E is connected if they
are both contained in some circuit (minimal dependent set); connectedness is an
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equivalence relation, the classes being called connected components. An indepen-
dence structure is modular if rk(A) + rk(B) = rk(4 U B) + rk(A4 N B) for any
flats A, B C E; some equivalent definitions are quoted in [2). Further details are
in [2], [7] etc.

Let R be a ring with 1; all modules will be unitary left R-modules. A
submodule K of a module M is small (K<, M)if K+ L=M=L=M. A
hollow module is not the sum of two proper submodules; let Hf(M) = {N < M;
M/ N is hollow}. We define ¥d(M) C P(Hf(M)) (the set of subsets of Hf(M))
by

(a)For {X,,...,K,} € Hf(M),{K,,...,K,} € 9d(M)if, foreach!/ = 1,...,r,
K, + 0N, K; =M. (Inthiscase, forg CJ C I ={1,...,r},Nic;yK; + N, K;
=M)

(b)For {K;:i€I}C Hf(M), {K;:i€I}isin 9d(M) if every finite subset
of it is, according to (a).

The next theorem outlines the background to the present work.

THEOREM 1. (i) ¥d( M) is a modular independence structure on Hf (M).

(ii) If a connected component has rank at least 3 then its 1-flats and 2-flats form
the points and lines of a projective geometry, which, if Desarguesian, is coordinatiz-
able over a unique division ring D.

PROOF. (i) is [3], Theorems 2.3 and 2.6. For (ii) combine standard results, as is
done in [2], Theorem 9.

In examining when %d(M) is connected, we obtain the following result; its
dual follows easily from [2], Lemma 10.

LEMMA 2. Let N, N, € Hf(M). Then N, and N, are connected if and only if
M /N, and M /N, have isomorphic non-trivial factor modules.

PROOF. Suppose N, and N, are connected. If {N;, N,} & d(M), then
M/(N, + N,) is a common non-trivial factor module. Otherwise, since ¥d(M)
is modular, there is a circuit { N}, N,, N’} for some N’ € Hf(M). If N= N’ +
(N, N N,), then by [3], Lemma 2.2, N < M. Also, N+ Ny=N+ N,= N, + N,
= M. We define a map §: M/N, - M/N by (m+ N;)0 = n, + N, where
m=n, +n,, n, €N, To show @ is well-defined, let m € N;, m = n; + n,,
n,€N,. Then n,€e NN AN, <N. As imf =(N,+ N)/N=M/N, we have
(M/N,)/ker @ = M/N. Similarly M/N, has a factor module isomorphic to
M/N.

Conversely, let ¢;: (M/N,) = L # 0 (i = 1,2) be surjections. Define a map §:
M- Lbymé=(m+ N)¢, + (m+ N,)¢,. As N,0 = (N, + N)/N))¢, = L,
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im@ = L. Let N=ker#, so M/N=L and N € Hf(M). As NyN N, <N,
(MNN,)+N<M and {N,N,, N} & 9d(M). If {N,, N,} & 9d(M) then
clearly N, and N, are connected; otherwise, N; + N, = M and it remains to show
that N, + N = N, + N = M, whence { N;, N,, N} is a circuit. Let n; € N;; as
M = N, + N, and ¢, is onto, we can choose n, € N, such that (n, + N))¢; =
(n; + N,)¢,. Then n, = (n, — n,) + n, € kerf + N,, that is, Ny < N + N,.
Thus M = N + N,, similarly M = N + N,, and the result is shown.

We may make assumptions about the structure of M while leaving the projec-
tive geometry, or at least one of its planes, unchanged.

LEMMA 3. (i) Let K <, M. Then $d(M/K) and 9d(M) have isomorphic
associated simple independence spaces.

(i) Let {N;, N,, N;} € 9d(M), let K= N, N N, N N;. Then the associated
simple independence space of 9d(M/K) is isomorphic to that of the subspace
[Ny, Ny, N;] of 9d(M).

PrOOF. Define a map 6. Hf(M)— Hf(M/K)U {M/K} by 6(N)=
(N + K)/K. For (i), as K <, M, N + K < M; for (i), N + K < M if and only if
N €[Ny, N,, N;], as follows from [3], Lemma 2.2. In this case, N + K € Hf(M)
and, equivalently, (N + K)/K € Hf(M/K); also [N]=[N + K] in 9d(M).
Thus,if {L:i€ 1} c Hf(M)in(@),or {L;:i €I} C [N, N,, N;]in (ii), then

(Lpielleg9d(M)e (L, +K:i€l} e gd(M)
< {(Li+K)/K:i€l} e g9d(M/K).

THEOREM 4. The projective planes in the projective geometries of Theorem 1(ii)
are precisely those arising from M = H?, H a hollow module; they are Desargue-
sian.

PrOOF. Let { N}, N,, N, } be independent, in a connected component of ¥d(M).
By Lemma 2, let K; > N, such that M/K, = M/K, = M/K, = H say, H # 0.
let K=K,NnK,NK;, M =M/K and K;=K,/K (i =1,2,3). Then, by
Lemma 3(ii), the projective plane determined by [N, N,, N;] (= [K}, K, K;]) is
that of ¥d(M’). As (KiNK}))+ K3 =M', (K{NK3)+(K{nK;)=Kj; as
K} N K5 N K} = 0, this sum is direct, as is K + (K} N K}) = M. This last also
implies K5 N Kj = M'/K| = H; similar results give M’ = K] N Kj + K] N K;
+ K, N K}, = H* Now 9d(H*) gives a projective geometry of rank 4 (dimen-
sion 3), necessarily Desarguesian; therefore its planes, which are isomorphic to
%d(H?) by Lemma 3(ii), are Desarguesian. Conversely, for H hollow, $d(H?>)
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(with basis {(H, H,0), (H,0, H), (0, H, H)}) is connected by Lemma 2, and
therefore gives a projective plane, which is again Desarguesian.

We now describe the results of coordinatizing ¥d(H?>). Let us define the
natural projections p: H?> - (H,0) (= H & 0),and ¢q: H*> - (0, H).

THEOREM 5. The division ring which coordinatizes 9d( H?) is anti-isomorphic to
the following.

D={[M]:M<H*p(M)=H,(0,H) £ M}, where
[M]=[N]*M+N<H>= (0,H) £t M+ N.

0p =[(H,0)],0,=[M] = g(M)<H, and 1,=[{(h,h):he H}].
[M)+[N]=[(M,N,+)] and [M]X[N]=[(M,N, x)], where
(M, N, +) = {(my, my + ny): (my, my) € M, (ny,n,) €N, m; =n,} and
(M,N,X)={(my,n,): (m;, my) € M,(n,n,) €N, my=n,}.

Also, -[M] = [{(my,-m;): (my, m,) € M}) and, for [M]+0,, [M]! =
[{my, m}: (my, my) € M].

PrOOF. We follow the coordinatization rule of [5], p. 209. Let the coordinate
line D U {0, } be [(H,0, H),(0, H, H)}. If N € [(H,0, H),(0, H, H)] then N +
(0,0, H) < H* and so [N]= [N + (0,0, H)]. We will therefore consider D U
{00p } as the set of 1-flats of ¥d( H?), under the well-defined 1-1 correspondence
[N}« [N ® H] (N € hf(H?), N ®@ H € Hf(H?)). Choose 0, and 1, as stated,
and oo, = [(0, H))/ Since, for M, N € Hf(H*),[M]=[N]when M + N < H?,
we have[M] = 0, when g(M) < Hand[M] = oo, whenp(M) < H.Let M < H?
such that p(M)=H. Then M < H?> & (0, H) ¢« M, and in this case M €
Hf(H?), by [3], Lemma 3.5(i), since M + (0, H) = H2. Likewise M + N < H?
< (0, H)£ M + N. Thus D is as stated. The coordinatization procedure then
gives the operations. We omit the details, but the following Lemma is used in the
construction.

LEMMA 6. Let [A, B] and [C, D] be two distinct lines (with A, B,C, D €
Hf(H?)). Then[A, BN [C, D] =[N],where N=AN B+ CnND.

PROOF. As tk(9d(H?)) =3, {4, B,C, D} contains a circuit, which is not
contained in either { 4, B} or {C, D}. Therefore, by [3], Lemma 2.2, N < H?>.
We show H?/N is hollow. Suppose N < K/, L’ < H3. Let K > K’, L > L’ such
that K, L € Hf(H?), by [3], Theorem 2.5. As K > N > A N B, and similarly, we
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have {K, L} C [4, B]N[C, DJ; as
k([ 4, B] n[C, D)) = k([ 4, B]) + k([C, D]) — k([ 4, B, C, D])
=2+2-3=1,

[K1=[L]; that is, K + L < H? Thus N € Hf(H?), and clearly N € [4, BN
[C, D]

Naturally, it can be verified directly that D is a division ring. Clearly,
(M, N, +) and (M, N, X) are submodules of H> which project onto (H, 0). As
(0, H) is hollow, (M, N, +)N (O, Hy=MnN O, H)+ Nn 0, H) < (0, H), so
(M, N, +) < H? To check that (M, N, X) < H? requires the following interest-
ing lemma.

LEMMA 7. Let N’ < N < H?, such that p(N) = q(N) = H. Thenp(N)= H =
q(N") = H, and in this case [N'] = [N].

PROOF. Suppose p(N’) = H. Then N’ € Hf(H?), and since N’ + N = N < H,
[N']=[N]. As q(N)= H, [N']=[N]+# 0p, so q(N') = H. The converse is by
symmetry.

Consider (M, N, X) where [M], [N]€ D, [N]# 0. Let N’ = {(n, n,) € N:
(0, n;) € M }. By the lemma, we get

(0,H)<(M,N,x)=q(N)=H=p(N)=H=(0,H)< M,

which is not so. Thus (M, N, X) < H?. It is easy to show that calculating
[M] - [N] gives 0, if and only if [M] = [N], and this leads to a proof that the
operations are well-defined. The remaining details are easy to verify (noting that
to show, say, [4] = [ B], it is enough to show that, for example, A > B).

We turn now to some special cases. Since a hollow module is either cyclic or
not finitely generated, we consider H cyclic, H = Rh. Let H = R/I, I a left ideal
of R. For [M]€ D, p(M)= H and so we may choose (4, m) € M. Then by
Lemma 7, [R(h, m)] = [M], and it also follows that Rm = H if and only if
q(M) = H. If we denote [R(h, m)] by { m), we get

D= {(m):me H,R(h,m) < H*}, where
(m)={n) e R(h,m) + R(h,n) < H?,
0p=(0); 0, =(n) = Rn < H; 1, =(h),
(m) £ (n) =(m+ n),

(m) x{n)={rn) and (n)™ =(sh), wherem = rhand h = sn.
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Note that, if I = Ann(k), then R(h, m) < H?> & Im < H.

However, the case where H is cyclic is always covered by the following
Theorem (see [4], Corollary 2.2). Let the division ring D described in Theorem 5
be called Dd(H?).

THEOREM 8. If H is hollow and K < H, then Dd(H?) = Dd((H/K)*). If H also
has a maximal submodule (that is, J(H) < H), then Dd(H*) = En(H/J(H)).

PROOF. As H is hollow, K <, H, K* <, H? (by [1], 5.20(1)), and, from Lemma
3(1), Dd(H?) = Dd(H?/K?®) = Dd((H/K)®). If H has a maximal submodule,
then it is unique, since H is hollow, and so J(H) is maximal. Let N = H/J(H)
and, as N is simple, let N = Rh = R/I.

Define f: En(N) = DA(N*) by f(¢) = (hy). Now ¢ = 0 = hy = 0 « (hy)
=0, as N is simple. To show f is onto, let {m) € Dd(N?). Thus Im < N, so
Im = 0, and we may define y € En(N) by (rh)y = rm. Also, for ¢ € En(N),
I(hy) = (Ih)y = 0. Clearly f preserves the operations, and so is an isomorphism.,

It can be verified that in the case where H is cyclic, H = Rh, then (hy) < ¢ is
an isomorphism from Dd(H?*) to En( H/J(H)). This last theorem is the dual of
part of [2], Theorem 15. The proof is not similar because projective covers need
not exist.

Suppose that in fact H does have a projective cover P, that is, H = P/K,
K <, P. Then P is also hollow. By [1], 17.14, P has a maximal submodule M; as
K < P, K< M, and so M/K is maximal in H. Thus Theorem 8 applies. Also,
M /K and hence M are unique maximal submodules, of H and P respectively, so
P/J(P)= H/J(H). From [1], 17.12 and 17.10 we have En(P/J(P))=
En(P)/J(En(P)). Thus Dd(H?) = En(P)/J(En(P)), corresponding to [2], Theo-
rem 14, It follows from this that En(P) is (quasi-)local, for P hollow projective;
this is also shown in [6], Proposition 4.1 and Theorem 4.2, which characterize
hollow projective modules (see also 1], 17.19).

There remain the hollow modules with no maximal submodule (and therefore
no projective cover). We look at the example H = Z,~ (a Z-module). This is
hollow, and has no maximal submodule, since all proper submodules are finitely
generated (indeed finite and cyclic), see [4], Section 5.

Let N € Hf(H?*), with p(N)=H. As (0, H)£ N, NN (0, H) = Z(0,1/p°)
for some e > 0. Thus, if (1/p', m) and (1/p/,n) (i >j > 0) are in N, then
p'Q/p, m) - (1/p’, n) € Z(0,1/p*). So, if

a; Qg+l e 1
me %t et "'+—]',e—ir+z(;?’
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then

a a a_,_ 1
ne Shw Sl Sl g )
p p p

Let us therefore describe N by the power series expression a, p* + a, ., p**! +
--- (0 € a; < p, a, # 0). Any coefficient g, is determined by choosing j > [ + ¢
and (1/p’, n) € N; then q, appears in the expression for n. Dd(H?) is the set of
such power series expressions, addition and multiplication being natural; it is the
p-adic completion of the rationals.

Another example would be H = Z{1/p). However, since Z = = Z[1/p]/Z, the
same division ring arises, by Theorem 8.

I wish to thank Dr. M. Keating for some helpful discussions.
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