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1. Introduction. In this paper we obtain a partial answer in graph-theoretic 
form to a question raised by Ryser (2, p. 68) concerning the minimal number 
of interchanges required to transform equivalent (0, l)-matrices into each 
other. 

For given positive integers m and n we consider the collection of m X n 
(0, l)-matrices A = {a^}, i.e. atj = 0 or 1 for 1 < i < w, 1 < j < n. 
We say the (0, l)-matrices A = {&*;•} and B = {btj) are equivalent and write 
A ~ B \l and only if they have the same row and column sums, that is, if 
and only if 

We note immediately that A ~ B iî and only if B — A ~ 0, where 0 desig­
nates the m X n matrix of zeros. 

Given a (0, 1)-matrix A, we can obtain an equivalent one, A\ by finding 
a 2 X 2 minor of A of the form 

0 . . 1 

1 . . 0 

and replacing it by one of form 

1 . . 0 

0 . . 1 

or vice versa. Ryser calls this transformation from A to A' an interchange and 
shows (1; 2, p. 68) that any matrix equivalent to A may be obtained from it 
by a suitable sequence of interchanges. We shall show the following : 

THEOREM 1. If A and B are equivalent (0, l)-matrices, then B can be obtained 
from A by a sequence of 

(1.1) fc(A,B) - /3(G) 

and no fewer interchanges, where a (A, B) is the number of positions at which 
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A and B disagree, G is the directed, bipartite graph derived from B — A ~0, 
and /3(G) is the maximum number of edge disjoint circuits in G. 

Experimentation with a number of reasonably small examples has shown 
that determination of the maximum number of interchanges by evaluating 
/3(G) is considerably easier than by a direct examination of the matrices A 
and B. However, no simple algorithm for computing /3(G) has been found. 

In §2, we develop some convenient methods and notations concerning graphs 
and matrices. In §3, we reprove Ryser's result that a sequence of interchanges 
exists, showing, in fact, that a sequence of length (1.1) exists. In §4, we prove 
a general result on graphs and show it implies that (1.1) is a lower bound 
for the number of interchanges. 

2. Preliminaries. 

Definition 1. By a graph G with multiplicities, or graph for short, we mean a 
set V = {vi, V2, . . • , vt} of vertices, and an integer-valued function F on the 
ordered pairs of F X F satisfying F(vu Vj) = —F(VJ, v%), so that in particular 
F(vu v^ = 0. We designate by S the collection of ordered pairs (vu Vj) of 
V X F for which F(vu Vj) > 0. We choose to write the elements of (§ in the 
form E(vi, v3) and say that E(vu v3) is an arc of G directed from vt to Vj of 
multiplicity Fivuvj). 

A graph with multiplicities may be thought of, if desired, as an undirected 
loopless graph where F(vt, Vj) 7^ 0 is a flux from vt to Vj through the only edge 
connecting vt and Vj. 

The class of all graphs with given vertex set V is designated by @ = @(F). 
Throughout we shall suppose that V is arbitrary but fixed. Of special interest 
is the subclass ©* C ®(V) consisting of basic graphs—graphs with arcs of 
multiplicity 1 only. Basic graphs may be thought of as directed graphs with 
at most one arc, regardless of direction, connecting any distinct vertices. 
Given any basic graph G* from ©*, we define a subset @(G*) of ©(F) as 
follows: G is in @(G*) if and only if for each arc E{vi, v3) of G either E(yu Vj) 
or E(VJ, Vf) is an arc of G*. 

PROPOSITION 1. If Gi and G2 are graphs in @ with functions Fx and F2, then 
the function F given by 

F(vi,vj) = FxivuVj) + F2(vi,vj) 

is the function of a graph G which we may call the sum G\ + G2. &(V) is an 
additive group under this composition and each @ (G*) is a subgroup. 

We shall say that a sum J^Gt of graphs in a class @(G*) is conjoint if for 
each arc E of G* the non-zero integers Ft(E) have the same sign, that is, if 
there is no cancellation in forming the sum F = ^Ft for G, or if, in the un­
directed graph interpretation, all fluxes reinforce. If, in fact, for each E in 
G* at most one Fi(E) is non-zero, we shall say that the sum XG* is disjoint. 
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It will be seen that conjointness in a sum of graphs is thus a generalization 
of the usual concept of edge disjointness. By a circuit of length r (an r-circuit) 
we mean a graph in @* having exactly r > 3 distinct arcs 

joining r distinct vertices pi, p2, . . . , pr of V. 
We say a graph is conservative if the sum of multiplicities of arcs leaving 

each vertex equals the sum of multiplicities of entering arcs. Any circuit is 
conservative, but also: 

PROPOSITION 2. If the graph G of ®(G*) is conservative, it can be written as 
a conjoint sum of circuits in & (G*). 

If we wish to consider bipartite graphs, we can suppose the vertex set V is 
the disjoint union of sets X = {xu x2, . . . , xm) and Y = {3>i, 3>2, . . . , 3>w}, 
m + n = t, and restrict attention to the subclass ®° C ®(V) containing those 
graphs which have no arcs connecting two points in X or two points in Y. 
We shall suppose the integers m and n and the sets X and Y understood when 
considering a class ®°. The definitions and results on circuits, conservative 
graphs, and subgroups ®(G*) will carry over to the bipartite case. 

If @° is the class of bipartite graphs on vertex sets X and Y of m and n 
elements respectively, we can define for each m X n matrix of integers 
A = {dij} the graph G (A) in ®° whose function F is given by F(xuyj) = 
— F(yjt xt) = dij. The correspondence A <r^G(A) is an isomorphism between 
the additive group of m X n matrices and the group @°. Accordingly, we shall 
speak of these matrices and graphs interchangeably when convenient. 

PROPOSITION 3. An m X n matrix A is equivalent to zero if and only if G {A) 
is conservative. 

We note that if the graph G{C) in ©° corresponding to the matrix C is an 
r-circuit, we may permute the rows and columns of C to obtain an m X n 
matrix 

T 0 

0 0 

where T is an r X r matrix with r l 's on the diagonal, r — 1 — l's on the 
superdiagonal, and a —1 in the lower left. Propositions 2 and 3 combine 
to give: 

PROPOSITION 4. Every m X n matrix A equivalent to zero is the conjoint sum 
of bipartite circuits. If the only entries of A are 0 , 1 , and —1, the sum is disjoint. 

3. Proof that (1.1) can be attained. For any conservative graph G in some 
class ®(G*), let a = a(G) be the sum of multiplicities of G, and let (3 = 13(G) 
be the largest integer for which G can be written as a conjoint sum of 13 circuits. 
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It is easily seen that a(G) and /3(G) are independent of the particular choice 
of G*. In the remainder of this section only, we direct our attention exclusively 
to a class @° of bipartite graphs. We note that if A and B are equivalent 
(0, 1)-matrices, then a(A, B), the number of disagreements between A and B, 
equals a(G(B - A)). 

LEMMA 1. If A and B are equivalent (0, I)-matrices, then there exists a sequence 

A = Ao, Al9 A2,...,Ap=B, p = 0(G(B - A)), 

of equivalent (0, 1) -matrices such that each difference 

is a circuit {of length r{) and 

(3.1) B - A = £ Cj 

is a disjoint sum. Moreover, 

a(A,B) = £ rt. 
2 = 1 

Proof. B — A satisfies the stronger conditions of Proposition 4; hence the 
disjoint sum (3.1) exists. The partial sums 

At = A+ S Cj 

are all equivalent to A, since the Ct are equivalent to zero. The disjointness 
in (3.1) and the fact that A and B are (0, l)-matrices imply that the A t are 
also (0, 1)-matrices. 

LEMMA 2. If A and B are equivalent (0, 1)-matrices and C = B — A is an 
r-circuit, then r — 2s, and there exists a sequence 

(3.2) A = Ao,A1,A2,...,As_1 = B 

of equivalent (0, 1)-matrices for which the differences 

Dt = A t - At-i 

are circuits of length 4; i.e. A t and A ^_i differ only by an interchange. 

Proof. All graphs in @° are bipartite; hence the circuit B — A has even 
length r = 2s. A weak result 

B = A + £ D/ 

for certain 4-circuits D / follows easily upon examination of Figure 1. Note 
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FIGURE 1 

length of C = 2 s 

that the D/ will necessarily visit vertices in X and Y alternately and hence 
are indeed elements of ®°. We seek a reordering Dt of D/ so that 

are (0, l)-matrices. Clearly the A t will be equivalent. The sum 

H = E D> 
j=2 

is a (2s — 2)-circuit in @°, and a matrix of zeros and ones. We assert that either 

(i) A, A + £>/, A + Dx' + H = B or 

(ii) A, A + H, A + H + Dx' = B 

is a sequence of equivalent (0, 1)-matrices. The only possible difficulty is the 
value of the middle terms for the ordered pair (xu y3) corresponding to E in 
Figure 1. But D\ and H take opposite values for this pair; hence exactly one 
of A + D\ and A + H is a (0, 1)-matrix. By applying the same argument 
to the circuit H instead of C, we may place additional terms between A + D±

f 

and B if (i) holds or between A and A + H if (ii) holds. Repeating this process 
a sufficient number of times, we shall reach simultaneously the sequence (3.2) 
and the proper reordering of the D/. 

LEMMA 3. If A and B are equivalent (0, \)-matrices, there exists a sequence 

(3.3) A = A0,AuA2,...,Ak = B 

of equivalent (0, 1)-matrices for which the differences At — A *_i are ^-circuits and 

k =$a(A,B) - P(G(B -A)). 

Proof. The existence of the sequence (3.3) follows from Lemmas 1 and 2. 
The value of k derives from the computation 

Z ( i r « - l ) = j 2 r*~ £> l = k«(A,B)-p. 

4. Proof that (1.1) is a lower bound. Let G be any conservative graph in 
a subgroup ®(G*) C ®. We have defined a(G) and /3(G). For any positive 
integer 8 > 3 let y = 7 (G, ô) be the smallest integer for which G can be written 
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as the sum of y circuits from @ (G*) of length 8 or less. If G cannot be so written, 
set 7 = oo . 

THEOREM 2. If G is a finite, conservative graph in @(G*), then 

a(G) - 20(G) 
T(G,Ô)> S _ 2 

Proof. We need consider the case y < oo only. We fix 5 and define the 
function 4>(G) so that 

0(G) = <*(G) - 2 0 ( G ) - ( Ô - 2 ) . T ( G ) . 

We must show that 

(4.1) 0(G) < 0 for all conservative G in ®(G*). 

Suppose (4.1) is false. Choose a conservative graph G0 from @(G*) for which 
a (Go) is as small as possible subject to 

(4.2) <KGo) > 0. 

Since the empty graph satisfies (4.1), we have 

a(G0) > 0, 0(Go) > 0, 7(Go) > 0. 

Let 

(4.3) Go = £ D< 

be some expression for G0 as a sum of a minimum number of circuits of @ (G*) 
of length <5 or less. For each Dt let q(Di) be the number of arcs of Dt which 
coincide (with proper orientation) with an arc of Go. There must exist a Dk 

for which q(Dk) > 8 — 1 for otherwise we would have 

«(Go)< Z S (£<)< ( 5 - 2 ) . 7 ( G 0 ) , 

in violation of (4.2). 
We suppose first that q(Dk) = 8. Consider the conservative graph 

7«?0) 

(4.4) G' = £ Dt. 
1 = 1 

By exhibiting a specific sum for G', (4.4) shows that 

(4.5) y (Go) > y{Gf) + 1. 

Further, let 

(4.6) G ' = E C i 
t = i 

be a representation of Gr as a conjoint sum of a maximal number of circuits. 
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Then, because q(Dk) = 5, 

G o = E ^ + Dk 

is a conjoint sum for G0, implying 

(4.7) 0(Go) > 0(G') + 1. 

Combining (4.5), (4.7), and a (Go) = a (Gr) + 8, we conclude that 

(4.8) 0(Go) < *(G0, 

which contradicts the choice of G0 as a smallest conservative graph satisfying 
(4.2). In the same way, the assumption q(Dk) = <5 — 1 for a circuit Dk of 
length 8 — 1 leads to (4.8) with strict inequality. 

As a third and last alternative, we assume there exists a circuit Dk in (4.3) 
of length 8 for which q(Dk) = 3 — 1. Let E be the only arc of Dk which does 
not coincide with an arc of Go. Again we form Gr as in (4.4) and find an ex­
pansion (4.6). We see that G' is again in ®(G*). In G'y 8 — 1 multiplicities of 
Go have been decreased, and one corresponding to E~, the arc reverse to E, 
has been increased (possibly from zero to one). Thus 

(4.9) a(G0) = a (Gf) +8-2. 

As before, (4.5) must hold. Let Ch be any circuit in (4.6) which has an arc 
coinciding with E~. Now Ch + Dk may not be a circuit, but it is a non-vacuous, 
conservative graph which, by Proposition 2, is the conjoint sum 

Ch + Dk = 2) Ct 

of at least one circuit. Therefore, we have 

0(0") « 

Go = Z^Ê Ci-\- 2LJ Cu 

and this sum is easily seen to be conjoint. Accordingly, 

(4.10) 0(Go) > 0(G'). 

But (4.5), (4.9), and (4.10) imply (4.8) again, and we are forced to conclude 
that (4.1) always holds. This concludes the proof of Theorem 2. 

Theorem 1 now follows directly from Lemma 3 and Theorem 2 for 8 = 4, 
®(G*) = ®°. 

A theorem similar to Theorem 1 can be proved for the case 5 = 3 . 

THEOREM 3. If G is a conservative graph in ®(F), a(G) is the sum of multi­
plicities of arcs of G, and 0(G) is the largest integer for which G can be written 
as a conjoint sum of circuits, then G can be written as the sum of 
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(4.11) a (G) - 2(3 (G) 

and no fewer ^-circuits from @ ( V). 

Proof. Theorem 2 states that (4.11) is a lower bound. The proof that (4.11) 
can be realized follows from Figure 2 in the same way that Theorem 1 and 
Lemmas 1,2, and 3 follow from Figure 1. 

length of C = r 

FIGURE 2 
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