MINIMAL INTERCHANGES OF (0, 1)-MATRICES AND
DISJOINT CIRCUITS IN A GRAPH

DAVID W. WALKUP

1. Introduction. In this paper we obtain a partial answer in graph-theoretic
form to a question raised by Ryser (2, p. 68) concerning the minimal number
of interchanges required to transform equivalent (0, 1)-matrices into each
other.

For given positive integers m and # we consider the collection of m X n
(0, 1)-matrices A = {a}, ie. a;=0 or 1 for 1 <1< m, 1<j<n
We say the (0, 1)-matrices 4 = {a;;} and B = {b;,} are equivalent and write
A ~ B if and only if they have the same row and column sums, that is, if
and only if

Yy = Zjaij = Zj bij, S; = Ziaij =2, by

We note immediately that 4 ~ B if and only if B — 4 ~ O, where O desig-
nates the m X z matrix of zeros.

Given a (0, 1)-matrix 4, we can obtain an equivalent one, 4’, by finding
a 2 X 2 minor of 4 of the form

0..1

1..0
and replacing it by one of form

1..0

0..1

or vice versa. Ryser calls this transformation from 4 to 4’ an interchange and
shows (1; 2, p. 68) that any matrix equivalent to 4 may be obtained from it
by a suitable sequence of interchanges. We shall show the following:

THEOREM 1. If A and B are equivalent (0, 1)-matrices, then B can be obtained
from A by a sequence of

(L.1) 3a(4, B) — B(G)
and no fewer interchanges, where a(A, B) is the number of positions at which
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A and B disagree, G is the directed, bipartite graph derived from B — A ~ O,
and B(G) is the maximum number of edge disjoint circuits in G.

Experimentation with a number of reasonably small examples has shown
that determination of the maximum number of interchanges by evaluating
B(G) is considerably easier than by a direct examination of the matrices 4
and B. However, no simple algorithm for computing 8(G) has been found.

In §2, we develop some convenient methods and notations concerning graphs
and matrices. In §3, we reprove Ryser’s result that a sequence of interchanges
exists, showing, in fact, that a sequence of length (1.1) exists. In §4, we prove
a general result on graphs and show it implies that (1.1) is a lower bound
for the number of interchanges.

2. Preliminaries.

Definition 1. By a graph G with multiplicities, or graph for short, we mean a
set V = {v1, 02, ...,v,} of vertices, and an integer-valued function F on the
ordered pairs of V' X V satisfying F(v;, v;) = — F(v,, v;), so that in particular
F(v;,v;) = 0. We designate by € the collection of ordered pairs (v; v;) of
V X V for which F(v;,v;) > 0. We choose to write the elements of € in the
form E(v; v;) and say that E(v,,v,) is an arc of G directed from v, to v; of
multiplicity F(v;, v;).

A graph with multiplicities may be thought of, if desired, as an undirected
loopless graph where F(v;, v;) 5 0 is a flux from v, to v; through the only edge
connecting v; and v;.

The class of all graphs with given vertex set V is designated by & = & (V).
Throughout we shall suppose that 1 is arbitrary but fixed. Of special interest
is the subclass &* C (V) consisting of basic graphs—graphs with arcs of
multiplicity 1 only. Basic graphs may be thought of as directed graphs with
at most one arc, regardless of direction, connecting any distinct vertices.
Given any basic graph G* from &*, we define a subset &(G*) of &(V) as
follows: G is in ®(G*) if and only if for each arc E(v;, v,) of G either E(v,, v,)
or E(v;,v;) is an arc of G*.

ProposITION 1. If Gy and G are graphs in & with functions Fy and Fs, then
the function F given by

F(v,, v;) = F1(v;,v;) + Fa(v,, v;)

s the function of a graph G which we may call the sum G, + Gq. & (V) is an
additive group under this composition and each &(G*) 1s a subgroup.

We shall say that a sum > G; of graphs in a class & (G*) is conjoint if for
each arc E of G* the non-zero integers F;(E) have the same sign, that is, if
there is no cancellation in forming the sum F = > F, for G, or if, in the un-
directed graph interpretation, all fluxes reinforce. If, in fact, for each E in
G* at most one F;(E) is non-zero, we shall say that the sum Y G; is disjoint.
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It will be seen that conjointness in a sum of graphs is thus a generalization
of the usual concept of edge disjointness. By a circuit of length r (an r-circuit)
we mean a graph in &* having exactly » > 3 distinct arcs

E(plv p2)y E(P?y PS); sy E(pn pl))

joining r distinct vertices py, po, . . ., p, of V.

. We say a graph is conservative if the sum of multiplicities of arcs leaving
each vertex equals the sum of multiplicities of entering arcs. Any circuit is
conservative, but also:

PROPOSITION 2. If the graph G of &(G*) is conservative, it can be written as
a conjoint sum of circuits in &(G*).

If we wish to consider bipartite graphs, we can suppose the vertex set V is
the disjoint union of sets X = {xy,%s,...,%x} and ¥ = {y1, 93, ..., W},
m + n = t, and restrict attention to the subclass &° C & (V) containing those
graphs which have no arcs connecting two points in X or two points in V.
We shall suppose the integers m and »# and the sets X and ¥ understood when
considering a class ®°. The definitions and results on circuits, conservative
graphs, and subgroups & (G*) will carry over to the bipartite case.

If &° is the class of bipartite graphs on vertex sets X and Y of m and #»
elements respectively, we can define for each m X » matrix of integers
A = {a,;} the graph G(4) in ®° whose function F is given by F(x,, y;) =
— F(y;,x;) = a;;. The correspondence 4 «<» G(4) is an isomorphism between
the additive group of m X # matrices and the group &°. Accordingly, we shall
speak of these matrices and graphs interchangeably when convenient.

PROPOSITION 3. An m X n matrix A is equivalent to zero if and only if G(4)
s conservative.

We note that if the graph G(C) in &° corresponding to the matrix C is an
r-circuit, we may permute the rows and columns of C to obtain an m X n
matrix

T|O0
010

where T is an 7 X r matrix with » 1's on the diagonal, » — 1 —1’s on the
superdiagonal, and a —1 in the lower left. Propositions 2 and 3 combine
to give:

ProrosiTION 4. Every m X n matrix A equivalent to zero is the conjoint sum
of bipartite circuits. If the only entries of A are 0, 1, and —1, the sum is disjoint.

3. Proof that (1.1) can be attained. For any conservative graph G in some
class & (G*), let @ = «(G) be the sum of multiplicities of G, and let 8 = B(G)
be the largest integer for which G can be written as a conjoint sum of 8 circuits.

https://doi.org/10.4153/CJM-1965-081-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-081-0

834 DAVID W. WALKUP

It is easily seen that a(G) and B(G) are independent of the particular choice
of G*. In the remainder of this section only, we direct our attention exclusively
to a class &° of bipartite graphs. We note that if 4 and B are equivalent
(0, 1)-matrices, then a(4, B), the number of disagreements between 4 and B,
equals a(G(B — A4)).

Lemma 1. If A and B are equivalent (0, 1)-matrices, then there exists a sequence
A=Ay, A1, As, ..., 45 = B, = B(G(B — 4)),

of equivalent (0, 1)-matrices such that each difference

Cz = Ai — 4 i—1
is a circuit (of length r;) and
B
3.1) B—A4-= Zl C;
j=

1is a disjoint sum. Moreover,

B8
a(A,B) = Zl Y.

Proof. B — A satisfies the stronger conditions of Proposition 4; hence the
disjoint sum (3.1) exists. The partial sums

i
A1=A+ Z C‘j
J==1

are all equivalent to A4, since the C; are equivalent to zero. The disjointness
in (3.1) and the fact that 4 and B are (0, 1)-matrices imply that the 4, are
also (0, 1)-matrices.

LemMA 2. If A and B are equivalent (0, 1)-matrices and C = B — A4 is an
r-circuit, then r = 2s, and there exists a sequence

3.2) = Ay, A1, 4s, ..., A1 =B
of equivalent (0, 1)-matrices for which the differences
D, =4;,— 4,
are circuits of length 4; i.e. A, and A ;1 differ only by an interchange.

Proof. All graphs in &° are bipartite; hence the circuit B — 4 has even
length » = 25. A weak result

s—1

B=A4A+ Y, D/
j=1

for certain 4-circuits D, follows easily upon examination of Figure 1. Note
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S |
5-2 s-1
E
\ < [,
length of C =25
FIGure 1

that the D,/ will necessarily visit vertices in X and Y alternately and hence
are indeed elements of &°. We seek a reordering D; of D, so that

=1
are (0, 1)-matrices. Clearly the 4 ; will be equivalent. The sum

s—1

H=ZD/

=2

isa (2s — 2)-circuit in &°, and a matrix of zeros and ones. We assert that either

G) A, A +D/,A+D/+H=Bor
(i) 4, A+ H A+H+D/ =B

is a sequence of equivalent (0, 1)-matrices. The only possible difficulty is the
value of the middle terms for the ordered pair (x;, v;) corresponding to E in
Figure 1. But D, and H take opposite values for this pair; hence exactly one
of A + Dy and 4 + H is a (0, 1)-matrix. By applying the same argument
to the circuit H instead of C, we may place additional terms between 4 + D,
and B if (i) holds or between 4 and 4 + H if (ii) holds. Repeating this process
a sufficient number of times, we shall reach simultaneously the sequence (3.2)
and the proper reordering of the D /.

LemMA 3. If A and B are equivalent (0, 1)-matrices, there exists a sequence
(3.3) A =4, 41,4y, ...,4, =B
of equivalent (0, 1)-matrices for which the differences A; — A ;1 are 4-circuits and
k =1a(4,B) — B(G(B — 4)).
Proof. The existence of the sequence (3.3) follows from Lemmas 1 and 2.
The value of % derives from the computation

B
Yy — Z 1=
1 i=1

a4, B) — 8.

=

DO | =

4. Proof that (1.1) is a lower bound. Let G be any conservative graph in
a subgroup ®(G*) C ®. We have defined «(G) and B(G). For any positive
integer § > 3 lety = v(G, ) be the smallest integer for which G can be written

https://doi.org/10.4153/CJM-1965-081-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-081-0

836 DAVID W. WALKUP

as the sum of « circuits from & (G*) of length § or less. If G cannot be so written,
sety = o,

THEOREM 2. If G is a finite, conservative graph in & (G*), then

a(G) — 28(G)
60— 2 ’

Proof. We need consider the case ¥ < » only. We fix § and define the
function ¢(G) so that

#(G) = a(G) — 28(G) — (6 — 2)-v(G).
We must show that
4.1 ¢(G) <0 for all conservative G in & (G*).

v(G,8) >

Suppose (4.1) is false. Choose a conservative graph G, from & (G*) for which
a(Gy) is as small as possible subject to

(4.2) ¢(Go) > 0.
Since the empty graph satisfies (4.1), we have

a(Go) >0, B(Gy >0, v(Gy) > 0.
Let

s
(4.3) Go= 2. D
i=1

be some expression for G, as a sum of a minimum number of circuits of & (G*)
of length 6 or less. For each D; let ¢(D;) be the number of arcs of D; which
coincide (with proper orientation) with an arc of Go. There must exist a Dj
for which ¢(D;) > 6 — 1 for otherwise we would have

&G < X3 aD) < (6= 2)7(Go),

in violation of (4.2).
We suppose first that ¢(D;) = 8. Consider the conservative graph

v(Go)

4.4) G'=> D.

=1
(iztk)

By exhibiting a specific sum for G’, (4.4) shows that
(4.5) v(Go) > v(G) + 1.
Further, let

(4.6) G = Z Ci

be a representation of G’ as a conjoint sum of a maximal number of circuits.
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Then, because ¢(D;) = 8,

B(a@")
Go = ; Ci+ Dy

is a conjoint sum for G,, implying

4.7) B(Go) > B(G") + L.
Combining (4.5), (4.7), and a(Go) = a(G’) + 8, we conclude that
(4.8) ¢(Go) < ¢(G),

which contradicts the choice of G, as a smallest conservative graph satisfying
(4.2). In the same way, the assumption ¢(D;) = 6§ — 1 for a circuit D, of
length 6 — 1 leads to (4.8) with strict inequality.

As a third and last alternative, we assume there exists a circuit D; in (4.3)
of length 6 for which ¢(D;) = 6 — 1. Let E be the only arc of D, which does
not coincide with an arc of Go. Again we form G’ as in (4.4) and find an ex-
pansion (4.6). We see that G’ is again in & (G*). In G’, § — 1 multiplicities of
Gy have been decreased, and one corresponding to E—, the arc reverse to E,
has been increased (possibly from zero to one). Thus

(4.9) a(Go) = a(G')y + 6 — 2.

As before, (4.5) must hold. Let C, be any circuit in (4.6) which has an arc
coinciding with E-. Now C, + D, may not be a circuit, but it is a non-vacuous,
conservative graph which, by Proposition 2, is the conjoint sum

€

Ch+Dk= Z c’l

i=1

of at least one circuit. Therefore, we have

B8(@") €
GO = Z C1 + Z C1y
it =

and this sum is easily seen to be conjoint. Accordingly,
(4.10) B(Go) > B(G").

But (4.5), (4.9), and (4.10) imply (4.8) again, and we are forced to conclude
that (4.1) always holds. This concludes the proof of Theorem 2.

Theorem 1 now follows directly from Lemma 3 and Theorem 2 for § = 4,
& (G*) = &°.

A theorem similar to Theorem 1 can be proved for the case § = 3.

THEOREM 3. If G is a conservative graph in &(V), a(G) is the sum of multi-
plicities of arcs of G, and B(G) is the largest integer for which G can be written
as a conjoint sum of circuits, then G can be written as the sum of

https://doi.org/10.4153/CJM-1965-081-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-081-0

838 DAVID W. WALKUP

(4.11) a(G) — 28(G)
and no fewer 3-circuits from & (V).

Proof. Theorem 2 states that (4.11) is a lower bound. The proof that (4.11)
can be realized follows from Figure 2 in the same way that Theorem 1 and
Lemmas 1, 2, and 3 follow from Figure 1.

length of C=r

FiGURE 2
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