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Abstract

Contrary to leading asset pricing theories, recent empirical evidence indicates that financial
markets compensate only short-term equity variance risk. An equilibrium model with
generalized disappointment aversion risk preferences and rare events reconciles salient
features of the variance term structure. In addition, a calibration explains the variance and
skew risk premiums in equity returns and the implied volatility skew of index options while
capturing standardmoments of fundamentals, equity returns, and the risk-free rate. The key
intuition for the results stems from substantial countercyclical risk aversion induced by
endogenous variation in the probability of disappointing events in consumption growth.

I. Introduction

The consumption-based asset pricing literature has been recently revived by
generalized models of long-run risks and rare disasters to capture many charac-
teristics of the equity and derivatives markets. Yet leading theories fail to explain
the timing of variance risk. Contrary to most successful asset pricing models,
Dew-Becker, Giglio, Le, and Rodriguez (2017) show that it has been costless to
hedge future variance at horizons longer than 2 months, whereas only unexpected
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realized variance was significantly priced.1 The term structure of variance risk
possess a challenge to models featuring time-varying expected growth and vol-
atility (Bansal and Yaron (2004)) or disaster risk (Rietz (1988), Barro (2006)).

I illustrate the challenge in Figure 1 by showing the empirical Sharpe ratios and
prices for forward variance claims, which are swap contracts that pay the owner the
realized stock market variance during a particular future period.2 The figure shows
the term structure of forward claims on future variance up to 1 year. The average
prices are upward-sloping at the short end and quickly flatten with the horizon.
Sharpe ratios are significantly negative for short maturities, suggesting investors are
willing to hedge short-term variance risk. Puzzling, however, is that future variance
from 3 to 12 months is unpriced. Well-known asset pricing theories predict
a strongly upward-sloping term structure of forward variance prices and, hence,
imply the negative and significant Sharpe ratios at future horizons, counter to
what we observe empirically.

I capture the observed variance term structure by introducing asymmetric
preferences into a model with learning about consumption depressions.3 Disaster
risk generates the upward-sloping term structure of return variance, however,
I demonstrate that asymmetric preferences cancel the increasing effect in the long
term. The reason is that, in bad times, forward variance becomes higher in the short
term than in the long termwith asymmetric preferences, which flattens the increasing

FIGURE 1

Average Prices and Annualized Sharpe Ratios for Forward Variance Claims

Figure 1 plots annualized Sharpe ratios and average prices for forward variance claims in theU.S. data from1996 to 2013. The
prices are reported in annualized volatility terms. The data are from Dew-Becker et al. (2017).
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1Dew-Becker, Giglio, and Kelly (2021) show that it is highly costly to hedge realized volatility
but not forward-looking uncertainty across different markets. Berger, Dew-Becker, and Giglio (2019)
provide new empirical evidence that shocks to future uncertainty have no significant effect on the
economy. Also, Dew-Becker and Giglio (2020) find that investors do not view shocks to cross-sectional
uncertainty as bad. Also, van Binsbergen, Brandt, and Koijen (2012) and van Binsbergen, Hueskes,
Koijen, and Vrugt (2013) document a downward-sloping term structure of equity risk premia and
volatility, which is at odds with leading asset pricing models.

2For instance, a payoff (realized variance) of n-month variance forward equals the sum of daily
squared stock market returns in month n from today.

3The ingredients are empirically motivated. A number of studies provide micro-level evidence
that investors dislike losses more than they enjoy gains (Choi, Fisman, Gale, and Kariv (2007)). Also,
Hansen (2007) argues that the assumption of the investor’s full information about the model structure
is extreme.
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pattern at longer horizons on average. The properties of forward return variance
translate into empirically consistent variance forward prices. This mechanism also
implies negative Sharpe ratios on short-term variance forwards and positive and
increasing ratios at longer maturities.

Formally, I consider an exchange economy with generalized disappoint-
ment aversion (GDA) risk preferences (Routledge and Zin (2010)) and rare
events. Consumption growth follows a hidden two-state Markov chain where a
rare “depression” is calibrated to the U.S. Great Depression. The agent filters the
hidden state probabilities. GDA preferences amplify the impact on the pricing
kernel of disappointing beliefs corresponding to utilities below a scaled certainty
equivalent. The amplification of lower-tail shocks yields strongly countercyclical
risk aversion, which helps capture the variance term structure.

The economic mechanism is as follows: Following Veronesi (1999), the
conditional volatility of equity return is a hump-shaped function of a posterior
probability of expansion, πt (GDA in Figure 4). The economy is in a good state for
most of the periods, in which case πt is high and close to 1. A good piece of news
reinforces the investor’s beliefs that the current regime is the expansion. In this case,
the risk of future disasters generates an upward-sloping term structure of forward
variance. A bad piece of news decreases πt and leads to a spike in return variance
initially. Bad news could be due to a disaster and hence the investor will learn times
are bad in the future (πt≈0). Bad innovations could also be due to idiosyncratic
consumption risk in expansion and hence the investor will update beliefs to reflect
times are still good (πt≈1). In both cases, return variance will decrease quickly
when πt approaches 0 or 1, implying the inversion in forward variance. Uncondi-
tionally, the investor is always willing to hedge high realized variance in the short
term. In the long term, however, the inversion in bad times dominates the upward-
sloping effect of disaster risk in good periods, flattening the forward variance curve.
Variance claims inherit the properties of forward variance. Thus, the unconditional
term structure of prices is upward-sloping at the short end and flattens out quickly in
maturity. The inversion in prices yields positive Sharpe ratios on variance forwards
at longer horizons on average.

Intuitively, the inversion in forward variance in response to bad news happens
because high volatility is short-lived in the economy.4 Indeed, the conditional
volatility peaks within a narrow range of beliefs and sharply diminishes outside
this interval. When beliefs change, return volatility spikes but does not persist.
Mechanically, sizable countercyclical risk aversion induced by GDA preferences
yields strong and weak price sensitivities to belief changes in good and bad times
(Veronesi (1999)). This difference in sensitivities implies return volatility should be
higher following a bad piece of news in good times than a good piece of news in bad
times. As a result, an asymmetric effect on the price sensitivity to news leads to a
skewed shape of conditional volatility.

Next, I compare GDA preferences with nested utility functions. I show that
the term structure of variance risk can be replicated with GDA preferences due

4This mechanism is consistent with Dew-Becker et al. (2017) showing that, during consumption
disasters and financial crises, realized volatility spikes for 1 month only and then reverts quickly.
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to a sufficiently countercyclical risk aversion.5 Interestingly, not only can nested
preference specifications be rejected by the unconditional term structure, but they
are also inconsistent with the conditional dynamics of the variance term structure.

I first compare GDA preferences to a disappointment aversion utility func-
tion (Gul (1991)) and Epstein–Zin preferences (Epstein and Zin (1989)). First, a
disappointment-averse agent increases the pricing kernel for disappointing utilities,
defined as being below the certainty equivalent. Compared to Routledge and Zin
(2010), Gul’s preferences increase the disappointment threshold. This generates
a large number of disappointing events and a large risk aversion in two states. Thus,
price sensitivities are similar in good and bad times, generating a symmetric shape
of return volatility (DA in Figure 4). Second, a model with Epstein–Zin preferences
generates a slightly skewed shape of return volatility (EZ in Figure 4). However,
conditional volatility remains elevated for a wide range of beliefs in both models.
When the investor’s beliefs change, high variance persists in the long term. This
generates the upward-sloping term structure of forward variance and prices.

I also look at the conditional dynamics of the term structures. I assume the
investor holds a median belief (normal times). I then study the impact of one
positive and three negative consumption innovations. First, at the 1-monthmaturity,
the average Sharpe ratios in the GDA economy are pro-cyclical, meaning more
(less) negative in bad (good) times, consistent with Aït-Sahalia, Karaman, and
Mancini (2020). The reason is that GDA preferences generate a beliefs-dependent
pricing kernel with higher marginal utility in low consumption states, increasing the
hedge against high realized variance associated with low-utility states.6 At longer
maturities, the Sharpe ratios remain close to 0 in response to small shocks, whereas
they become upward-sloping and positive in response to large negative news. The
reason is that small shocks are not priced due to a low disappointment threshold.
In contrast, lower-tail shocks place the posterior belief within the interval of the
highest return variance and, hence, the variance tends to be lower in later periods.
The variance claims are priced accordingly,making the short-term variance forward
more expensive. The inversion in prices generates positive Sharpe ratios at longer
horizons.

Second, in the disappointment aversion model, the conditional variance
forward prices remain strongly upward-sloping, implying negative Sharpe ratios
across all economic conditions. The reason is that high variance is persistent due
to the shape of the conditional return variance and, therefore, variance risk concen-
trates in the long term. Third, in the Epstein–Zin economy, prices of variance
forwards remain markedly increasing in the horizon for most economic conditions
and become mildly decreasing only when consumption growth is extremely low.
The mild inversion is too weak to dampen the upward-sloping effect at other times.
Thus, the conditional Sharpe ratios remain strongly negative.

5The countercyclical risk aversion can rationalize the equity premium puzzle (Melino and Yang
(2003)). I show that, in my setting, a sufficiently countercyclical risk aversion induced by generalized
disappointment aversion can further explain the variance term structure.

6Routledge and Zin (2010) and Bonomo, Garcia, Meddahi, and Tédongap (2011) provide a similar
analysis of GDA stochastic discount factor with alternative consumption processes. Also, the beliefs-
dependent effective risk aversion of my paper echoes the mechanism of Berrada, Detemple, and
Rindisbacher (2018) with learning and a beliefs-dependent utility function.
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Finally, the GDA model shows superior performance when confronted
with other asset pricing facts. It captures salient features of the equity variance
and skew risk premiums and a volatility skew implied by index option prices.7

In contrast, other frameworks generate too small variance and skew risk premiums
and flat implied volatility curves. In a comparative analysis, I show that my results
are robust to different calibrations of key parameter values. Following Pohl,
Schmedders, and Wilms (2018) and Lorenz, Schmedders, and Schumacher (2020),
I check that global projection methods provide highly accurate numerical solutions.

This article is related to several strands of the literature. First, it contributes
to the growing literature on the term structures of equity and variance claims
(van Binsbergen et al. (2012), (2013), Dew-Becker et al. (2017)). A number of
studies (Croce, Lettau, and Ludvigson (2014), Belo, Collin-Dufresne, and Gold-
stein (2015), Favilukis and Lin (2015), Hasler and Márfe (2016), Márfe (2017),
Ai, Croce, Diercks, and Li (2018), and Hasler, Khapko, and Máfe (2019)) explain
the downward-sloping term structure of equity risk premia and return volatility.8

I complement these articles by explaining the variance term structure.
Second, this study builds on the literature exploring asset pricing properties

of GDA preferences. These preferences have been used to explain stock market
returns (Bonomo et al. (2011), Bonomo, Garcia, Meddahi, and Tédongap (2015),
Liu and Miao (2014), and Schreindorfer (2020)), sovereign spreads (Augustin
and Tédongap (2016)), portfolios (Dahlquist, Farago, and Tédongap (2016)), the
cross section of stock returns (Delikouras (2017), Farago and Tédongap (2018), and
Delikouras and Kostakis (2019)), and the term structure of interest rates (Augustin
and Tíongap (2021)). I employ GDA preferences to explain the variance forward
prices and returns. This article is, to my knowledge, the first to reconcile the
variance term structure. It does so while jointly explaining equity returns, vari-
ance and skew premiums, and option prices. Also, the extant literature studies
GDA preferences in long-run risk models, while this article examines a rare event
model with learning.

Third, this article is related to leading asset pricing theories focusing on
the variance premium and option prices. These include the extensions of equilib-
rium models with habit (Du (2011)), rare disasters (Liu, Pan, and Wang (2005),
Benzoni, Collin-Dufresne, and Goldstein (2011), and Sco and Wachter (2019)),
and long-run risks (Eraker and Shaliastovich (2008), Bollerslev, Tauchen, and
Zhou (2009), Drechsler and Yaron (2011), Drechsler (2013), Zhou and Zhu (2014),
and Shaliastovich (2015)).My article is distinct from this literature because it points
out the importance of the investor’s GDA for the variance term structure.

Finally, this article connects to hiddenMarkov switchingmodels (David (1997),
Veronesi (1999), (2000)).9 The recent literature extends this approach to learning
about unknown volatility (Weitzman (2007)) and persistence (Cogley and Sargent
(2008), Gillman, Kejak, and Pakos (2015), andAndrei, Hasler, and Jeanneret (2019))
as well as to a multidimensional-learning problem (Collin-Dufresne, Johannes,

7Also, see Choi, Mueller, and Vedolin (2017) and Londono and Zhou (2017) for bond and currency
variance risk premiums.

8See van Binsbergen and Koijen (2017) for a review of the literature on term structures of equity claims.
9See Pastor and Veronesi (2009) for a survey of the early literature on learning in financial markets.
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and Lochstoer (2016), Johannes, Lochstoer, and Mou (2016), and Babiak and
Kozhan (2020), (2021)). This article contributes to the learning literature by
investigating how state uncertainty is priced in the presence of GDA preferences
with a particular emphasis on the pricing of the variance risk.

The remainder of the article is organized as follows: Section II describes the
economy. Section III outlines the equilibrium conditions. Section IV provides asset
pricing results and sensitivity analysis. SectionV concludes. SupplementaryMaterial
provides supporting analysis and additional results.

II. Model

A. Generalized Disappointment Aversion Risk Preferences

The environment is an infinite-horizon, discrete-time exchange economywith
a representative agent. Following Epstein and Zin (1989), the agent’s utility V t is
defined by

V t ¼ 1�βð ÞCρ
t þβRρ

t½ �1=ρ,(1)

in whichCt is consumption, 0< β< 1 is the subjective discount factor, 1= 1�ρð Þ>
0 is the elasticity of intertemporal substitution (EIS), and Rt ¼Rt V tþ1ð Þ is the
certainty equivalent.

The certainty equivalent captures the GDA risk of Routledge and Zin (2010).
GDA preferences put more weight on “disappointing” events compared to the
expected utility, similar to disappointment aversion risk preferences of Gul (1991).
For Gul’s model, however, an outcome is viewed as disappointing when it is below
the certainty equivalent, whereas for Routledge and Zin’s specification a disap-
pointing outcome is below a constant fraction of the implicit certainty equivalent.
Formally, the certainty equivalent of GDA preferences is implicitly defined by

Rt V tþ1ð Þ½ �α
α

¼Et
V α

tþ1

α

� �
�θEt I V tþ1

Rt V tþ1ð Þ⩽δ
� �

δRt V tþ1ð Þ½ �α
α

�V α
tþ1

α

� �� �
,(2)

in which I �ð Þ is the indicator function, 1�α> 0 is the relative risk aversion, δ ≤ 1 is
the disappointment threshold, and θ≥0 is disappointment aversion. GDA prefer-
ences enable one to control the disappointment threshold by changing δ:Routledge
and Zin’s preferences nest two specifications. The expected utility is obtained by
setting θ¼ 0. Settings θ 6¼ 0 and δ¼ 1 reduce GDA preferences to the disappoint-
ment aversion utility.

B. Endowments and Inference Problem

I consider a Markov switching model for aggregate consumption growth

Δctþ1 ¼ μstþ1
þσεtþ1, εtþ1 �Nð0,1Þ,

whereΔctþ1 is log consumption growth, stþ1 is a hidden two-stateMarkov chainwith
a state space S¼ 1,2f g and a transition matrix P¼ πij

� �
, in which π11 ¼ 1�π12
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and π22 ¼ 1�π21 are transition probabilities, μstþ1
is the state-dependent mean

growth rate, and σ is the constant consumption volatility. I assume μ2 < μ1 to identify
stþ1 ¼ 1 and stþ1 ¼ 2 as expansion and recession, respectively.10

The motivation for constructing a two-state model is twofold. First, I want
to maintain parsimony for the sake of convenient interpretation. Second, I do not
introduce additional risks to isolate the impact of learning and GDA preferences.
A model with additional ingredients would certainly make the framework more
flexible. However, I show that a tightly calibrated GDA model with a single state
variable can already reproduce the variance term structure with a wide array of
salient features of the equity and derivatives markets.

I seek to price a levered consumption claim with log dividend growth

Δdtþ1 ¼ gd þ λΔctþ1þσdetþ1, etþ1 �N 0,1ð Þ,

in which λ is a leverage ratio on expected consumption growth. I use gd to
equalize long-run dividend and consumption growth rates, and σd to match
the empirical dividend growth volatility. In addition, the chosen value of λ allows
me to match the observed correlation between annual consumption and dividend
growth rates.

The investor knows the true parameters and distribution of shocks but does
not observe the state. At time t, the agent updates the probability of expansion πt ¼
ℙ stþ1 ¼ 1jF tð Þ conditional on the history of consumption growth rates denoted by
F t. I assume a Bayesian agent who updates his belief through Bayes’ rule:

πtþ1 ¼ π11f Δctþ1j1ð Þπtþ 1�π22ð Þf Δctþ1j2ð Þ 1�πtð Þ
f Δctþ1j1ð Þπtþ f Δctþ1j2ð Þ 1�πtð Þ ,(3)

f Δctþ1jið Þ¼ 1ffiffiffiffiffi
2π

p
σ
e�

Δctþ1�μið Þ2
2σ2 , i¼ 1,2:

III. Equilibrium

A. Equilibrium and Pricing Kernel

FollowingRoutledge andZin (2010), I show (see the SupplementaryMaterial)
that the gross return Ri,tþ1 on the ith traded asset satisfies the condition

Et M tþ1Ri,tþ1½ � ¼ 1,(4)

in which Mtþ1 is the stochastic discount factor (SDF) of the GDA economy
defined as

10The application of a regime-switching framework is a popular paradigm in the asset pricing
literature. These models are flexible to embed business cycle fluctuations (Cecchetti, Lam, and Mark
(1990), Veronesi (1999), Ju andMiao (2012), Johannes et al. (2016), and Collin-Dufresne et al. (2016)),
the “peso problem” in the mean (Rietz (1988), Barro (2006), Backus, Chernov, and Martin (2011), and
Gabaix (2012)) or persistence (Gillman et al. (2015)), long-run risks (Bonomo et al. (2011), (2015)), and
economic recoveries (Hasler and Márfe (2016)) in endowments.
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Mtþ1 ¼ β
Ctþ1

Ct

� �ρ�1

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
MCRRA

tþ1

� V tþ1

Rt V tþ1ð Þ
� �α�ρ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
MEZ

tþ1

� 1þθI V tþ1⩽δRt V tþ1ð Þð Þ
1þθδαEt I V tþ1⩽δRt V tþ1ð Þð Þ½ �

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MGDA
tþ1

:(5)

The first component MCRRA
tþ1 is the SDF of the power utility. The second

multiplier MEZ
tþ1 is the adjustment of Epstein–Zin preferences, which separate

the coefficient of risk aversion and EIS. The third component MGDA
tþ1 represents

the GDA adjustment. When the agent’s utility is below a predefined fraction of the
certainty equivalent, more weight is attached to the SDF, magnifying the counter-
cyclical dynamics of the pricing kernel. For a better understanding of the key role
of GDA, I shut down the Epstein–Zin adjustment in SDF for the models with
(generalized) disappointment aversion by setting α¼ ρ. Thus, the pricing kernel
simplifies to

Mtþ1 ¼ β
Ctþ1

Ct

� �ρ�1

� 1þθI V tþ1⩽δRt V tþ1ð Þð Þ
1þθδαEt I V tþ1⩽δRt V tþ1ð Þð Þ½ �

� �
:

B. Model Solution

The latest long-run risk models generate significant nonlinearities, which,
coupled with the log-linearization of equilibrium quantities, can generate econom-
ically significant numerical errors (Pohl et al. (2018)). Hence, I solve the model
numerically using global solution methods to accurately capture the nonlinear
nature of the model under consideration. The model solution boils down to approx-
imating the return on thewealth portfolioRω

tþ1 and the equity returnRe,tþ1 implicitly
defined by equation (4). Denoting the investor’s wealth and equity price byWt and
Pe
t , we obtain

Rω
tþ1 ¼

Wtþ1

Wt�Ct
¼

Wtþ1

Ctþ1

Wt
Ct
�1

� eΔctþ1 ∧ Re
tþ1 ¼

Pe
tþ1þDtþ1

Pe
t

¼
Pe
tþ1

Dtþ1
þ1

Pe
t

Dt

� eΔdtþ1 :

I conjecture thatWt
Ct
¼G πtð Þ and Pe

t
Dt
¼H πtð Þ are functions of πt: I substituteRω

tþ1
and Re

tþ1 into equation (4) and apply the projection method (Judd (1992)) to
approximate G πtð Þ and H πtð Þ: I discuss the numerical solution and its accuracy
and provide the model-generated asset prices in the Supplementary Material.

IV. Data and Quantitative Results

A. Data

I construct annual real per capita consumption growth from Jan. 1930 to Dec.
2016 using the U.S. National Income and Product Accounts. I then retrieve data
from the Center for Research in Security Prices to obtain aggregate equity market
dividends and asset returns. To discipline quantitative analysis, I tightly calibrate
each model in this article to closely match the key moments of fundamentals and
equity returns.
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In addition to standard asset pricing moments, I study the implications
of different models for the high moment risk premiums and option prices.
The variance premium is the difference between expectations of stock
market return variance under the risk-neutral ℚ and actual physical ℙ proba-
bility measures.11 Formally, a τ-month variance premium at time t is vpt ¼
Eℚ
t RETURN_VARIATION t, tþ τð Þ½ ��Eℙ

t RETURN_VARIATION t, tþ τð Þ½ �, in
which the total return variation is calculated over the period t to tþ τ: The quantity
vpt corresponds to the expected profit of a variance swap, which pays the equity’s
realized variance over the term of the contract. Like the variance premium, I follow
Kozhan, Neuberger, and Schneider (2013) and define a τ-month skew risk premium

at time t as spt ¼ Eℙ
t RETURN_SKEWNESS t, tþτð Þ½ �

Eℚ
t RETURN_SKEWNESS t, tþτð Þ½ ��1, in which the total return skewness

is calculated from t to tþ τ: The quantity spt corresponds to the excess return on a
skew swap, which pays the equity’s realized skewness over the term of the contract.
The literature has mainly focused on the variance premium, while the skew pre-
mium has received little attention, especially from theoretical research.

The data for the variance premium covers the period from Jan. 1990 to Dec.
2016 and is from the Chicago Board Options Exchange (CBOE). For the skew risk
premium and implied volatility surface, I use European options written on the S&P
500 index and traded on the CBOE. The options data cover the period from
Jan. 1996 to Dec. 2016 and are from OptionMetrics.12 Table 1 shows summary
statistics for 1-month variance and skew risk premiums.13 Figure 2 shows the
implied volatility curves. The size of the variance and skew premiums as well as
the level and the slope of implied volatility curves remain a challenge for asset
pricingmodels. This article shows that a model with GDA preferences and learning
about rare depressions jointly captures standard moments of equity returns, high
moment premiums, and option prices with new evidence about the variance term
structure.

TABLE 1

Summary Statistics: Variance and Skew Risk Premiums

Table 1 reports monthly descriptive statistics for the conditional variance vpt and skew spt premiums. Mean, median, Std.
Dev., max, skewness, and kurtosis report the sample average, median, standard deviation, maximum, skewness, and
kurtosis, respectively. The empirical statistics of the variance and skew risk premiums are for the U.S. data from Jan. 1990 to
Dec. 2016 and from Jan. 1996 to Dec. 2016, respectively.

vpt spt

Mean 10.24 �42.12
Median 7.50 �68.11
Std. Dev. 10.49 82.11
Max 83.70 447.37
Skewness 2.62 3.57
Kurtosis 14.15 16.26

11In the model, the Radon–Nikodym derivative is defined as dℚ
dℙ¼ Mtþ1

Et M tþ1ð Þ and allows one to compute
the risk-neutral moments.

12I present the empirical methodology and the model-based asset prices in Supplementary Material.
13The estimates are consistent with Bakshi, Kapadia, andMadan (2003), Bollerslev et al. (2009), and

Kozhan et al. (2013).
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B. Calibration

To better understand the role of GDA, I consider three frameworks: a model
with GDA preferences (GDA), an economy with disappointment aversion prefer-
ences (DA), and a specification with Epstein–Zin preferences (EZ). The compar-
ison of GDA and DA isolates the contribution of disappointment aversion, whereas
the comparison of GDA and EZ illustrates the impact of the agent’s preference for
early resolution of uncertainty. Having solved the model numerically, I generate
10,000 simulations of each calibration and report model-based 5th, 50th, and 95th
percentiles of sample moments of cash flows and asset prices across all simula-
tions.14 In line with the data, the model-implied cash flows and returns are based on
simulations with depressions, while the model-based variance forwards, moment
risk premiums, and option prices correspond to simulations without depressions.
The results are robust to the inclusion of rare events, which are excluded to
eliminate the impact of large consumption declines and to highlight the role of
learning and GDA.

Table 2 reports the parameter values. As in Bansal and Yaron (2004), I make
the model’s time-averaged consumption statistics consistent with observed annual
log consumption growth. As in Collin-Dufresne et al. (2016), I calibrate the
recession state to a consumption decline in the United States during the Great
Depression.15 Specifically, I set π11 ¼ 1,151=1,152 and π22 ¼ 47=48: These num-
bers imply an average duration of the high-growth state of 1�π11ð Þ�1 ¼ 96 years

FIGURE 2

Implied Volatilities

GraphAof Figure 2 plots the empirical 1-month implied volatility curve as a function ofmoneyness.GraphBplots the empirical
implied volatility curves for ATMandOTMoptions as functions of the time tomaturity (inmonths). All curves are for theU.S. data
from Jan. 1996 to Dec. 2016.
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Graph B. OTM/ATM Implied Volatilities

14The previous version of the paper reported model population moments. For a convenient expo-
sition of tables and figures, those results are not reported but are available from the author. In those
results, I check that the fact the model explains the variance term structure and other moments is not a
finite-sample phenomenon.

15The Great Depression is the only example of a consumption disaster in U.S. history for the period
considered in my paper. Thus, I naturally calibrate the recession state to this observation following
Collin-Dufresne et al. (2016). Furthermore, Nakamura, Steinsson, Barro, andUrsua (2013) note that rare
disasters tend to unfold over multiple years. Instead of assuming extreme instantaneous consumption
disasters, I choose a milder depression with an average duration corresponding to 4 years of the Great
Depression.
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and the depression state of 1�π22ð Þ�1 ¼ 4 years. The unconditional probability of
expansion is π11 ¼ 1�π22ð Þ= 2�π11�π22ð Þ¼ 0:96 and hence the economy expe-
riences one 4-year depression per century, consistent with the historical data.
Consumption declines on average at the annual rates of μ2�12¼�4:6% in the
depression state, which is equal to an average annual decline in the real, per capita
log consumption growth during the Great Depression.

I now calibrate parameters in the dividend process. To compare my results to
prior studies, particularly the disaster literature, I set the leverage ratio λ¼ 2:6, the
value used in Seo andWachter (2019).16 I further follow the literature and set gd to
equalize the long-run dividend and consumption growth. The standard deviation of
the dividend process σd is used to generate large annual dividend volatility observed
in the data.

Table 2 further summarizes the values of GDA, DA, and EZ preferences. I set
β12 ¼ 0:99 and 1= 1�ρð Þ¼ 1:5 in all cases. In the GDA model, the coefficient of
relative risk aversion is 1�α¼ 1=1:5: This cancels the Epstein–Zin adjustment in
SDF as shown in Section III and also deletes one degree of freedom caused by extra
GDA parameters. I jointly set θ¼ 8:41 and δ¼ 0:930 to match the high equity
premium. The calibrated disappointment aversion is consistent with the empirical
estimates from 3.29 to 8.41 (Delikouras (2017)). Note that the variance term
structure, the variance and skew premiums, and the implied volatility surface are
not directly targeted during the model calibration.

In the DA model, I set 1�α¼ 1�ρ¼ 1=1:5 to eliminate the impact of a
relative risk aversion parameter on SDF. I also shut down the GDA channel by
setting δ¼ 1: This inevitably generates larger effective risk aversion in good times
due to an increased number of disappointing events, significantly distorting equity

TABLE 2

Parameter Values

Table 2 reports parameter values in the cash-flow processes and the three models: GDA, DA, and EZ.

Parameter Description Value

π11 Transition probability from expansion to expansion 1,151=1,152
π22 Transition probability from recession to recession 47=48
μ1�12 Consumption growth in expansion 2.06
μ2�12 Consumption growth in recession �4.6
gd �12 Mean adjustment of dividend growth �2.87
σ� ffiffiffiffiffiffi

12
p

Std. Dev. of consumption growth shock 2.6
σd �

ffiffiffiffiffiffi
12

p
Std. Dev. of dividend growth shock 11.41

λ Leverage ratio 2.6

GDA DA EZ

β12 Discount factor 0.99 0.99 0.99
1= 1�ρð Þ EIS 1.5 1.5 1.5
1�α Risk aversion 1=1:5 1=1:5 6.0
θ Disappointment aversion 8.41 0.6 0
δ Disappointment threshold 0.930 0

16I regress the annual dividends on the annual consumption covering the period 1930–2016 and find
the leverage ratio is around 2.5, a number within an interval of commonly used values from 1.5 to 4.5.
The leverage ratio is an important parameter for two reasons. First, it controls the volatility of dividends
in normal times. Second, it determines the decline of dividends in the depression state. Consequently,
a larger leverage parameter would increase the payoff of put options, conditional on the depression
realization.
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moments in the DAmodel. Thus, I decrease the disappointment aversion parameter
θ¼ 0:6 to match the observed equity premium. The remaining parameters are fixed
at the initial values. For the EZmodel, I turn off disappointment aversion by setting
θ¼ 0: The model operates only through the risk aversion channel with the coeffi-
cient of relative risk aversion of 1�α¼ 6: In this case, the agent has a preference for
early resolution of uncertainty, a workhorse in the asset pricing literature. Other
parameters correspond to those in the GDA model.

C. Endowments and Equity Returns

Panel A of Table 3 compares the annualized consumption and dividends
moments of the data with those implied by the calibration. A two-state regime-
switching process matches the key empirical statistics well. Panel B of Table 3
reports the annualized moments of equity returns for the three specifications. All
three models do a good job of accounting for salient features of equity returns,
as all predict the low risk-free rate, the large equity premium, and the volatility
of excess returns. Also, the volatility of the risk-free rate and the level of the log
price-dividend ratio correspond well to the empirical estimates. The shortcoming
of the three models is too low volatility of the log price-dividend ratio.

D. The Price of Variance Risk

Figure 3 compares the empirical and model-based term structure of variance
swap prices and returns. Graph A shows that the GDA model does a good job
of matching the overall shape of annualized Sharpe ratios. In particular, it generates
a curve that is negative and steep at shorter horizons and becomes positive and

TABLE 3

Cash Flows and Stock Market Returns

Panel A of Table 3 reports moments of consumption and dividend growth denoted by Δc and Δd : Panel B reports moments of
the log risk-free rate r f , the excess log equity returns re � r f , and the log price-dividend ratio PD: The entries are annualized
statistics except for autocorrelation andcorrelation. Themoments are for thedata and the threemodels:GDA,DA, andEZ. The
empirical moments are for the U.S. data from Jan. 1930 to Dec. 2016. For each model, I simulate 10,000 economies at a
monthly frequencywith a sample size equal to its empirical counterpart and report percentiles of sample statistics. Themodel-
implied results are based on the simulations with consumption disasters, consistent with the historical data. I use common
notations for mean E , volatility σ, autocorrelation AC1, and correlation Corr.

Data

GDA DA EZ

5% 50% 95% 5% 50% 95% 5% 50% 95%

Panel A. Cash Flows

E Δcð Þ 1.83 0.91 1.85 2.40 0.91 1.85 2.40 0.91 1.85 2.40
σ Δcð Þ 2.22 1.90 2.28 3.19 1.90 2.28 3.19 1.90 2.28 3.19
AC1 Δcð Þ 0.50 0.09 0.30 0.62 0.09 0.30 0.62 0.09 0.30 0.62
E Δdð Þ 1.44 �1.10 1.91 4.44 �1.10 1.91 4.44 �1.10 1.91 4.44
σ Δdð Þ 11.04 9.51 11.05 12.97 9.51 11.05 12.97 9.51 11.05 12.97
AC1 Δdð Þ 0.19 0.09 0.27 0.46 0.09 0.27 0.46 0.09 0.27 0.46
Corr Δc,Δdð Þ 0.55 0.38 0.55 0.71 0.38 0.55 0.71 0.38 0.55 0.71

Panel B. Returns

E r fð Þ 0.81 �0.13 0.86 1.49 0.68 1.14 1.20 0.22 1.03 1.41
σ r fð Þ 1.87 1.48 2.52 3.51 0.04 0.25 1.22 0.73 1.50 2.34
E re � r fð Þ 5.22 3.67 6.10 8.35 3.43 6.04 8.47 3.50 5.89 8.19
σ re � r fð Þ 19.77 15.58 19.22 23.11 13.03 16.02 20.34 14.64 18.69 23.49
E PDð Þ 3.11 2.96 3.03 3.05 2.90 2.97 2.98 2.95 3.04 3.06
σ PDð Þ 0.33 0.04 0.08 0.18 0.01 0.05 0.18 0.03 0.08 0.22
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upward-sloping at longer maturities. The figure also shows that both DA and EZ
specifications fail to reconcile the concave and upward shape of the term structure.
Consistent with Dew-Becker et al. (2017), the calibration with Epstein–Zin
preferences underprices variance risk in the short term and overprices future
variance in the long term. The DA model implies even more negative Sharpe
ratios at longer horizons, while the 1-month forwards earn a similar risk premium
as in the EZ model. Graph B plots the average prices of forward variance claims
for different maturities in the data and the three models. The empirical curve is
steep and concave at the very short end and it flattens significantly at the long end.
In contrast, the DA and EZ specifications predict strongly upward-sloping term
structures at all horizons. Although the GDA model generates slightly higher prices
of variance claims, it captures the concave shape and the flatness of the curve at
longer maturities.

Table 4 augments the results in Figure 3 by reporting the p-values of annual-
ized Sharpe ratios with respect to their finite-sample distribution. For each model, it
shows the fraction of samples across 10,000 simulations of the economy satisfying

FIGURE 3

Sharpe Ratios and Forward Variance Claim Prices

Figure 3 plots annualized Sharpe ratios and average prices for forward variance claims for the data and the three models:
GDA, DA, and EZ. The prices are reported in annualized volatility terms. The empirical lines are fromDew-Becker et al. (2017)
andcorrespond to theU.S. data from1996 to2013. For eachmodel, I simulate 10,000economies at amonthly frequencywith a
sample size equal to its empirical counterpart and reportmedians of sample statistics. Themodel-implied results arebasedon
the simulations without consumption disasters, consistent with the historical data.
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TABLE 4

Model Tests Using Annualized Sharpe Ratios for Forward Variance Claims

The entries in Table 4 are for the three models: GDA, DA, and EZ. For each model, I simulate 10,000 economies at a monthly
frequencywith a sample size equal to the length of the variance swapdata. In each simulation, I calculate average annualized
Sharpe ratios for forward variance claims with 1-, 3-, and 12-month maturities. For eachmodel, the first row shows fractions of
samples in which the simulated Sharpe ratios are at least as small as the empirical 1-month estimates. The second and third
rows present the fraction of samples in which the simulated Sharpe ratios are at least as large as the empirical 3-month and
12-month estimates, respectively. The entries of the bottom row are the fraction of samples in which all three conditions are
satisfied simultaneously. The model-implied results are based on the simulations without consumption disasters, consistent
with the historical data.

p-Value

GDA DA EZ

Simulated 1mo/SR ≤ empirical SR 0.91 0.26 0.27
Simulated 3mo/SR ≥ empirical SR 0.38 <0.01 0.03
Simulated 12mo/SR ≥ empirical SR 0.48 <0.01 <0.01
Joint test: 1mo/SR ≤ data ∧ 3mo/SR ≥ data ∧ 12mo/SR ≥ data 0.32 <0.01 <0.01
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one of the conditions. For the first three conditions, simulated average Sharpe ratios
for 1-, 3-, and 12-month horizons should be, respectively, smaller, larger, and larger
than the empirical estimates. One can interpret these fractions as p-values for a
one-sided test of the model generating as negative or as positive average Sharpe
ratios for a particular maturity as in the data. For the last condition, simulated
statistics should jointly satisfy the first three requirements. This corresponds to the
p-value for a test of the model replicating the observed upward-sloping shape of
the term structure.

Table 4 shows that we cannot reject any of the three models based on the
1-month variance forward returns only. Specifically, one would expect to see as
small average 1-month Sharpe ratios as observed empirically in 91%, 26%, and
27% of the time in the GDA, DA, and EZ specifications, respectively. At longer
maturities, however, one can reject at the 5% level the null hypothesis that theDAor
EZ frameworks generate the variance swap data. The GDAmodel instead generates
large p-values for all tests and cannot be rejected. In particular, the models with
disappointment aversion or Epstein–Zin preferences would predict positive Sharpe
ratios at longer maturities as in the data in fewer than 3% of simulations, while the
likelihood of replicating the overall shape is less than 1%. This is in stark contrast to
the GDAmodel, which captures negative Sharpe ratios at the short end and positive
ones at the long end in 32% of the simulations.

To gain a better understanding of the results, Figure 4 illustrates annualized
return volatility as a function of the posterior probability of the expansion in the
threemodels. The volatility has a pronounced humped shape and ismaximized at an
interior point of the probability simplex in all cases. The GDA model generates
highly skewed conditional volatility. The DA specification yields a symmetric
shape of the volatility curve. The volatility line in the EZ economy is roughly
located in the middle of the two. For Epstein–Zin and especially disappointment
aversion preferences, return volatility is high for a wide range of beliefs and
becomes low only when the investor has full confidence in the state. As the

FIGURE 4

Return Volatility

Figure 4 plots equity return volatility as a function of a posterior belief for the three models: GDA, DA, and EZ. Quantities are
reported in annualized volatility terms, 100� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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investor’s beliefs tend to change slowly over time, high return volatility persists
in the long term and hence increases the hedge against long-term volatility risk.
As a result, this generates the upward-sloping term structure of variance claim
prices, which is inconsistent with the data.17

In contrast, return volatility in the GDA model is high within a narrow range
of beliefs and quickly diminishes outside this interval. When the investor’s beliefs
become pessimistic, return volatility initially spikes but does not persist in the long
term, implying a larger amount of variance risk in the short term. In equilibrium,
the properties of return variance transmit to variance forwards, which generates the
inversion in their prices in bad times. In the short term, the inversion increases the
hedge against realized variance. In the long run, it kills the upward-sloping effect
of time-varying disaster risk and produces the flat unconditional term structure
of prices. I also show that the inversion is strong enough to produce on average
positive and slightly increasing Sharpe ratios at longer maturities.

The mechanism determining the conditional return volatility is as follows:
Veronesi (1999) demonstrates that, in the endowment economy with two hidden
regimes, price sensitivity to news is strongly driven by the risk aversion compo-
nent stemming from the investor’s degree of risk aversion. In the DA model, risk
aversion is equally large in the expansion and depression states because a high
disappointment threshold implies a large number of disappointing outcomes in
the two regimes. Thus, price sensitivities are similar across states, resulting in
symmetric conditional return volatility. In the EZ economy, equity prices are
more sensitive to consumption shocks in good times than in bad times, although
Epstein–Zin preferences do not generate a significant difference in price sensi-
tivities in the two regimes. In the GDAmodel, instead, substantial countercyclical
risk aversion leads to a stronger overreaction of stock prices to bad news in good
times, whereas equity prices are substantially less sensitive to good news in bad
times. This asymmetry in price sensitivities leads to strongly skewed return
volatility in the GDA model.

As an additional exercise, Figure 5 provides impulse responses of the condi-
tional term structure of Sharpe ratios and average prices. The investor holds
a median belief (normal times). I then study conditional dynamics of the term
structures next period when consumption growth is 1.5 standard deviations above
and 1.5, 2.2, and 2.5 standard deviations below average growth in the expansion
(good and bad times). Figure 5 shows that the DA and EZ models predict negative
Sharpe ratios for all economic conditions. Contrary to the empirical evidence,
average Sharpe ratios become more negative in the upside scenario under disap-
pointment aversion. The economy with GDA preferences generates a procyclical
and steep curve for short-term claims, consistent with Aït-Sahalia et al. (2020).
Furthermore, the term structure of Sharpe ratios is insignificant for maturities
longer than 2 months in good and normal times as well as bad but not depression-
like states and is steep and positive in response to large consumption declines.

17This intuition also applies to the models with full information. If the state is observable, the high
stock market variance happens during consumption disasters and hence persists on average for 4 years,
the average duration of a depression state. As a result, high variance riskwill concentrate in the long term,
and forward variance will be upward-sloping, counter to what we observe empirically.
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The latter feature of the GDA model enables to match the sign and shape of the
unconditional curves.

Figure 5 further depicts impulse responses of variance claim prices. The
average curve for the DA model remains upward-sloping in all scenarios. This
explains negative average returns on variance forwards. For the EZ economy, the
term structure of prices switches from strongly increasing in normal and good times
to slightly increasing in bad (but not severe) times, and it even becomes weakly
downward-sloping in very bad times. Nevertheless, this amplification of short-term
prices is too weak to generate on average positive returns on holding a variance
forward. In contrast, GDA inverts the term structure in all bad scenarios, and this
inversion is substantially stronger than in the EZ economy. Thus, GDA preferences
strongly amplify the short-term variance risk in bad times that enables one to
replicate empirical term structures.

FIGURE 5

Conditional Sharpe Ratios and Forward Variance Claim Prices

Figure 5 plots annualized Sharpe ratios and average prices for forward variance claims for the three models: GDA, DA, and
EZ. Each graph shows the term structures in good, normal, and bad times. The economy is initially in normal times,
corresponding to a median posterior belief. In good (bad) times, denoted byþ1.0σ (�1.5σ, �2.2σ, and�2.5σ), consumption
growth is 1.0 (1.5, 2.2, and 2.5) standard deviation(s) above (below) an average growth in expansion.
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Next, I conduct a sensitivity analysis to examine the robustness of key
results to alternative calibrations of preference specifications and to address the
concern that the findings are driven by a particular choice of parameters. Specif-
ically, I change one key parameter in each of the three preference specifications,
while holding the remaining parameters as in the original calibration. In the GDA
model, I consider smaller and larger values of disappointment aversion and
threshold parameters. In the DA model, I decrease or increase disappointment
aversion compared to the original calibration. In the EZ model, I consider smaller
and larger relative risk aversion coefficients.

Figure 6 depicts Sharpe ratios and prices for variance forwards in various
calibrations of GDA preferences. The shape of variance forward prices flattens
and the term structure of Sharpe ratios becomes upward-sloping with the higher
disappointment threshold or disappointment aversion. Intuitively, variance risk is
amplified more in the short term than in the long term in bad times. As a result, this
generates downward- and upward-sloping patterns in prices and Sharpe ratios,
respectively. In normal and good times, average prices are slightly increasing in
the horizon. However, only short-term variance risk earns a significant premium as
measured by large and negative Sharpe ratios for 1 and 2 months but insignificant
ratios for longer horizons. Since higher disappointment risk reinforces the first
effect, the higher disappointment threshold or disappointment aversion implies
flatter and steeper term structures of prices and Sharpe ratios, respectively.

FIGURE 6

Sensitivity of Sharpe Ratios and Forward Variance Claim Prices: GDA

Figure 6 plots annualized Sharpe ratios and average prices for forward variance claims for different model calibrations with
generalized disappointment aversion preferences. GDA corresponds to the original GDA model. In GDAθl and GDAθh , θl ¼
6:41 and θh ¼ 10:41: In GDAδl andGDAδh , δl ¼ 0:920 and δh ¼ 0:940. If not stated otherwise, the remaining parameters are set
at the original values in the GDA model. For each model, I simulate 10,000 economies at a monthly frequency with a sample
size equal to its empirical counterpart and report medians of sample statistics. The model-implied results are based on the
simulations without consumption disasters, consistent with the historical data.
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Figure 7 examines the impact of disappointment and risk aversion param-
eters on the variance term structures in the models with Gul and Epstein–Zin
preferences. In the DA specification, the slope of forward variance prices is
increasing in disappointment aversion. The reason is that the disappointment-
averse investor strongly dislikes low and high variance. Thus, stronger disap-
pointment aversion increases already high insurance premia against shocks to
realized and future volatility. In the EZ economy, the slope of forward variance
prices is decreasing in risk aversion. To generate a close-to-zero slope at least
after the 10-month maturity, the risk aversion should be at least 7. For this value,
however, the model would generate a Sharpe ratio of less than �2.0 for the
1-month claim compared to�1.3 in the data. Moreover, with this value of relative
risk aversion, the mean equity premium has a median value of 8% in the EZ
model, well above the empirical estimate of around 5%. Raising risk aversion
even more would only worsen the model fit with the variance term structure at the
1-month maturity and with equity moments and higher-moment risk premiums
(see the Supplementary Material). Thus, one cannot reconcile the variance term
structure in the EZ framework by increasing risk aversion.

In sum, this sensitivity analysis confirms that the pricing kernel, necessary
to reconcile the empirical variance term structure, is consistent with GDA and
cannot be supported by parameter values in alternative preferences. Supplementary

FIGURE 7

Sensitivity of Sharpe Ratios and Forward Variance Claim Prices: DA and EZ

Figure 7 plots annualized Sharpe ratios and average prices for forward variance claims for different model calibrations with
disappointment aversion and Epstein–Zin preferences. DA and EZ correspond to the original DA and EZ models. In DAθl
and DAθh , θl ¼0:5and θh ¼ 0:7. In EZ 1�αð Þl and EZ 1�αð Þh , 1�αð Þl ¼ 5 and 1�αð Þh ¼ 7. If not stated otherwise, the remaining
parameters are set at the original values in the DA and EZmodels. For each model, I simulate 10,000 economies at a monthly
frequency with a sample size equal to its empirical counterpart and report medians of sample statistics. The model-implied
results are based on simulations without consumption disasters, consistent with the historical data.
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Material augments a comparative statics exercise by reporting the remaining results
in alternative model calibrations. It demonstrates that the DA and EZ specifications
with different parameter choices are unable to capture the higher-moment risk
premiums and implied volatility curves.

E. Variance and Skew Risk Premiums

Panel A of Table 5 collects moments of the variance premium and related
measures in the data and models. The GDA economy is able to generate a large and
volatile variance premium. It also qualitatively respects the non-normality of the
variance premium distribution, although the sample skewness and kurtosis statistics
are smaller relative to the data. The GDAmodel accounts for the variance premium
with empirically consistent conditional return variances under both probability
measures. In particular, it predicts that return variance is more volatile under
the risk-neutral distribution and that both variances are persistent, as they are in
the data.

I now examine return predictability by the variance premium documented
by prior literature. I regress the 1-, 3-, and 6-month cumulative excess log returns
(expressed in percentages) on the lagged monthly variance premium. Panel B
of Table 5 reports positive and slightly decreasing regression coefficients and

TABLE 5

Variance Premium and Predictability

Panel A of Table 5 reports moments of variance premium vp, market return variances varℙt r eð Þ and varℚt r eð Þ under physicalℙ
and risk-neutral ℚ probability measures. The Panel A entries are monthly statistics. Panel B reports results of the predictive
regression of h-month future excess log equity returns constructed as rextþ1!tþh ¼

Ph
i¼1 re,tþi � r f ,t�1þið Þ on the lagged variance

premium VPt : Specifically, the slope estimates β hð Þ and R2 hð Þ are based on the linear projection:

100� rextþ1!tþh ¼ INTERCEPTþβ hð Þ�VPt þ εtþh ,h¼1,3,6:

The moments and regression outputs are for the data and the three models: GDA, DA, and EZ. The empirical statistics are for
theU.S. data from Jan. 1990 toDec. 2016. For eachmodel, I simulate 10,000 economies at amonthly frequencywith a sample
size equal to its empirical counterpart and report percentiles of sample statistics based on these series. The model-implied
results are based on the simulations without consumption disasters, consistent with the historical data. I use common
notations for mean E , volatility σ, autocorrelation AC1, skewness SKEW, and kurtosis KURT.

Data

GDA DA EZ

5% 50% 95% 5% 50% 95% 5% 50% 95%

Panel A. Variance Premium

E VPð Þ 10.27 8.13 12.32 17.14 1.34 2.11 3.39 3.15 4.92 7.23
σ VPð Þ 10.87 12.22 15.99 18.93 1.53 3.11 5.25 4.79 7.46 10.91
SKEW VPð Þ 2.33 0.91 1.49 2.25 0.49 2.76 4.17 �0.62 1.71 2.98
KURT VPð Þ 10.90 2.34 4.06 7.67 5.88 12.03 24.96 4.00 7.27 13.59
σ varℙt r eð Þ� �

29.32 17.34 25.44 32.68 5.02 14.25 36.48 13.00 25.50 40.47
AC1 varℙt r eð Þ� �

0.79 0.70 0.81 0.88 0.61 0.79 0.92 0.66 0.82 0.91
σ varℚt r eð Þ� �

33.76 29.58 40.60 49.11 6.55 17.24 38.91 17.79 31.46 45.00
AC1 varℚt r eð Þ� �

0.80 0.69 0.79 0.85 0.62 0.80 0.92 0.66 0.82 0.89
SKEW varℚt r eð Þ� �

3.53 0.86 1.47 2.21 2.40 3.73 5.75 1.47 2.30 3.34
KURT varℚt r eð Þ� �

21.47 2.30 4.13 7.78 8.46 19.47 45.54 3.87 8.24 16.18

Panel B. Predictability of Excess Returns

β 1mð Þ 0.76 0.19 0.75 1.38 �1.43 1.81 5.56 �0.95 0.93 2.77
R2 1mð Þ 2.70 0.15 2.39 6.99 0.02 1.09 4.19 0.01 1.31 6.01
β 3mð Þ 0.83 0.18 0.63 1.09 �1.31 1.55 4.02 �0.73 0.87 2.11
R2 3mð Þ 8.61 0.47 5.57 15.24 0.02 2.39 8.67 0.03 3.28 12.87
β 6mð Þ 0.57 0.15 0.50 0.82 �1.05 1.24 3.06 �0.63 0.74 1.60
R2 6mð Þ 7.55 0.68 7.78 20.79 0.08 3.32 13.14 0.04 4.67 16.95
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increasing R2s with the horizon. The GDA model matches the magnitude and
monotonicity of coefficients and R2 statistics.

Table 5 shows that the model with disappointment aversion preferences pro-
duces a mean and volatility of the variance premium that are more than five times
smaller thanwith the generalized utility function. Turning off theGDAchannel also
leads to a significant reduction in the volatility of return variance in the DA model.
As the variance premium decreases, its predictive power for the excess log returns
also suffers. This is manifested in the lower R2s and empirically inconsistent
regression coefficients. Next, I turn off any source of (generalized) disappointment
aversion and consider a representative agent with Epstein–Zin preferences. The EZ
model leads to around a twofold increase in the mean and volatility of the variance
premium relative to the DA model, but sample statistics are less than half of the
numbers in the GDA model. A smaller variance premium is due to the reduced
volatility in conditional variances. A smaller variance premium in the DA and EZ
models results in excessively high regression coefficients and too small R2s in the
predictive regressions.

Table 6 reports summary statistics of the skew risk premium in the data and
models. The GDA model produces a sizeable skew premium, which corresponds
well to the historical value and generates positive skewness and excess kurtosis
statistics. The conditional mean of the return skewness under both measures is
significantly negative, although the model cannot fully capture the size observed in
the data. The main drawback of the GDA model is lower volatility of the skew
premium, realized and implied skew. Since conditional dynamics of the model are
driven by a single state, allowing themodel to operate through other channels (time-
varying expected growth and volatility, jumps in consumption, etc.) would make
the economy more flexible to jointly match all moments.

Table 6 also shows that disappointment aversion predicts the wrong sign of the
skew premium. The DA model also predicts the smallest first and second moments
of return skewness across the three models. In the EZ model, the risk-neutral return
density becomes more distorted toward the left tail; however, the model generates

TABLE 6

Skew Premium

Table 6 reports the moments of skew premium SP, market return skewness SKEWℙ
t r eð Þ and SKEWℚ

t r eð Þ under the physical ℙ
and risk-neutralℚprobabilitymeasures. The entries aremonthly statistics. Themoments are for the data and the threemodels:
GDA, DA, and EZ. The empirical statistics are for the U.S. data from Jan. 1996 to Jan. 2016. For eachmodel, I simulate 10,000
economies at a monthly frequency with a sample size equal to its empirical counterpart and report percentiles of sample
statistics based on these series. The model-implied results are based on the simulations without consumption disasters,
consistent with the historical data. I use common notations for mean E , volatility σ, skewness SKEW, and kurtosis KURT:

Data

GDA DA EZ

5% 50% 95% 5% 50% 95% 5% 50% 95%

E SPð Þ �42.20 �39.11 �34.58 �30.78 26.58 34.88 56.36 �22.79 �19.34 �12.84
σ SPð Þ 81.81 11.23 26.42 46.52 24.44 29.53 377.79 3.03 21.31 91.65
SKEW SPð Þ 3.57 �4.32 3.28 8.56 �3.37 1.24 13.98 �11.70 3.23 13.69
KURT SPð Þ 16.26 1.93 43.48 112.04 3.10 4.65 215.60 2.04 80.40 219.37
AR1 SPð Þ 0.04 �0.12 0.15 0.62 �0.01 0.61 0.70 �0.27 0.11 0.58
E SKEWℙ

t r eð Þ� � �87.52 �42.55 �39.99 �33.83 �20.49 �15.82 �12.34 �38.00 �33.98 �29.43
σ SKEWℙ

t r eð Þ� �
173.59 8.99 11.79 22.21 7.68 11.41 15.56 12.03 13.61 23.97

E SKEWℚ
t r eð Þ� � �177.73 �70.44 �64.13 �53.83 �17.39 �13.22 �9.82 �47.60 �42.42 �36.45

σ SKEWℚ
t r eð Þ� �

92.33 23.20 28.27 41.96 7.91 11.14 15.54 16.44 18.68 28.90
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less than half of the average skew premium in the data. Although the EZ model
predicts the correct sign, it significantly understates the magnitude. Overall, GDA
better explains salient features of the skew premium than nested preferences.

F. The Term Structure of Implied Volatilities

Figure 8 compares the implications of all models for equity index options. The
implied volatilities are expressed as a function ofmoneyness. The empirical implied
volatilities decline in moneyness, a pattern known as the implied volatility skew.
The DA implied volatilities for the 1-month maturity are flat and approximately
equal to the realized stock market volatility. One apparent candidate to generate
a steep volatility skew is high risk aversion. Although raising risk aversion in
Epstein–Zin preferences improves the model’s performance, this cannot fully
account for the level of implied volatilities. In contrast, the GDA framework can
fit the option prices much better. Figure 8 additionally presents implied volatilities
for ATM and 0.90 OTM options. In the data, ATM (OTM) volatilities slightly
increase (decrease) over the horizon. Neither DA nor EZ specification can match
the level of the empirical curves. In contrast, GDA can explain overall patterns and
magnitudes of the empirical implied volatilities.

FIGURE 8

Implied Volatilities

Graph A of Figure 8 plots the 1-month implied volatility curve as a function of moneyness for the data and the three models:
GDA, DA, and EZ. Graphs B and C plot the empirical and model-based implied volatility curves for ATM and OTM options as
functions of the time to maturity (in months). The empirical statistics are for the U.S. data from Jan. 1996 to Dec. 2016. The
model-based curves are calculated for option prices using the annualizedmodel-implied interest rate and dividend yield. For
each model, I simulate 10,000 economies at a monthly frequency with a sample size equal to its empirical counterpart and
report the medians of sample statistics. The model-implied results are based on the simulations without consumption
disasters, consistent with the historical data.
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V. Conclusion

I build an equilibrium model with GDA preferences and rare events in con-
sumption growth. I show that the combination of the investor’s tail aversion and
fluctuating economic uncertainty due to learning about a hidden depression state
explains a wide variety of asset pricing phenomena. Most notably, the model
rationalizes the variance term structure, a new stylized fact of the variance swap
data. In particular, the model predicts large and negative Sharpe ratios on 1-month
variance forwards and produces a slightly positive term structure for maturities
longer than 2 months. Furthermore, the model accounts for the large variance and
skew risk premiums, and generates a realistic volatility surface implied by index
options, while simultaneously matching the salient features of equity returns
and the risk-free rate. I show that the success of the model is attributable to
GDA by comparing GDA preferences to nested utilities: disappointment aversion
and Epstein–Zin preferences. Although three specifications can reasonably match
equity moments, only GDA preferences can explain the variance term structure,
moment risk premiums, and option prices.

There are several interesting avenues for future research. First, my article
highlights the importance of the specific values of the disappointment threshold
and disappointment aversion. Although Delikouras (2017) provides the empirical
estimate of a disappointment aversion parameter in Gul (1991), joint estimation
of the parameters in Routledge and Zin (2010) has not been addressed yet. Second,
it is fruitful to explore the implications of the richer model for the term structure of
dividend strips and interest rates. For instance, the extension with post-depression
recoveries (Hasler and Máfe (2016)) has the potential to jointly explain the term
structures of interest rates, equity and variance risk. Third, GDA is likely to have
additional asset pricing implications for risk premia with a multidimensional-
learning problem (Johannes et al. (2016)) or rational parameter learning (Collin-
Dufresne et al. (2016)). Finally, it is interesting to study GDA preferences with
other behavioral biases (Brandt, Zeng, and Zhang (2004)).

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109023000364.
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