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Fractal grain distribution in snow avalanche deposits
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ABSTRACT. Scale-invariant phenomena are common in nature and fractals represent a suitable
mathematical tool to describe them. Snow avalanche flow is made up of a mixture of grains and
aggregates (granules) which can be broken or sintered together. The granular properties and interactions
are important in understanding how avalanches flow. In this paper a fractal model for describing the
grain-size distribution in the deposit of a snow avalanche is formulated by introducing the concept of
aggregation probability. Although the model is two-dimensional, an extension to the three-dimensional
case is proposed in the conclusions. The cumulative size distribution law is extrapolated from the model,
and a physical discussion on fractal parameters is conducted. Finally, an experimental application to a
real avalanche event is considered to confirm the predictions of the model and to present an extension
to multifractality.

INTRODUCTION
The snowpack consists of layers which, after collapse,
disintegrate and transform into a granular fluid. The physical
properties of the granules (size, hardness, shape) play an
important role in the dynamics of snow avalanches. Since
the 1980s, avalanche dynamic models have been proposed
that account for how the granular interaction influences
flow friction (Salm and Gubler, 1985; Norem and others,
1987; Dent, 1993; Salm, 1993). Issler and others (2008)
have shown that avalanche motion and path are affected
by the granulometric properties of the multilayered flow,
in such a way that dense core and fluidized layers might
have different directions depending on the topography of
the slope. More recent models explicitly track the evolution
of granular fluctuation energy (Bartelt and others, 2006;
Buser and Bartelt, 2009). A basal layer of ice grains with
high friction ensures fast motion of the upper layers, in
which the low shear rates allow the cohesive grains to sinter
together (Rognon and others, 2008). In the deposition zone,
grain dimension, φ, varies from solid blocks, which can be
>200mm in diameter, to smaller elements (φ < 50mm)
(Bartelt and McArdell, 2009). The grain distribution has been
shown to depend upon avalanche type: in dry avalanches
median grain sizes are smaller than in wet snow avalanches,
which are characterized by larger blocks. The former are,
moreover, better sorted than the latter (Bartelt and McArdell,
2009). In addition, recent studies conducted in snow chutes
have shown that the maximum diameter can reach the entire
flow depth (Rognon and others, 2008). Jomelli and Bertran
(2001) analyzed the deposit of 25 wet snow avalanches in the
French Alps and noted that the distribution of grains shows
a vertical and longitudinal sorting that reflects a sieve effect,
similar to that observed in other rapid internal granular flows
(e.g. debris flow).
Granulometric investigations are usually part of geotech-

nical research. The analysis of soils often requires the
evaluation of the dimensions and the percentage of particles
of a given size in order to classify sands, limes and clays.
Operatively, a sample of soil is riddled using sieves with
different mesh sizes. The weight of the material fraction
retained in each sieve is related to the total weight and the
data are plotted on logarithmic scales. Cumulative curves,
i.e. log-normal, as well as Weibull and Pareto distributions,

are usually employed for data interpretation. Turcotte (1997)
collected granulometric data from deposits of different
fragmented objects (quartz, gneiss, granite, asteroids, clays,
glacial till, ash, etc.) and plotted the cumulative curves on
log–log scales. He observed that the plotted points may be
interpolated with a power law, which can be easily related
to a fractal law with the form

N ∝ 1
rD

(1)

where r is particle size, N is the number of particles which
are larger than (or equal to) the considered size and D is
the fractal dimension (Mandelbrot, 1982). In general, the
latter belongs to Q+ (i.e. the set of all positive rational
numbers) and might not be an integer (otherwise it would
be considered as a Euclidean dimension). The strength of
brittle materials, however, has been observed to be size-
dependent, and a fractal approach has been shown to
confirm experimental evidence (Carpinteri, 1994; Carpinteri
and Chiaia, 1995; Chiaia and others, 2008).
The concept of scale invariance has also been applied

in snow engineering (Chiaia and Frigo, 2009). Rosenthal
and Elder (2003) analyzed the behavior of 8023 avalanches
over 140 different paths and observed a fractal power law
between a given crown size and the number of larger
events. This tendency has been confirmed by Faillettaz
and others (2002, 2003) observing the behavior of 5000
avalanches in the French Alps monitored over 4 years.
They supposed that the roll-off observed at large crown
sizes in plots involving the slab depth may indirectly
reflect a scale-invariant distribution of snow shear resist-
ance. Chiaia and Frigo (2007) analyzed three-dimensional
(3-D) radiographs of four cubic samples of snow at different
densities in detail and introduced a deterministic model
to describe the distribution of ice grains. The authors
confirmed that the fractal dimension, D , is the parameter
that optimally describes the distribution of the voids in the
snow sample, and that it can be used to represent the scaling
of the mechanical properties of snow at different sizes.
Furthermore, to capture the randomness of the local structure
of real snow samples and to investigate snowmetamorphism,
random fractal models (Carbone and others, 2009) and
generalized Menger sponge models (Carbone and others,
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2010) have been used. Using D and the size invariance of
snow shear strength, Chiaia and Frigo (2009) presented a
renormalization group model to describe the spontaneous
release of slab avalanches.
The present work investigates the granulometric distribu-

tion of ‘snow grains’, which are defined as the solid rounded
aggregates of ice particles formed during the shear flow
within the dense core of an avalanche (Bartelt and McArdell,
2009). We adopt a fractal description of the material that
is able to reproduce the cohesive behavior of snow. The
paper is organized as follows. First, the fractal model of a
two-dimensional (2-D) grain distribution is illustrated and
the new concept of aggregation probability is presented.
Then a complementary cumulative function of snow grain
sizes is calculated, in order to compare the results of the
model with real data related to the deposit area of a
snow avalanche. Finally, the physical meaning of model
parameters is discussed, the application of the model to a real
avalanche event is shown and an extension to multifractality
is presented.

A FRACTAL MODEL FOR SNOW GRAIN
DISTRIBUTION
In the analysis of snow avalanche granulometry, power laws
have been highlighted by the research of Rognon and others
(2008), conducted in a channel chute. Supposing that the
flow is initially made of a mixture of single ice particles,
they used particle optical techniques to find that the size
distribution of snow grains in a steady and uniform avalanche
flow can be described with a power law similar to Eqn (1)
with D = 2.
In the model presented herein, the fractality is governed

by the a-value, defined in detail below, which reflects the
capacity of the ice particles to aggregate to form snow grains.
The influence of the capacity of particles to aggregate on
the fractal dimension has been highlighted by other research
on fractal properties of cohesive materials and biological
structures (e.g. Logan and Wilkinson, 1990; Kranenburg,
1994; Son and Hsu, 2008).
Due to the brittleness of ice grains in snow, the analysis

of grain-size distribution of an avalanche deposit cannot
be performed using the common geotechnical approaches,
which suppose sieving, because the mechanical action
breaks up the aggregates and the measurements may
therefore be misleading. In that sense, the granulometric
distribution of the deposit must be related to only the surveys
performed on the surface (Bartelt and McArdell, 2009). The
fractal model proposed in this paper reflects the difficulty in
having data related to the core of the deposit.
In general, as anticipated by Eqn (1), a fractal distribution

can be expressed as

Ni =
C
rDi

(2)

where Ni is the number of objects with a characteristic
linear dimension ri (say the diameter) and C is a constant
term (Mandelbrot, 1982; Turcotte, 1997). Equation (2) can
be defined as a fractal density and is the basis of the
granulometric model proposed here.
Let us suppose that large snow aggregates derive from the

union between smaller particles which, in turn, originate
from a similar mechanism, and so forth. Let a be the
probability that, for a given set of elements of equal

characteristic size, particles merge with each other to form
a grain of bigger size. That quantity, which can be defined
as ‘probability of aggregation’, is a direct consequence of
sintering between particles, as highlighted by Rognon and
others (2008). For a = 0 no aggregates form, while for a = 1
all the particles merge. Intermediate values imply that, on
the surface, both aggregates and single particles are present.
A square element with a linear dimension l0, representing

the zero-order cell is given. The corresponding area is

A0 = l
2
0 , (3)

and the number of elements of that size is N0. Four zero-
order cells may aggregate and form a first-order element with
dimension l1 = 2l0 with area

A1 = 4A0. (4)

Considering that a is the probability of each generic ith-order
cell aggregating with a similar one, the probability that a
grain of (i + 1)th order will form is

pi,i+1 = a · a · a = a3. (5)

Each event, i.e. the aggregation of two particles, is statistically
independent for each particle. Therefore,

pi,i+1 = p ∀i. (6)

Since four zero-order cells are needed to generate a first-
order cell, the number of first-order cells is

N1 = p
N0
4
=
a3

4
N0. (7)

After aggregation, if a differs from one, there are still zero-
order particles that remain separated. The number of these
is

N0d = (1− a)N0. (8)

The problem is now renormalized and first-order elements
are treated exactly as the zero-order elements treated above.
Each particle with dimension l1 = 2l0 is now taken to be the
source of second-order elements with dimension l2 = 4l0.
The area of each second-order element is

A2 = 4A1 = 4 (4A0) = 4
2A0, (9)

and the number of particles is given by

N2 = p
N1
4
= a3

N1
4
=
a3

4

(
a3

4
N0

)
=

(
a3

4

)2
N0. (10)

As before, the number of first-order particles that remain
separated is

N1d = (1− a)N1 = (1− a) a3N04 . (11)

This process is repeated at successively higher orders for
large particles (Fig. 1). For the nth cell, with linear dimension
ln = 2nl0, the area is

An = 4
nA0, (12)

while the number of unaggregated elements is given by

Nnd = (1− a)Nn = (1− a)
(
a3

4

)n
N0. (13)

Substituting Eqn (8) in Eqn (13), Nnd may be related to
unaggregated zero-order elements, i.e.

Nnd =
(
a3

4

)n
N0d. (14)
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Fig. 1. Fractal model of snow grain merging up to the third level.

Taking the natural logarithm of both sides of Eqns (14) and
(12), one can write

ln
(
Nnd
N0d

)
= n ln

(
a3

4

)
= n

(
3 ln a − ln 4) , (15)

and

ln
(
An
A0

)
= n ln 4. (16)

Replacing Eqn (16) in Eqn (15) gives

ln
(
Nnd
N0d

)
=

(
3
ln a
ln 4

− 1
)
ln
(
An
A0

)
, (17)

which is equivalent to

ln
(
Nnd
N0d

)
= ln

[(
An
A0

)3 ln aln 4−1]
. (18)

Equation (18) may then be rewritten as

Nnd
N0d

=
(
An
A0

)3 ln aln 4−1
. (19)

Table 1. Values of the fractal dimension, D , as a varies from 0 to 1

a D

0.000 ∞
0.100 11.966
0.200 8.966
0.300 7.211
0.400 5.966
0.500 5.000
0.600 4.211
0.700 3.544
0.800 2.966
0.900 2.456
1.000 2.000

Since

A0 = l20
·
·
·

An = l2n ,

(20)

where ln is the characteristic dimension of the nth-order cell,
Eqn (19) becomes

Nnd
N0d

=
(
ln
l0

)2(3 ln aln 4−1)
=

(
l0
ln

)2(1−3 ln aln 4)
(21)

and the number of unaggregated cells of nth order is

Nnd =
N0dl

2
(
1−3 ln aln 4

)
0

l
2
(
1−3 ln aln 4

)
n

. (22)

Analogies between Eqns (22) and (2) are clear. The fractal
dimension, D , is equal to

D = 2
(
1− 3 ln a

ln 4

)
, (23)

while the constant term, C , is equal to

C = N0dl
D
0 . (24)

The fractal model of grain distribution on the deposition
surface of a snow avalanche is now mathematically formu-
lated. Fractal dimension, D , depends upon the value of the
probability of aggregation, as detailed in Table 1. The fractal
dimension is always ≥2, which represents the highest order,
and it tends to infinity for a = 0 (highest disorder).

THE COMPLEMENTARY CUMULATIVE FRACTAL
FUNCTION
This fractal model allows us to calculate (once the constant
term, C , and the fractal dimension, D , are fixed) the number
of grains of a given linear dimension. Usually, granulometric
distributions are described with cumulative functions.Within
a fractal framework, granular distributions will be described
by cumulative fractal density functions. From Eqn (2), and
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from the results of the previous section, i.e. Eqns (23) and
(24), the fractal density function can be expressed as

Nnd = Cl
−D
n . (25)

Given the grain diameter, x, the cumulative fractal function,
Ncum(x), representing the number of elements smaller than
x, can be calculated as

Ncum(x) =
∫ x

0
Cl−Dn dln. (26)

Note that analytical integration is not finite because the
integrand function is unbounded in the integration interval.
That is, for D > 0

lim
ln→0

Cl−Dn =∞. (27)

Solving the integral, remembering D �= 1,

Ncum(x) = lim
ε→0

∫ x

ε

Cl−Dn dln = lim
ε→0

[
C

1−D l
1−D
n

]x
ε

. (28)

The definite integral does not exist in (0; x] because

lim
ε→0

C
1−D ε1−D = ±∞. (29)

Therefore, definite integration has to be performed in a
reduced interval. This assumption reflects the physical aspect
that a minimum dimension (e.g. a ‘quantum of snow’) is
a model input. As a matter of evidence, it can be taken
as the diameter of the smallest of particles constituting
the avalanche deposit (i.e. of elementary ice grains). Thus,
once the minimum particle dimension, φmin, is defined, the
cumulative fractal function can be calculated from

Ncum(x) =
∫ x

φmin

Cl−Dn dln. (30)

Solving the integral, for a size x, the cumulative fractal
function is

Ncum(x) =
C

1−D

(
1

xD−1
− 1

φD−1min

)
. (31)

For x = φmin, this is equal to zero, and for larger grain
dimensionsNcum increases accordingly. While it is necessary
to focus attention on larger rather than small particles, it
is convenient to compute the complementary cumulative
function which has the maximum value for the smallest
diameter and decreases to zero for larger particle sizes. For
a given length x, Eqn (31) gives the number of particles of
size≥x. Therefore, the complementary cumulative function,
Ncompl, is

Ncompl(x) = Nmax − Ncum(x), (32)

where Nmax is the maximum number of elements, which can
be calculated from Eqn (31):

Nmax = lim
x→∞

[
C

1− D
1

xD−1
− C
1−D

1
φD−1min

]

=
C

1−D

(
− 1
φD−1min

)
.

(33)

The final form of Eqn (32) can be written as

Ncompl(x) =
C

1− D
(
− 1
xD−1

)
; (34)

note that this is independent of the minimum particle size.

Table 2. Values of the fractal dimension, ν = D − 1, for a varying
from 0 to 1

a ν

0.000 ∞
0.100 10.966
0.200 7.966
0.300 6.211
0.400 4.966
0.500 4.000
0.600 3.211
0.700 2.544
0.800 1.966
0.900 1.456
1.000 1.000

As before, analogies between Eqns (34) and (2) can be
found. The complementary cumulative function can be
rewritten in the form

Ncompl(x) =
B
xν
, (35)

where the constant term is

B =
C

D − 1 (36)

and the fractal dimension is

ν = D − 1, (37)

which depends, in turn, upon the probability, a,

ν = 2
(
1− 3 ln a

ln 4

)
− 1 = 1− 6 ln a

ln 4
, (38)

as shown in Table 2.

MODEL PARAMETERS
The physical implications of the above model parameters are
now investigated. Although the fractal dimension,D , and the
constant term, C , can be related to the probability, a, and to
the number of particles, N0d, it is better to discuss quantities
C and a, which directly affect D .
Firstly, it is important to justify some choices made

throughout the model formulation. Although circular or
hexagonal elements can also generate fractal series, for
simplicity we use square elements. The basic idea behind
the model is the same. As shown below, independent of
the generating element, the fractal dimension D → 2, i.e.
the complete covering of the surface, and a → 1. Then the
ratio u = li+1/li between higher- and lower-order element
sizes is taken equal to 2. With this approach, it is possible
to sinter nine lower-order elements to form one higher-order
element (in that case the size ratio, u, would be 3) without
changing the main idea behind the model. The parameters
would change but the fractal properties of the system remain.
Taking the logarithm of both sides of Eqn (2):

logN = logC −D log r . (39)

Plotting log r as an independent variable and logN as a
dependent variable, D is the slope and logC the y intercept
of Eqn (39) in a log–log coordinate system. The C -value
(Eqn (24)) represents the number of particles of characteristic
length equal to one, that remain separated. The fractal
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Fig. 2. Dependence of Nnd = C/r
D about a and C .

dimension, D , refers to the power of aggregation and with
higher values, i.e. as D approaches 2.00, the size of the
largest particle increases. The probability, a, accordingly,
reflects the fact that for a = 0 there are only particles of
unitary size, i.e. only small grains are observed. For a = 1
the surface is totally filled with grains because the fractal
dimension collapses onto the Euclidean dimension, D = 2.
In Figure 2, Eqn (2) is plotted for different values of a and

C . Dotted lines refer to C = 1000, while continuous lines
refer to C = 10000. The black lines refer to a = 0.9 and gray
lines refer to a = 0.7. As can be seen, an increase of C -value
shifts the plot to higher Nnd values and, as a increases, the
absolute value of the slope of the line reduces, i.e. there is
less difference between the continuous and dotted lines.
Although both a and C affect the granulometric distribu-

tion, the only parameter that could be helpful in distinguish-
ing between avalanche types is the fractal dimension, D . In
fact, theC -value depends upon the number of measurements
taken during the field survey and on the spatial extension of
the sampling zone.
From the observations taken during avalanche events, we

believe that high values of D , typical of ash and glacial
tills (Turcotte, 1997), correspond to dry avalanches where
the fluidized layer is developed, whereas values of D close
to 2 might be related to wet avalanche flows for which the
powder-like fraction is reduced (Bartelt and McArdell, 2009).

Table 3. Punta Seehore 19 March 2011: granulometric classes,
number of particles of each size and complementary cumulative
value

Grain-size class Number of Complementary
particles cumulative value

mm

45.0 3 100
63.6 13 97
90.0 19 84
127.3 12 65
180.0 22 53
254.6 5 31
360.0 9 26
509.1 10 17
720.0 5 7
1018.2 2 2

Fig. 3. Punta Seehore test site on 19 March 2011. Average grain size
is a few centimeters.

APPLICATION TO A REAL CASE
A real set of granulometric data was collected in order to
test the predictions of the model. On 19 March 2011 a
granulometric survey was made at Punta Seehore test site,
Aosta Valley, northwestern Italian Alps, to collect grain-size
data (Fig. 3). The sampling methodology adopted was as
described by Church and others (1987) and also used by
Bartelt and McArdell (2009) in snow avalanche deposits.
Following this approach, the surveyor first divides an area

of 5× 5m2 into a 50 cm grid mesh and then measures
the size of the aggregates lying exactly under each vertex.
The sampling is considered satisfactory when the number
of measured grains is >100 (Bartelt and McArdell, 2009).
Grain diameters are grouped into size classes in a geometric
progression following 21/2 with diameter, d (mm), taken,
by convention, to be the intermediate length of the
three orthogonal axes. Performing the survey, the authors
encountered difficulties, in particular when it was not
possible to distinguish the grains buried in snow powder.
Because of this, no particles of <45mm diameter were
counted in the analysis. This aspect does not invalidate the
results, because the mass of the avalanche is contained in the
large grains, and particles several centimeters in diameter are
relevant for the flow rheology (Rognon and others, 2008).
It is, however, necessary to develop more sophisticated
methods so smaller aggregates can also be considered in
future work (Rastello and others, 2011). The results of the
survey are reported in Table 3. Although the collected dataset
is limited, it is possible to draw preliminary conclusions
about the effectiveness of the model.
The complementary cumulative values are plotted vs

grain size in Figure 4. The line shows the complementary
cumulative function, (Eqn (35)) with fractal dimension ν =
1.1262 and B = 12448. The statistical goodness-of-fit
parameter R2 = 0.8694. Using Eqn (38), the corresponding
probability of aggregation is computed as a = 0.97. In
parallel, the D-value is computed (Eqn (37)) as D = 2.1262.
The values of the parameters show that the avalanche
behavior was similar to wet snow avalanches (high a-value
and D close to 2), confirming the on-site observations.
This fitting shows that the surveyed data are not well

fitted by the previous fractal scaling law at small and
large diameters. This is mainly due to the finite number
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Fig. 4. Punta Seehore test site (19 March 2011). Surveyed data
(×) and fractal fitting with the cumulative complementary function
(−) of Eqn (35) with ν = 1.1262 and B = 12 448 plotted on
the grain-size vs complementary cumulative values diagram. 95%
prediction bounds are represented by dotted lines. The goodness-
of-fit parameter R2 = 0.8694.

of observations, which imposes a horizontal left-hand side
asymptote, set at the total number of observations, in the
log–log plot. Because of this we suggest a multifractal
scaling law (MFSL) similar to that proposed by Bažant for
concrete strength (Bažant, 1984). Any MFSL has a plot
similar to that presented in Figure 5: the function is limited
by a horizontal and an oblique asymptote. Physically, we
assume that the horizontal asymptote can be ascribed to the
limited number of observations performed at small scales.
(Implications of this limitation are an object of our current
research.) However, fractal behavior emerges at the medium
and large scales; in this region, the oblique asymptote
of Figure 5 represents the fractal (power-law) behavior
previously discussed. Thus, the multifractal complementary
cumulative function, Ncompl, is now rewritten as

Ncompl = α

(
1 +

x
β

)γ

, (40)

where α can be interpreted as the ‘hypothetical’ total number
of observations. In fact,

lim
x→0

[
α

(
1 +

x
β

)γ]
= α,

where γ represents the slope of the oblique asymptote of the
MFSL curve for x → ∞. This can be proved by taking the
logarithm of both sides of Eqn (40) and studying the first
derivative. In parallel, it is straightforward to demonstrate
that the β-value represents a characteristic snow grain size,
as shown in Figure 5, representing a sort of ‘turning point’
between a limit condition (on the left-hand side) and a linear
fractal model (on the right-hand side).
The surveyed data were analyzed using the MFSL model

presented in the previous paragraph. Figure 6 shows
the plot of the multifractal complementary cumulative
function (Eqn (40)) with parameters α = 129, β = 793
and γ = −4.481. The statistical goodness-of-fit parameter
R2 = 0.9921, showing a better fit than the fractal scaling
law of Eqn (35).

Fig. 5. A MFSL plot with horizontal and oblique asymptotes.

CONCLUSIONS
We have developed a fractal model able to investigate the
ice grain-size distribution in the deposit of a snow avalanche.
First, an aggregation probability taking into account sintering
processes between snow grains was introduced. Considering
this quantity to be scale-invariant, the process of aggregation
is extended from single grains to larger blocks. Thus, a
power law with a fractal exponent is obtained to describe
the number of particles of a given dimension. In order
to analyze data from real measurements, the cumulative
complementary quantity was defined and, in order to address
the lack of fit for small and large particles, a multifractal
model was introduced and first results are presented. The
2-D model herein might be extended to a 3-D case, which
would be able to consider the granulometric distribution
within the entire deposition area, using the same approach
and considering that the probability for which a snow grain of
higher order is generated, i.e. Eqn (5), is a7, and eight cubes
of characteristic dimension, l, are needed to form a cube of
dimension 2l, and so forth. As before, the choice of a cube is

Fig. 6. Punta Seehore test site (19 March 2011). Surveyed data (×)
and fractal fitting with the multifractal cumulative complementary
function (−) of Eqn (40) with α = 129, β = 793 and γ =
−4.481, plotted on the grain-size vs complementary cumulative
values diagram. 95% prediction bounds are represented by dotted
lines. The goodness-of-fit parameter R2 = 0.9921.
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totally arbitrary, in the sense that one can adopt other shapes
without changing the fractal aspect of the problem.
In addition, field measurements have shown that the

procedure suggested by Church and others (1987) for river-
bed sampling can be applied to snow avalanche deposits
for measuring snow grain sizes for diameters larger than
40–50mm (Bartelt and McArdell, 2009). It is not possible
to identify smaller particles generated within the flow at the
bottom layer and at the front. Other methods need to be de-
veloped to overcome this problem. The use of granulometric
distributions for understanding sieving mechanisms, as well
as evaluating shear forces within avalanche flow, could
potentially lead to an alternative approach to the study of
snow avalanches. The impossibility of investigating small
snow grains does not invalidate the analysis of avalanche
dynamics or the effects of the impact of an avalanche on
a building, because flow rheology and destructive power
depend mainly on the median and large particle sizes.
In the future, a detailed analysis of the multifractality of

snow grain distribution, as presented here, will be necessary
in order to better understand the role of the different
parameters involved in the model.
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