
ON THE CLASS NUMBER OF REPRESENTATIONS 
OF AN ORDER 

IRVING R E I N E R 

1. Introduction. We shall use the following notation throughout: 

R = Dedekind ring (5). 
u = multiplicative group of units in R. 
h = class number of R. 

K = quotient field of R. 
p = prime ideal in R. 

Rv = ring of £-adic integers in K. 

We assume that h is finite, and that for each prime ideal p, the index (R:p) is 
finite. 

Let A be a finite-dimensional separable algebra over K, with an identity 
element e (4, p. 115). Let G be an R-ordev in A, that is, G is a subring of A 
satisfying 

0) e € G, 
(ii) G contains a i£-basis of A, 

(iii) G is a finitely-generated i?-module. 
By a G-module we shall mean a left G-module which is a finitely-generated 

torsion-free i£-module, on which e acts as identity operator. An A -module 
is defined analogously, replacing R by K. We shall assume, unless otherwise 
stated, that K is a splitting field for A ; thus, the only possible ^4-endomor-
phisms of an irreducible A -module X are the scalar multiplications x —> ax, 
x Ç X, where a 6 K. 

As in (3), we may form the non-zero ideal g C ^ , defined as the inter­
section of the ideals which annihilate the one-dimensional cohomology groups 
H(G, T), where T ranges over the set of two-sided G-modules. (In the special 
case where G = R(Ti) is the group ring of a finite group II, the ideal g is the 
principal ideal generated by the group order (II : 1).) Let P — {pi, . . . , pi} 
be the set of distinct prime divisors of g, and set 

peP 

For any G-module M, let KM be the A -module which consists of the 
i^-linear combinations of the elements of M. If we set Av = RPG, we may like­
wise define the ^4p-module Mp = RVM. Two G-modules M and N are said to 
be in the same genus (notation : M v N) if and only if for each p, the modules 
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Mp and Np are ^-isomorphic. As is shown in (7), M v N if and only if 
KM ÊË XiV and Mp ^ iVp for each p G P . 

For any ^4-module I / , let S(L') be the collection of G-modules L for which 
KL = V. Suppose that S(L') splits into rg genera, and into rG classes under 
G-isomorphism. As is shown in (6; 7; and 9), both rg and rG are finite. 
The purpose of this paper is to consider the relation between rg and rG. For 
the special case where V is irreducible, Maranda (7) has shown that rG = hrg. 
We shall restrict ourselves to the case where the irreducible constituents of 
V are distinct from one another. If V has k distinct irreducible constituents, 
we shall prove 
(2) rG > h\. 

Further, we shall show that equality holds provided that 
(3) For each a G R such that (a) + Q = R, there exists fi G U for which 

(3 = a (mod tf5"1). 
Finally, we shall obtain formulas for rg and rG in the special case where 

k = 2. These formulas will show that if condition (3) fails, then rG may exceed 
h2rg for this case. 

2. Binding homomorphisms. In this section, we shall drop the hypo­
thesis that K is a splitting field for the algebra A. Let L be a G-module 
which contains a submodule M, and assume that M is an indirect summand 
of L. Define N = L/M to be the factor G-module. Every element of L is 
then uniquely representable as an ordered pair (n, m), n G 2V, m G M, 
where the structure of L as i?-module is given by 

(4) (», w) + (V, w') = (w + n', m + w'), a(n, m) = (an, am), 

for n, n' £ N, m, mf £ M,a (i R. Further, the action of G on L is given by 

(5) g(n, m) = (gn, Ag(n) + gm), g G G, where Â  G Homfi (iV, Af). 

Let A : G —» Hom^ (iV, M) be the i^-homomorphism defined by g —» Aff. The 
condition (gh)(n, m) — g(h(n, m)) is equivalent to 

(6) Agh(n) = gA*(») + A, (to), g , K G , ^ i V . 

Call A G HornR (G, Hom^ (iV, AT)) a binding homomorphism if (6) holds, and 
let£(A^, AT) be the i^-module consisting of all binding homomorphisms relative 
to N, M. The i?-G-module L is then completely determined by equations (4) 
and (5), once an element A G B(N, M) is fixed. Let us denote this module L 
by (N, M; A). 

It is convenient to turn Homfi (N, M) into a two-sided G-module T by 
defining 

(gt)(n) = g(t(n)), (tg)n = t(gn), g G G,n G N,t£ UomR(N, M). 

We may then characterize B(N, M) as the set of all A G Homfî (G, T) for 
which 

(7) Agh = gA* + A„A, g,h £ G. 
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Now fix / e T, and define A G Horn* (G, T) by 

K = gt - tg, gee 

We find readily that A £ B(N, M). Let W (N, M) be the i?-module con­
sisting of all the binding homomorphisms so obtained by letting / range over 
all elements of T. Define the i^-module 

C(N, M) = B(N, M)/Bf(N, M). 

From (9) we know that C(N, M) contains only finitely many elements. 
Furthermore, from the definition of the ideal Q, we have 

bB(N,M) C'Bf(N,M) 

for any N, M. Finally, if [A] denotes the class A + B'(N, M) of the element 
A Ç B(N, M), then we have: 

[A] = [A'] =» (N, M\ A) S (N, M; A'). 

In fact, if t 6 T is such that A/ — A0 = gt — tg, g 6 G, then the map (n, m) 
—> (», m — tri) gives the desired isomorphism. 

In the above discussion, replace R by Rp. If L* is an ^ -module which 
contains a submodule M* as ^ -d i rec t summand, then L* = (2V*, if*; A*), 
where N* = L*/M*, and where 

A* :Ap-+HottiBp(N*,M*). 

is an i^-homomorphism satisfying A*xy = xA y + A*xy, x, y Ç ^4P. Define 
B(N*,M*), B'(N*, M*) and C(N*, M*) as above. For A* 6 B(N*, AT*), again 
let [A*] = A* + B'(N*, M*). If T ( » is defined as in (1), we have 

(8) iryip)B(N*, M*) C B'(N*, M*) 

where ir is an element of p such that w $ p2. 
Now let N, M be G-modules, and let NP1 Mp be the corresponding Av-

modules. There is a natural isomorphism of B(N, M) into B(NP, Mp) which 
may be described as follows: for each A £ B(N, M) and each g (z G, the 
map Af 6 HomR(N, M) may be extended in a unique manner to an element 
of HomJBj,(iVp, Mp); we may then define Ax for each x £ Ap by linearity. In 
this way, A is extended in a unique manner to an element Ap Ç B(NP, MP). 
The map A —> Ap carries Bf(N,M) into B'(NP, Mp), and so induces an 
iMiomomorphism of C(N, M) into C(NP, Mp). 

We may now define an i^-homomorphism 

0 : C(N, M) -> £ C(N9, M,) 

by means of 

*[A] = ( [ A P ' ] , . . . , [ A P ' ] ) . 

https://doi.org/10.4153/CJM-1959-061-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-061-5


CLASS NUMBER OF REPRESENTATIONS 663 

From (8), we know that # has kernel 0. We shall in fact show that <j> is 
an isomorphism "onto." 

THEOREM 1. 

C(N,M)^ Y,C(NP,MV). 
ptp 

Remark. A slightly different version of this was first proved by deLeeuw 
(1). We shall not use the results of (8), but instead shall give a self-contained 
proof of the theorem. 

Proof. We show firstly that the </> is an "onto" mapping. For each p G P 
suppose an element ÎP Ç B(Npt Mv) chosen. We must prove the existence of 
an element A 6 B(N, M) such that [Ap] = [Op], p G P. Let T = HomR(N, M), 
and let us set 

Tv = Homap(iV,f Mv) = Rv Horn* (N, M) = RVT 

for each prime ideal p. 
For each p £ P, we may choose an element ir £ p such that ir $ £2, and such 

that 7T does not lie in any other prime ideal in the set P. Set 

a = n ^ ; 
then a £ R, and for each p £ P we may write 

a = Tryip)dp, dp £ R, dp = unit in i?p. 

Define the integral ideal b by 

peP 

Then 6 is not a multiple of any of the prime ideals in P. 
We now make use of equation (8) to deduce that for each p G P , there 

exists an element uv G Tv such that 

a- Qp = gup - upg} g e G. 

On the other hand, T is a finitely-generated i?-module, so there exist elements 
tiy . . . , tT G 7" such that 

IT .= !«! + . . . +Xtr, 
whence 

Pp = Pp/i + . . . + Rptr. 

We may therefore write (for p £ P) 

f=i 

Let us now choose ai, . . . , aT € R such that 

a« s |8? (mod x27(p)Pp), f 6 P , a, s 0 (mod b). 
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Set 
r 

t = a - 1 E cuti G KT, 

and define A G HomR(G, KT) by 
A, = gt - *g, g G G . 

We shall show that this is the desired A, that is, A G B(Ny M), and [Ap] = [IF] 
for p (z P. For p £ P we have 

where 

/ = w* _ a/ = 2 (tf - a*)/,. 

From the way in which the at were chosen, we may therefore write 

V = T dpW , 

where wv G Tp, and thus 

a ; - A , = ii"v){gwv-w*g),g € G . 

This proves that for each p G P, 

tf - Ap G Tyip)B(Np, Mp) C 5 ' ( t f„ M,), 

and shows incidentally that 

(9) A ^ r P ) g G G, ^ G p. 

On the other hand, we note that for each prime ideal q $P, the elements 
a~lai, . . . , a~lar all lie in Rq, and hence 

A? € rff, g € G. 

Coupled with (9), this implies that 

A, G H 7V, g € G, 

where g' ranges over all prime ideals. The above intersection is precisely T, 
and so A G Horn B (G, T). That (7) holds follows at once from the definition 
of A; consequently, A G B(N} M). This completes the proof that </> is "onto." 

In order to show that <j> is an isomorphism, let 12 G B(N, M) be such that 
Q? G £'(iVP, Mv) for all £ G P ; we must show that 12 G £ ' ( # , M). Since 
Q? G B'(NPJ Mp), there exists for each £ G P an element wp G Tp such that 

0? = guv - uvgy g G G. 

By the preceding construction (with a = 1), there exists A G B'(N, M) (since 
now t G 7") such that 

A? s 12? (mod 7r7(2,)rp), g^G. 
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Therefore 
A - Q 6 tP(N, M) C <B'(#, Af), 

which shows that 12 £ £ ' ( # , AT). 

COROLLARY. / / i\T, N*, AT, AT* are G-modules such that N v N* and M v Af*, 
then C(N, M) ÊË C(N*, Af*) as R-modules. 

More generally, let 

U D U D • • • D Lk D (0) 

be a set of G-modules such that each is an indirect summand of its prede­
cessor. Define Nt = Li/Li+i to be the factor G-module. Then as above, 
every element of L\ is uniquely representable as an ordered fe-tuple (nh . . . , nk) 
nt £ Nu where 

a(wi, . . . , » * ) = (o»i, . . . , ank) 

for «i, w/ Ç iVi, a f i ^ . The action of G on Li is given by 

g(ttb . . . , » * ) = (gni, gn2 + A"»i, . . . , gnfc + A^ni + . . . . + Aj"1, V - i ) , 

where each A/^ Ç Horn ̂ (iVi, iV^), and where the i^-homomorphisms A u : 
g —» A / ' satisfy conditions analogous to (7). Let B(Ni, . . . , iVfc) denote the 
set of systems {Ai3} satisfying these conditions. We denote the module L\ by 
the symbol (Ni, . . . , Nk; {Aij}). 

3. Isomorphisms of modules. Throughout this section, we fix an À-
module V with a composition series. 

L « L I D L J D . . O L Î D (0), 
and let N/ = L//Li+i. We assume here that N/ and N/ are not isomorphic 
for i 9e j , and further that K is a splitting field for A. For any L € S(Lf), 
the A -module KL will have a composition series 

i£L = V{ D Li' D . . . D Li' D (0) 

in which L/f/Li+iff ^ # / . Setting L* = L / ' H L, we see that L* is a G-
submodule of L for which KLt = L / ' . Furthermore, Li+i is a pure f?-sub-
module of Lu and therefore (by 5) is an indirect summand of Lt. Put Nt = 
Lt/Li+i; then i^iV* ^ AT/, and 

L = ( t f i , . . . f t f*;{A*'}) 

for some {A*'} 6.jB(iVi, . . . , #*)• 

LEMMA 1. Let Mu Nu 6 £(#'*), 1 < i < fe, and suppose that 

( M 1 , . . . , M , ; { A ^ ) ^ ( ^ 1 , . . . , ^ ; { ^ ' } ) . 

r*e» AT* ^ iVi, 1 < i < Jfe. 
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Proof. (A modified version of this is given in (2).) I t suffices to prove 
that if ( t f , J l f ; A ) S ( # , M ; A ) , where KN^KN and KM^KM, and 
where KN and KM have no common irreducible constituent, then M = M 
and N == N. Once this is established, a simple induction argument completes 
the proof. 

Suppose that 0: (N, M; A) ^ (iV, M; A) is given by 

0(n, m) = 0(n, 0) + 0(0, m) = (0iO), v(n)) + (/*(*»), 02(m)), 

where 

0i € Homfl(tf, iV), v G Hom*(#, M), M € Hom*(M, iV), 02 € Hom i2(if, M). 

From 0g(w, m) = gB(n, m) we obtain at once 

(10.1,10.2) 6lg + MA, = g$l9 ng = gju, 

(10.3,10.4) Â,0i + gv = vg + 02A„ 02g = Agfi + g02. 

From (10.2) we have n £ Horn G (M, N), and hence M = 0, since by hypo­
thesis KM and -KiV have no common irreducible constituents. Equations 
(10.1) and (10.4) then imply that 0i Ç Hom(?(7\T, iV) and 02 € Hom^Af, M). 
Since 0 is an isomorphism of (N, M\ A) onto (iV, Af ; A), we find readily that 
0i : AT ^ N and 02 : Af ^ Af. 

LEMMA 2. Le/ (2Vi, . . . , Nk; \Aij}) and (Nu . . . , Nk; {Qij}) be G-isomorphic 
modules in S(L'), where Nt 6 S(N/). Then there exist units 01, . . . , f}k £ u, 
and homomorphisms t^ Ç Homi2(7Vi, iV^), swc& / t o the isomorphism between 
these G-modules is given by 

(»i, . . . , nk) —> (j8i»i, 02w2 + ^i2»i, . . . , fora* + /u»i + . . . + 4_i, *»*-i). 

Proof. From the proof of the preceding lemma, we find that the isomor­
phism must be given by 

(»i, . . . , » * ) - * ( M i , M 2 + /12Wi, . . . , 6knk + / u « ! + . . . + *jfc-.i,jfc»jfc-i), 

with each 0*: iV* = Nt and each J^ Ç Hom^iVi, iV^). Since XiV* is an abso­
lutely irreducible A -module, 0* must be given by scalar multiplication by a 
unit of R. This completes the proof. 

If U, F a r e i^-modules, a n d / i , / 2 G H o r n e t / , V), we shall often abbreviate 
the congruence / i s / 2 (mod ga Homi2(C7, F)) as / i = / 2 (mod ga). A similar 
notation will be used for i^-modules. 

LEMMA 3. Let Afi, . . . , Mk be G-modules, not necessarily irreducible, and let 

L = ( M l f . . . , M » ; { A " } ) , L = (J|flf . . . , AT»; { Q"}) 

be G-modules for which 

Aij s o " (mod gn), 1 < i < j < *, 
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where n is a uxed integer > k — 1. Then there exists a G-isomorphism B\L — L 
such that 0 = 7 (mod gw~fc+1)> where I\L = L is the R-isomorphism given by 
O i , . . . ,mk) —> O i , . . . ,mk). 

Proof. The result is trivial for k = 1; let k > 1, and assume the result 
holds at k — 1. Let us set 

A = (M„ . . . , Mk; A23 A*"1'*), 

Â = (M2 M»; fi23,.... SÎ*-1'*). 

From the induction hypothesis we deduce the existence of a G-isomorphism 
Bi'.A^A such that 

0i = I(modgn-*+ 2) . 

The map (mi, 8) —» (mi, 0io), where mi 6 Mi, ô Ç A, then gives a G-iso­
morphism 

02 : (Mi, A; A12, . . . , A1*)' ^ (Mi, Â; Â12, . . . , I1*) 

for some (A12, . . . , Â1*) G 5 (Mi, Â), and we have 

02 = J(modôn-*+ 2). 

Now set 

A = (Â12, . . . , I1*), • 12 = (1212, . . . , 12u). 

Then we see that both A and 12 are elements of B(Mi, Â), and that A = 12 
(mod o>n~k+2). By considering this congruence for the powers of the prime 
ideals dividing Q, the method of proof of Theorem 1 shows the existence of 
an element W 6 HornR(Mi, Â) such that 

(A - 12), = gW-Wg, g 6 G, 

and where, furthermore, W = 0 (mod gw_A;+1). The map (mi, 5) —> (mi, 5—Wmi) 
then yields a G-isomorphism 03 : (Mi, Â; 12) ^ (Mi, Â; A), where 

03 = / (mod 9
n -* + 1 ) . 

Therefore 

0ïlBt : (Mi, A; A12, . . . , A1*) -> (Mi, Â; 1212, . . . , 12u) 

is a G-isomorphism of L onto L such that 

^ = / (mod gn~*+1). 

4. Integral classes and genera for modules with two distinct con­
stituents. Throughout this section, we suppose that V is an A -module with 
two distinct irreducible constituents Nf and M' ; we assume again that K is 
a splitting field for A. Let S(U) be partitioned into r0 classes under G-iso­
morphism, and into rq genera. We shall obtain formulas for rG and r0. 
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LEMMA 4. Let N € S(N'), M Ç S (M'). Then (N, M; A) S (N, M; A) if 
and only if there exists 13 £ u such that [A] = /3[A]. 

Prtfo/. From Lemma 2 we deduce the existence of units 0i, 02 G u, and 
of t Ç Homi2(iV, Jlf), such that the isomorphism (N, M; A) ^ (# , M ; A) is 
given by (n, m) —> (#iw, ^2m + /w). This implies 

I , = isr'ftA, + g(fch) - (fi-tyg, g e G. 
Setting p = /5i~1/52, we have [A] = jS[A]. Conversely, starting from such a 
relation, we may reverse the steps to obtain an isomorphism of the modules. 

LEMMA 5. Let N Ç S(N'), M e S(M'). Then (N, M; A) v (N, M; I ) if and 
only if there exists an element a. Ç R such that (a) + g = R and [A] = a [A], 

Proof. Let (iV, M ; A) v (iV, Af ; A). As in the preceding proof, we deduce 
that for each p Ç P , there exists an element ap which is a unit in Rp such 
that the classes [Ap] and [Ap] in C(7VP, Mp) are related by 

[ÂI = ^ [A P ] . 

Choose a £ R such that a = ap (mod £7(p)) for each p G P ; then (a) + g = P . 
Furthermore, (a — ap)B(Np, Mp) C B'(NP, Mp), so that 

c*[Ap] = <xp[A
p], p Ç P . 

Therefore [Ap] = [aAp] for all £ Ç P , and so by Theorem 1 we have [A] = 
[aA] = a[A]. 

Suppose now that S(N') splits into v genera; according to (7), each genus 
splits into h classes under G-isomorphism. Let us choose representatives of 
the hv classes, say {Nj*: 1 < i < v, 1 < j < h], so that all the modules with 
the same subscript lie in the same genus. Likewise choose representatives 
{Af/: 1 < i < M, 1 < j < h) of the hfi classes into which S (AT) splits. Let 
(N, M; r ) <E S(L')t and suppose N v i V , M v Mi*. Then for each £ 6 P , 
there exists an element 

such that 

(NP1Mp;T
p)^((Nl)pl(Mi)P;if) 

as v4p-modules. By Theorem 1, there exists A Ç B(Ni\ M\j) such that 
[Ap] = [IF] for all p Ç P . Therefore 

(tf, AT; r ) £ ^ (iVÎ, Mi; A)p, p G P , 

and so 

(#, AT; T) V (Nt Mi; A). 
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Hence, every module in 5(Z/) is in the same genus as (iW, MiJ; A) for some 
choice of i and j and some A £ B(Nii

f Mij). Further, 

(Nl,M{;A) V (NÏ,Ml';A') 

implies, by the method of proof of Lemma 1, that i = i' and j = f. Let us 
set 

(11) Hij= {(NlMUA) : A € B{Nl, Ml)},l < i < v,l<j < v, 

and suppose that Htj splits into r^ genera. Then we have at once 

(12) rg = Z '<>• 

On the other hand, any module in 5(1/) is G-isomorphic to (Np\ MJ\ A) 
for some i, j , p, o- and A. Further, by Lemma 1, two such modules cannot be 
isomorphic unless they have the same set of indices i, j , p, a. Let us set 

S(i,p;j,a) = {(Ni Mi-, A) : A G B(Nl,Mi)}, 

and suppose that S(i, p',j> a) splits into s(i, p;j, a) classes. Then 

rG = Z s(h PÎ7» °0-

However, Lemma 4 states tha t J iV/ , MV'; A) ^ (iVp\ ikf,'; A) if and only 
if there exists fi Ç u such that [A] = /3[A]. Furthermore, the Corollary to 
Theorem 1 shows that C(Np\ M J) is (as i^-module) independent of p and 
a. Therefore s(i, p;j, a) = s(i, 1; j , 1) for all p and o-, and we have 

(13) rG = h2 J2 stJ, 

where stj = s(i, l;j, 1) is the number of classes into which Htj splits. 
Before proceeding with the calculation of r a and stj, it will be convenient 

to introduce some notations. For a non-zero ideal a in R} let 0(a) denote the 
number of residue classes in R/a which are relatively prime to a.lî a + b = R, 
then (t>(ab) = 0(a)0(b). Next, let u(a) denote the number of distinct residue 
classes in (u + a)/a; of course, u(a) is a divisor of 0(a). However, u(a) is 
not a multiplicative function of a, as is seen from the example where K is 
the rational field. 

LEMMA 6. Let N £ S(N'),M £ S(M'),andH = {(N, M ; A) : A € J3(# fM)}. 
Suppose H splits into r genera and s classes. Let d(a) be the number of elements 
in C(N, M) with order ideal a. Then 

r = Z d(û)/*(a), s = Z d(a)/«(a), 
a a 

both sums extending over all divisors of g. 

(The order ideal of an element c £ C(N ,M) is {a £ R:ac = 0}.) 
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Proof. Let us use the symbol (N, M\ c) to denote the collection of mutually 
isomorphic modules {(N, M\ A): A £ c], where c Ç C(N, M). By Lemma 4, 
(iV, M; c) and (iV, Af; c') cannot lie in the same genus unless c and d have 
the same order ideal. Consider the set of d(a) elements of C(N, M) with 
given order ideal a. For a fixed c in this set, all those d of the form ac, where 
a G R is such that (a) + Q = i£, will yield modules in the same genus as 
those obtained from c. But as a ranges over all elements of R for which 
(«) + Q = i?, ac gives exactly 0(a) distinct elements of C(N, M). Therefore 

r = S <*(a)/*(a). 
a 

A similar argument gives the formula for s. 
Let dp(p

w) denote the number of elements in C(NP, MP) having order ideal 
pn. Then 

dP(pn) = r(pn) - r ^ - 1 ) , 

where r(£w) denotes the number of elements of C(NP, Mp) which are anni­
hilated by pn. From Theorem 1, 

<*(«) = 11 dP(paW), where a = I I P"W-
peP ptP 

We may therefore write 

»•= n is wv^nh 
which confirms the result in (7) that the number of genera is the product 
over all p Ç P of the number of classes into which S(L') splits under Ap-
isomorphism. The corresponding multiplicative formula for s fails to hold, 
because u(a) is not multiplicative. 

Applying Lemma 6 to our original problem, we may summarize our result 
as follows. 

THEOREM 2. Let N1, . . . , Nv be representatives of the genera into which 
S(N') splits, and M1, . . . , AfM representatives of the genera of S(M'). For each 
divisor a of g, let dij(a) denote the number of elements in C(N\ Mj) having 
order ideal a. Then S(L') splits into rg genera and rG classes, where 

rs = H J2 dij(a)/<l>(a), rG = h2 X) Z) dtJ(a)/u(a). 

Here, 0(a) is the number of residue classes in R/a which are relatively 
prime to a, and u(a) is the number of distinct elements of (it + a)/a. 

COROLLARY. We have rG > h2rg, with equality provided that 0(g) = u(a>). 
Furthermore, if any C(N\ Mj) contains an element of order ideal a, where 
u(a) < 0(a), then rG > h2rg. 
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5. Integral classes and genera in the general case. Now let U be an 
.4-module with k distinct irreducible constituents, and let K be a splitting 
field for A. We preserve the notation introduced at the beginning of § 3. In 
this section we shall generalize the results given in the Corollary to Theorem 2. 

For each K (1 < K < &), let {NK
ij: 1 < i < V(K), 1 < j < h) be a full set 

of representatives of the 1IV(K) classes into which the set S(2VY) splits; suppose 
these representative modules are so chosen that modules with the same 
indices i and K lie in the same genus. Then every module in S(L') is of the 
form 

(iVi1'1 #»*'*; {A"}). 

Let S(ii,ji\ . . . ]ik,jk) be the set of all such modules obtained by letting 
{Aij\ range over all systems in 

B{N\u\...,Nlklt), 

and let this set split into r(ii, jr , . . . ; i^jk) genera and s(i\,j\\ . . . ; i^jk) 
classes. From the Corollary to Theorem 1, we see that r(ii, jr , . . . ; ik,jk) is 
independent of (ji, . . . ,jk), and therefore 

rg = h~k ] £ r{iiju ; • • • ;i*,j*). r<? = 2 s ( i b j i , ; • • • ;**»j*)> 

both summations extending over all possible values of the i's and fs. This 
implies the result that 

rQ > A*r,. 
Finally, we prove: 

THEOREM 3. If w(g*-1) = 0(9fc-1)> ^ew <̂? = hkrg. 

Proof. We remark that the hypothesis of the Theorem is simply a restate­
ment of condition (3) given in the introduction. To prove the theorem, we 
need only show that r(ii, jr, . . . \ik,jk) = s(ii,jù • • • )H,jk)- We simplify 
the notation by letting MK £ S(iW), 1 < K < k. We shall prove that if 

L = (tf! ¥ t ; | A w | ) , L = ( M x , . . . , ^ ; } ! ^ } ) 

are such that LyL, then also L = L. 
Since Lp = Lp for each p (z P, Lemma 2 shows the existence of units 

i#ip, . . . , (3Jc
p in i?p, and homomorphisms 

ftj 6 Homp ((MOp, (M,),) 

such that the isomorphism Lp = Lp is given by 

(wi, . . . , mh) —> (jSîmi, 0&»2 + /Î2W1, . . . , /^ra* + /ffcwi + . . . + tl-itkrnk-i). 

By the hypothesis of the theorem, we may choose units 0i, . . . , 0* Ç u such 
that 

0. s # (mod p ^ 1 ^ ) , ^ P , 1 < K < *. 

https://doi.org/10.4153/CJM-1959-061-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-061-5


672 IRVING REINER 

As in the proof of Theorem 1, we may choose homomorphisms wtJ Ç 
Horn fl (M*, Mj) such that 

w% s ftj mod p a " l h ( p ) , 1 < i < j < k, peP. 

Then the map 

(mi, . . . , m») -» (jôimi, /32m2 + W12W1, . . . , fiktnk + wlkmi + . . . + wk-hktnk-i) 

gives a G-isomorphism of L onto a module L* where L* = (Mi, . . . , M*; {Q1^}) 
and ïïij s A°" (mod g*-1) for 1 < i < j < fe. By Lemma 3 we then have 
L* = L, which completes the proof of the theorem. 

It would be of interest to obtain formulas for rG and rg which generalize 
those given in Theorem 2. 
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