ON THE CLASS NUMBER OF REPRESENTATIONS
OF AN ORDER

IRVING REINER

1. Introduction. We shall use the following notation throughout:

= Dedekind ring (5).
multiplicative group of units in R.
h = class number of R.
K = quotient field of R.

= X
|

p = prime ideal in R.
R, = ring of p-adic integers in K.
We assume that % is finite, and that for each prime ideal p, the index (R:p) is

finite.

Let 4 be a finite-dimensional separable algebra over K, with an identity
element ¢ (4, p. 115). Let G be an R-order in 4, that is, G is a subring of A
satisfying

(i) € E Gy

(i1) G contains a K-basis of 4,

(ili) G is a finitely-generated R-module.

By a G-module we shall mean a left G-module which is a finitely-generated
torsion-free R-module, on which e acts as identity operator. An 4-module
is defined analogously, replacing R by K. We shall assume, unless otherwise
stated, that K is a splitting field for 4; thus, the only possible A-endomor-
phisms of an irreducible 4-module X are the scalar multiplications x — ax,
x € X, where a € K.

As in (3), we may form the non-zero ideal ¢ C R, defined as the inter-
section of the ideals which annihilate the one-dimensional cohomology groups
H(G, T), where T ranges over the set of two-sided G-modules. (In the special
case where G = R(II) is the group ring of a finite group II, the ideal g is the
principal ideal generated by the group order (Il : 1).) Let P = {ps1, ..., P}
be the set of distinct prime divisors of g, and set
(1) g =[] »?.

pepP

For any G-module M, let KM be the 4-module which consists of the
K-linear combinations of the elements of M. If we set 4, = R,G, we may like-
wise define the 4,-module M, = R,M. Two G-modules M and N are said to
be in the same genus (notation: M v N) if and only if for each p, the modules
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M, and N, are A,-isomorphic. As is shown in (7), M v N if and only if
KM= KN and M, = N, for each p € P.

For any 4-module L', let S(L") be the collection of G-modules L for which
KL =~ L'. Suppose that S(L') splits into 7, genera, and into 7¢ classes under
G-isomorphism. As is shown in (6; 7; and 9), both r, and r¢ are finite.
The purpose of this paper is to consider the relation between 7, and r¢. For
the special case where L’ is irreducible, Maranda (7) has shown that r¢ = hr,.
We shall restrict ourselves to the case where the irreducible constituents of
L’ are distinct from one another. If L’ has k distinct irreducible constituents,
we shall prove
(2) re > k',

Further, we shall show that equality holds provided that

(3) For each a € R such that (a) + ¢ = R, there exists 8 € u for which
B =a (mod gt—1).

Finally, we shall obtain formulas for 7, and 74 in the special case where
k = 2. These formulas will show that if condition (3) fails, then ¢ may exceed
k%, for this case.

2. Binding homomorphisms. In this section, we shall drop the hypo-
thesis that K is a splitting field for the algebra 4. Let L be a G-module
which contains a submodule M, and assume that M is an R-direct summand
of L. Define N = L/M to be the factor G-module. Every element of L is
then uniquely representable as an ordered pair (n,m), n € N, m € M,
where the structure of L as R-module is given by
(4) (n,m) + (n',m') = (n +n',m+m'), a(n, m) = (an, am),
form,n’ € N, m,m’' € M,a € R. Further, the action of G on L is given by
(5) g(n, m) = (gn, A;(n) + gm), g € G, where A, € Homy (N, M).
Let A : G — Hompg (N, M) be the R-homomorphism defined by g — A,. The
condition (gh)(n, m) = g(h(n, m)) is equivalent to
(6) Apn(n) = gAn(n) + Ay(hn), g h€GnecN.

Call A € Hompg (G, Hompg (N, M)) a binding homomorphism if (6) holds, and
let B(N, M) be the R-module consisting of all binding homomorphisms relative
to N, M. The R-G-module L is then completely determined by equations (4)
and (5), once an element A € B(N, M) is fixed. Let us denote this module L
by (N, M; A).

It is convenient to turn Hompg (I, M) into a two-sided G-module T by
defining

(gt)(n) = g(t(n)), (tg)n =t(gn), g€ G,n € N,t € Homg(N, M).

We may then characterize B(N, M) as the set of all A € Homg (G, T) for
which

(7) Aah = gAh + Agh, g, h € G.
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Now fix ¢t € T, and define A € Homp, (G, T) by
Apg=gt—1tg g€G

We find readily that A € B(N, M). Let B’ (N, M) be the R-module con-
sisting of all the binding homomorphisms so obtained by letting ¢ range over
all elements of 7. Define the R-module

C(N, M) = B(N, M)/B'(N, M).

From (9) we know that C(N, M) contains only finitely many elements.
Furthermore, from the definition of the ideal g, we have

g' B(JV’ M) C B,(Ny M)

for any N, M. Finally, if [A] denotes the class A + B’(N, M) of the element
A € B(N, M), then we have:

(Al = [A']= (N, M; A) = (N, M; A).

In fact, if ¢ € T is such that A, — A, = gt — #g, g € G, then the map (n, m)
— (n, m — tn) gives the desired isomorphism.

In the above discussion, replace R by R,. If L* is an A4,-module which
contains a submodule M* as R,-direct summand, then L* = (N*, M*; A¥),
where N* = L*/M*, and where

A : A, = Hompg, (NV*, M*).
is an R,-homomorphism satisfying A*;, = xA*y + A%y, x,y € A,. Define

B(N*,M*), B'(N*, M*) and C(N*, M*) as above. For A* € B(N*, M*), again
let [A*] = A* + B'(N*, M*). If v(p) is defined as in (1), we have
(8) T PB(N*, M*) C B'(N*, M*)
where = is an element of p such that = ¢ p2

Now let N, M be G-modules, and let N,, M, be the corresponding 4,-
modules. There is a natural isomorphism of B(N, M) into B(N,, M,) which
may be described as follows: for each A € B(N, M) and each g € G, the
map A, € Homgz(N, M) may be extended in a unique manner to an element
of Homg,(N,, M,); we may then define A, for each x € 4, by linearity. In
this way, A is extended in a unique manner to an element A? € B(N,, M,).
The map A — A? carries B'(N, M) into B’'(N,, M,), and so induces an
R-homomorphism of C(N, M) into C(N,, M,).

We may now define an R-homomorphism

¢$: C(N,M)— ;PC(N,,, M,)

by means of

o[A] = ([A™], ..., [A™]).
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From (8), we know that ¢ has kernel 0. We shall in fact show that ¢ is
an isomorphism ‘‘onto.”
THEOREM 1.
CN, M) = Z; C(N,, My).
pe

Remark. A slightly different version of this was first proved by delLeeuw
(1). We shall not use the results of (8), but instead shall give a self-contained
proof of the theorem.

Proof. We show firstly that the ¢ is an ‘“‘onto’’ mapping. For each p € P
suppose an element @ € B(N,, M,) chosen. We must prove the existence of
anelement A € B(N, M) such that [A?] = [@°],p € P.Let T = Homg(N, M),
and let us set

T, = Homg,(N;, M,) = R,Homg (N, M) = R,T

for each prime ideal .
For each p € P, we may choose an element w € p such that = ¢ % and such
that = does not lie in any other prime ideal in the set P. Set

a = H 7[_7(27);

peP
then ¢ € R, and for each p € P we may write
a=1%d, d, €¢R, d,=unitinR,.

Define the integral ideal b by
() =b- T "

peP

Then b is not a multiple of any of the prime ideals in P.
We now make use of equation (8) to deduce that for each p € P, there
exists an element #? € T, such that ‘

a- O = gu’ — u'g, g €G.

On the other hand, T is a finitely-generated R-module, so there exist elements
t1,...,t € T such that

T=Rt+...+ Rt
whence
Tp = Rptl + o e + .Rptfo

We may therefore write (for p € P)
u’ =3 Bt 6% ER,
=1
Let us now choose ajy, ..., a, € R such that

a; = 8% (mod r”(”)R,,), p € P, a; = 0 (mod b).
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Set

t = a_l Z ail,- 6 K]‘,

g=1
and define A € Homgz(G, KT) by
A, = gt — tg, geG.

We shall show that this is the desired A, thatis, A € B(N, M), and [A?] = [Q?]
for p € P. For p € P we have

a(— ) =g"—1% g€G,
where

¥ =u" —at= ), (85— a)t.
i=1
From the way in which the «a; were chosen, we may therefore write
P = 7r27(11)d o
4 ’
where w? € T, and thus
%~ A, = 7w’ — wp),g € G
This proves that for each p € P,
@ — A € ©PB(N,, M,) C B'(N,, M),

and shows incidentally that

9) AET, g€G,  pcEP
On the other hand, we note that for each prime ideal ¢ ¢ P, the elements
e lay, ..., a ', all lie in R,, and hence

A, €T, g€ aG.

Coupled with (9), this implies that
Ag E f) Tq’y g € G:
q

where ¢’ ranges over all prime ideals. The above intersection is precisely T,
and so A € Homg(G, T). That (7) holds follows at once from the definition
of A; consequently, A € B(N, M). This completes the proof that ¢ is “‘onto.”

In order to show that ¢ is an isomorphism, let @ € B(N, M) be such that
@ € B'(N,, M,) for all p € P; we must show that @ € B'(N, M). Since
Q ¢ B'(N,, M,), there exists for each p € P an element #? € T, such that

Q= gu® — ug, g €G.

By the preceding construction (with @ = 1), there exists A € B’(N, M) (since
now ¢ € T) such that

A = @& (mod @ T,), g €G.
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Therefore
A — Q€ gB(N, M) C B'(N, M),

which shows that @ € B'(N, M).

COROLLARY. If N, N*, M, M* are G-modules such that N v N* and M v M*,
then C(N, M) = C(N*, M*) as R-modules.
More generally, let
LiDL,D... DLy D (0)
be a set of G-modules such that each is an R-direct summand of its prede-
cessor. Define N; = L;/L, to be the factor G-module. Then as above,

every element of L, is uniquely representable as an ordered k-tuple (74, . . . , 1)
n, € N; where

(my, .o oym) + (0, .., 1) = (m+ni, .o, m+ ng),
a(nl,...,nk) = (anl,...,ank)

for ny, n/ € Ny a € R. The action of G on L, is given by
glny, ..o m) = (gny, gna+ Ay, o g+ A+ o+ AT ),

where each A, € Homgz(N; N,), and where the R-homomorphisms A% :
g — A, satisfy conditions analogous to (7). Let B(V,, ..., Ni) denote the
set of systems {A?/} satisfying these conditions. We denote the module L, by
the symbol (N, ..., Ni; [A%)}).

3. Isomorphisms of modules. Throughout this section, we fix an A-
module L' with a composition series.

L=LiDL:D>...DL:D(0),

and let N/ = L//L.,/. We assume here that N,/ and N, are not isomorphic
for 7 5 j, and further that K is a splitting field for 4. For any L € S(L’),
the 4-module KL will have a composition series

KL=LYDLYD...DL/'D0)

in which L/'/L;,” = N/. Setting L, = L/" N L, we see that L; is a G-
submodule of L for which KL, = L;’. Furthermore, L;.: is a pure R-sub-
module of L;, and therefore (by 5) is an R-direct summand of L;. Put N; =
Ll/LH-l; then KN1 = N{', and

L= (le--'yNk;{AU})
for some {A%¥} € B(Ny, ..., Ny).
LEMMA 1. Let M, N;, € S(N)), 1 < 1 < k, and suppose that
My, ... . My; {AY}) = (Vy, ..., Ny { Q).
Then M'[gNi, 1 <l< k.
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Proof. (A modified version of this is given in (2).) It suffices to prove
that if (N, M; A) = (N, M;A), where KN =~ KN and KM = KM, and
where KN and KM have no common irreducible constituent, then M =~ M
and N =2 N. Once this is established, a simple induction argument completes
the proof. B

Suppose that 8: (N, M; A) = (N, M; A) is given by

0(n, m) = 6(n,0) + 6(0, m) = (6:(n), v(n)) + (u(m), 62(m)),
where
6, € Homg(N, N), v € Homg(N, M), p € Homg(M, N), 6, € Homg(M, M).
From 0g(n, m) = gf(n, m) we obtain at once
(10.1,10.2) 61g + uA, = gb,, Kg = gu,
(10.3,10.4) Ab1 + gv = vg + 0:A,, fsg = Apu + gbs.

From (10.2) we have u € Homg(M, N), and hence u = 0, since by hypo-
thesis KM and KN have no common irreducible constituents. Equations
(10.1) and (10.4) then imply that 6, € Hom (N, N) and 6; € Hom (M, M).

Since 6 is an isomorphism of (N, M; A) onto (N, M:4), we find readily that
01:N§Z\7 and 02M_f—\'_‘JM

LEMMA 2. Let (Ny, ..., Ni; {A¥}) and (N, . .., Ni; {Q%)}) be G-isomorphic
modules in S(L"), where N; € S(N). Then there exist units B1,..., B € u,
and homomorphisms t;; € Homg(N 4 N;), such that the isomorphism between
these G-modules is given by

(n1, . .., my) = (Biny, Bama + tramy, . . o, Bime + tumy + . .o F by, 1Pk—1)-

Proof. From the proof of the preceding lemma, we find that the isomor-
phism must be given by

(ﬂl, ooy nk) i (01‘”1, 02712 + llznl, e e ey Oknk + tlk?lj_ + P + tk_l,knk_l),

with each 0,: N, = N, and each ¢;; € Homz(N,;, N;). Since KN is an abso-
lutely irreducible 4-module, §; must be given by scalar multiplication by a
unit of R. This completes the proof.

If U, V are R-modules, and f1, f» € Homz(U, V), we shall often abbreviate
the congruence fi; = f, (mod ¢* Homz(U, V)) as fi = f; (mod ¢*%). A similar
notation will be used for R,-modules.

LeEmMMA 3. Let My, ..., My be G-modules, not necessarily irreducible, and let
L= (My...,My; {A"}), L= ,..., M;{Q9))

be G-modules for which
A”E QU (modgu), 1<1«<].<k,
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where n is a fived integer > k — 1. Then there exists a G-isomorphism 6: L = L
such that 8 = I (mod ¢"*+1), where I: L = L 1is the R-isomorphism given by
(mlr~-')mk)_)(m1,... ,mk).

Proof. The result is trivial for £ = 1; let £ > 1, and assume the result
holds at 2 — 1. Let us set

A= (M ..., My; A, ..., AFF),

A= (M,..., My; Q%, ..., @755,

From the induction hypothesis we deduce the existence of a G-isomorphism
6:: A = A such that

6, = I (mod ¢ **%).
The map (m1, §) — (ma, 0:5), where m, € M,, § € A, then gives a G-iso-

morphism
022 (My, A; A, ..., A%y (M, A; A, ..., %)
for some (A%, ..., A%) € B(M,, A), and we have
0, = I (mod ¢"**?).
Now set

A= (X% ..., 4%, a=(2%...,"%.

Then we see that both A and @ are elements of B(M;, A), and that A = Q
(mod ¢**+?). By considering this congruence for the powers of the prime
ideals dividing g, the method of proof of Theorem 1 shows the existence of
an element W € Homgz(M,, A) such that

(A— Q),=gW—-Wg gE€G,

and where, furthermore, W = 0 (mod g*~**'). The map (my, §) — (m;, §— Wm,)
then yields a G-isomorphism 6; : (M, A; Q) = (M., A; A), where

0; = I (mod ¢ **).
Therefore

030: 1 (M, A; AV, ..., AY™) = (M4, A; @7, ..., 2%

is a G-isomorphism of L onto L such that
630, = I (mod g"**").

4, Integral classes and genera for modules with two distinct con-
stituents. Throughout this section, we suppose that L' is an 4-module with
two distinct irreducible constituents N’ and M’; we assume again that K is
a splitting field for 4. Let S(L’) be partitioned into r¢ classes under G-iso-
morphism, and into 7, genera. We shall obtain formulas for 74 and 7,.
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LeEMMA 4. Let N € S(N'), M € S(M'). Then (N, M;A) = (N, M;R) if
and only if there exists 8 € u such that [A] = B[A].

Proof. From Lemma 2 we deduce the existence of units 84, 82 € u, and
of t € Homg(N, M), such that the isomorphism (N, M; A) = (N, M;A) is
given by (n, m) — (Bin, Bsm + tn). This implies

R, = BB, + g(B7't) — (Bi')g, g €G.
Setting 8 = B1~'8s, we have [A] = B[A]. Conversely, starting from such a

relation, we may reverse the steps to obtain an isomorphism of the modules.

LEMMA 5. Let N € S(N'), M € S(M"). Then (N, M; A) v (N, M; &) if and
only if there exists an element o € R such that (¢) + ¢ = R and [A] = a[A].

Proof. Let (N, M; A) v (N, M;R). As in the preceding proof, we deduce
that for each p € P, there exists an element «, which is a unit in R, such

that the classes [A?] and [A?] in C(N,, M,) are related by
(A7] = o,[A7].
Choose @ € R such that a = @, (mod p*®) for each p € P; then (a) + ¢ = R.
Furthermore, (@ — o,)B(N,, M,) C B'(N,, M,), so that
afA”] = o,[A"],  p € P

Therefore [A?] = [aA?] for all p € P, and so by Theorem 1 we have [A] =
[aA] = afA].

Suppose now that S(N’) splits into » genera; according to (7), each genus
splits into & classes under G-isomorphism. Let us choose representatives of
the v classes, say {N,;:1 <1 < », 1 <j <k}, so that all the modules with
the same subscript lie in the same genus. Likewise choose representatives
{M;*:1 <1< u,1<j<h} of the hu classes into which S(M’) splits. Let
(N, M; T) € S(L'), and suppose N v N, M v M,’. Then for each p € P,
there exists an element

@ € B((N1), (M),)

such that
(Npy My; T7) =2 ((N1),, (M1),; @)

as A,-modules. By Theorem 1, there exists A € B(N,% M’) such that
[A?] = [@7] for all p € P. Therefore

(N, M; )P = (Ni, Mi; A),, p € P,

and so

(N, M;T) V (Ni, Mi; A).
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Hence, every module in S(L’) is in the same genus as (V1% M1’; A) for some
choice of 7 and j and some A € B(N.¢, M,’). Further,

Vi, Mi; ) vV (T, M{5 A)
implies, by the method of proof of Lemma 1, that 7 = ¢’ and j = j'. Let us
set
(1) Hy={(V, M{; A): A € BV, M)}, 1<i<r1<j<p,

and suppose that H; splits into 7;; genera. Then we have at once
(12) o= 2 T
i

On the other hand, any module in S(L’) is G-isomorphic to (N,% M,7; A)
for some 14, j, p, ¢ and A. Further, by Lemma 1, two such modules cannot be
isomorphic unless they have the same set of indices 7, j, p, 0. Let us set

S(@i, p;j, o) = {(Ng, MJ; A) : A € B(N,, M)},
and suppose that S(z, p;j, o) splits into s(i, p; j, 0) classes. Then
7'(; = Z S(i! p;j’ U)'
i,5.p,0
However, Lemma 4 states that_(N,,", M,7; A) = (N, M,%;4) if and only
if there exists 8 € u such that [A] = B[A]. Furthermore, the Corollary to

Theorem 1 shows that C(N,% M,?) is (as R-module) independent of p and
o. Therefore s(i, p;j, 0) = s(4, 1;4, 1) for all p and o, and we have

(13) rTe = n Z St
w7

where s;; = s(¢, 1;7, 1) is the number of classes into which H,; splits.

Before proceeding with the calculation of 7;; and s;;, it will be convenient
to introduce some notations. For a non-zero ideal a in R, let ¢(a) denote the
number of residue classes in R/a which are relatively prime toa. Ilf a + b = R,
then ¢(ab) = ¢(a)p(h). Next, let #(a) denote the number of distinct residue
classes in (1 + a)/a; of course, u(a) is a divisor of ¢(a). However, u(a) is
not a multiplicative function of a, as is seen from the example where K is
the rational field.

LEMMA 6. Let N € S(N'), M € S(M'),and H = {(N, M; A): A € B(N,M)}.
Suppose H splits into r genera and s classes. Let d(a) be the number of elements
in C(N, M) with order ideal a. Then

r= Ea: d(@)/6(), s = Ea d(a)/u(a),
both sums extending over all divisors of g.

(The order ideal of an element ¢ € C(N ,M) is {a € R:ac = 0}.)
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Proof. Let us use the symbol (N, M; ¢) to denote the collection of mutually
isomorphic modules { (N, M; A): A € ¢}, where ¢ € C(N, M). By Lemma 4,
(N, M;¢) and (N, M; ¢’) cannot lie in the same genus unless ¢ and ¢’ have
the same order ideal. Consider the set of d(a) elements of C(N, M) with
given order ideal a. For a fixed ¢ in this set, all those ¢’ of the form ac, where
a € R is such that (a) + g = R, will yield modules in the same genus as
those obtained from ¢. But as a ranges over all elements of R for which
(@) + ¢ = R, ac gives exactly ¢(a) distinct elements of C(N, M). Therefore

r= ; d(a)/ ¢(a).

A similar argument gives the formula for s.
Let d,(p") denote the number of elements in C(V,, M,) having order ideal
p". Then

d@") = (") — ("),

where 7(p") denotes the number of elements of C(N,, M,) which are anni-
hilated by p*. From Theorem 1,

d@) = [] &,(»*®), where a = [] p*®.

DEP DeEP

We may therefore write

v(p)
r=11 {E dp(p“>/¢<p")},
DEP a=0

which confirms the result in (7) that the number of genera is the product
over all p € P of the number of classes into which S(L’) splits under A4,-
isomorphism. The corresponding multiplicative formula for s fails to hold,
because #(a) is not multiplicative.

Applying Lemma 6 to our original problem, we may summarize our result

as follows.
THEOREM 2. Let N, ..., N* be representatives of the gemera into which
S(N’) splits, and M, ..., M* representatives of the genera of S(M'"). For each

divisor o of g, let di;(a) denote the number of elements in C(N?, M7) having
order ideal a. Then S(L') splits into v, genera and rq classes, where

=2 X dy@/¢@, ro= K 2 2 du@/u.
i i
Here, ¢(a) is the number of residue classes in R/a which are relatively

prime to a, and u(a) is the number of distinct elements of (u + a)/a.

CoROLLARY. We have r¢ > h*r,, with equality provided that ¢(g) = u(g).
Furthermore, if any C(N?, M7) contains an element of order ideal a, where
u(a) < ¢(a), then rg > hr,.
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5. Integral classes and genera in the general case. Now let L' be an
A-module with k distinct irreducible constituents, and let K be a splitting
field for A. We preserve the notation introduced at the beginning of § 3. In
this section we shall generalize the results given in the Corollary to Theorem 2.

For each « (1 <k < k), let {N,7:1 <1< vk),1 <j<h} bea full set
of representatives of the kv (k) classes into which the set S(IV,’) splits; suppose
these representative modules are so chosen that modules with the same
indices 7 and « lie in the same genus. Then every module in S(L’) is of the

form
W N (A,
Let S(¢1, j1; ... ; %, jx) be the set of all such modules obtained by letting
{A%} range over all systems in
BWi, ..., N
and let this set split into r(7y, j1;. .. ;% jx) genera and s(iy, j1; ... ; Tk Jr)
classes. From the Corollary to Theorem 1, we see that r(3y, j1; ... ; %, jx) is
independent of (ji,...,ji), and therefore
ra = h_k E r(ilyjly RIS ;ik,jk)y rTe = Z S(ilvjlt; o e ;ikyjk)y

both summations extending over all possible values of the ¢'s and j's. This
implies the result that

Tae } hkr‘,.
Finally, we prove:
THEOREM 3. If u(g*1) = ¢(g*1), then rq = h'r,.

Proof. We remark that the hypothesis of the Theorem is simply a restate-
ment of condition (3) given in the introduction. To prove the theorem, we
need only show that r(71, ji5... 5%, jr) = sy, J1s ... ;% Jx). We simplify
the notation by letting M, € S(N.'), 1 < kx < k. We shall prove that if

L= (My..., Mg {A"}), L= (@,..., My {K"})

are such that _L v L, then also L = L.
Since L, = L, for each p € P, Lemma 2 shows the existence of units
B, ..., B8 in R,, and homomorphisms

t?; € Hom,, ((M1>zn (Mj)p)

such that the isomorphism L, = L, is given by

(mly Cel, Mmy) > (Bfmly ﬁgmz + Iffzmly ey 6I€mk + Iffkml + ..o+ tz—l,kmk-—l)-
By the hypothesis of the theorem, we may choose units 8y, ..., 8; € u such
that

Be=B  (modp™ ™), pcP, 1<«k<Ek
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As in the proof of Theorem 1, we may choose homomorphisms w;; €
Hom (M, M;) such that

wh=1; modp® P 1<i<ji<k pEP
Then the map

(mxy Ce, ) > (Bymy, Byma + wigmy, . . ., Bymy + wymy + ...+ Wy—1, 5Mg—1)

gives a G-isomorphism of L onto a module L* where L* = (M, . .., My; {Q%¥})
and Q¥ = A% (mod ¢*!) for 1 < ¢ <j < k. By Lemma 3 we then have
L* = L, which completes the proof of the theorem.

[t would be of interest to obtain formulas for 7¢ and 7, which generalize
those given in Theorem 2.
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