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CONSTRUCTION OF REGULAR SEMIGROUPS WITH
INVERSE TRANSVERSALS

by TATSUHIKO SAITO
{Received 24th March 1987)

1. Preliminaries

Let S be a regular semigroup. An inverse subsemigroup S° of S is an inverse
transversal if |V(x) N S°| =1 for each x €8, where V(x) denotes the set of inverses of x. In
this case, the unique element of ¥(x)nS° is denoted by x°, and x°° denotes (x°)~!.
Throughout this paper S denotes a regular semigroup with an inverse transversal S°,
and E(S°)=E° denotes the semilattice of idempotents of S°. The sets {e€S:ee°=e} and
{f€S: f°f=f} are denoted by Is and Ag, respectively, or simply I and A. Though each
element of these sets is idempotent, they are not necessarily sub-bands of S. When both
I and A are sub-bands of S, S° is called an S-inverse transversal. An inverse transversal
S° is multiplicative if x°xyy° € E°, and S° is weakly multiplicative if (x°xyy°)° € E° for every
x,yeS. A band B is left [resp. right] regular if efe=ef [resp. efe= fe], and B is left
[resp. right] normal if efg=egf [resp. efg= feg] for every e, f,ge B. A subset Q of S is
a quasi-ideal of S if QSQ < S.

We list already obtained results in [3, 4, §, 6], which will be used in this paper:

(1.1) (xp)° =(x°xy)°x° =y°(xyy°)° for every x, yeS.

(1.2) If $° is a quasi-ideal of S, then I [resp. A] is a left [resp. right] normal band
with an inverse transversal E°

(1.3) If S$° is an S-inverse transversal, then I [resp. A] is a left [resp. right] regular
band with an inverse transversal E°.

(1.4) S° is weakly multiplicative if and only if IA={ef:e€l, f €A} is the idempotent-
generated subsemigroup of S with inverse transversal E°.

(1.5) S° is an S-inverse transversal of S if and only if (x°y)°=y°x°° and (xy°)°=y°°x°
for every x,y€eS.

(1.6) S is isomorphic to the set {(e,x, f)eIxS°xA:e°=xx"", f°=x""x} under the
multiplication

(e,x, /)8, y, W) =(exfgy(xfgy)°, x(f8)°°y,(xfgy)°x f gyh).
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(1.7) The following diagram is obtained:
§°: no assumption

T

S°: S-inverse transversal

)
$°: quasi-ideal §°: weakly multiplicative
/
§°: multiplicative S: orthodox

Proposition 1.8. S is orthodox if and only if (xy)°=y°x° for every x,y€S.

Proof. If S is orthodox, then y°x°e V(xy) n S° for every x,y€S, so that (xy)°=y°x°.
Conversely, if (xy)°=y°x° for every x, yeS, then ee E(S) if and only if e°€ E°. Because,
ecE(S) implies e°=(ee)°=e%° and e°cE° implies e=ee’e=e(e)’e=e(e?)’e=
e(e?)°e*(e?)°e=ee’cee’e=ce. Let e, f € E(S). Then (ef)°=f°e°eE°, so that ef eE(S).
Thus S is orthodox.

The above result has been obtained, when S$° is multiplicative, by T.S. Blyth and R.
McFadden (cf. [1]).

2. Main theorem

To achieve our aim, we need several lemmas.

Lemma 2.1. For each aeE®, let L,={ecl:e°=a} and R,={f € A: f°=a}. Then:

(1) L, [resp. R,] is a left [resp. right] zero-semigroup,

(2) if eeL,, ge L, with b<a, then egeL,, and if f €eR,, he R, with b<a, then hf €R,,
and

(3) I=Z{L,;acE°} and A=%Z{R,:ae E°}, where T denotes disjoint union.

Proof. (1) For e,geL,, we have eg=ec’°g=eg°g=eg’=ee’=e.
(2) Let eeL, and geL,. Then egb=egg®=eg. If b<a, then beg=baeg=g°’c’eg=
gle’g=g°g=g°=b. Thus ege L,.
(3) This is clear.
Let Y be a semilattice, and T, a semigroup for each ae Y. Let T=X{T,:aecY}. If a
partial binary operation o is defined in T'such that

(1) for x,y,zeT, xo(yoz)=(xoy)oz if xoy, (xoy)oz, yoz and xo(yoz) are defined in
T,
(2) xoy=xy if x,ye T,, where xy is the product of x and y in T, and

(3) for xeT, and yeT; with f<a, xoy [resp. yox] is defined and xoy [resp.
yox]eTy,
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then the resulting system T(o) is called a lower [resp. upper] partial chain of {T;:aeY}.
In particular, if each T, contains &, and {&@:a€ Y} forms a semilattice isomorphic to Y
under the binary operation o, then {&:a€ Y} is called a semilattice transversal of T(o).

By Lemma 2.1, I [resp. A] is a lower [resp. upper] partial chain of left [resp. right]
zero semigroups {L,:a€ E°} [resp. {R,:ac E°}], and I and A have a common semilattice
transversal E°.

Lemma 2.2. If S° is an S-inverse transversal of S, then I [resp. A] is a semilattice of
left [resp. right] zero semigroups {L,:ae E°} [resp. {R,:a€ E°}].

Proof. Let ecL, and geL,. Then, by (1.1) and (1.5), we have (eg)°=(e°eg)°e’=

(e°g)’e® =g°e°e° =g°e°=ab. Since egel, ege L,,.

Lemma 2.3. Let ecl and feA. Then:

(1) f(fe)°e®=(fe)*",

(2) (f°e)°=f"¢,

() (ff)°=/° and (e°e)*° =¢",

@) if fo=(fe)°(fe°)° [resp. & =(f"€)°(f°€)*°), then f°=(fe°)*° [resp. e*=(f€)*],
(5) if S° is an S-inverse transversal of S, then (f°e)°°=(fe°)*°= f°e°,

(6) if S° is weakly multiplicative, then (fe)°° € E°.

(7) if 8° is a quasi-ideal of S, then (fe)°°= fe, and

(8) if S is orthodox , then (fe)°°= f°e°.

Proof. (1) By (1.1) we have (fe)°=e°(f°fee’)’f°=e°(fe)°f°, so that (fe)*°=
f(fe)°e®. (2) and (3) are clear. (4) Let f°=(fe°)°°(fe°)°. Then we have fe°=
fefe=(fe°)°(fe)°fe°, so that [fe°(fe)°=(fe°)°°(fe®)°=f°. Thus we have
fUeyf=fe(fe)f=r°f=f and (fe)°f(fe’)°=(fe’) fe’(fe’)°=(fe’)°, so that
fe=(fe°)°. Thus f°=(fe°)°°. (5) By (1.5), this is clear. (6) Since (fe)°=(f°fee°)°€E°,
(fe)°°eE°. (7) Since fe=f°fee°eS°SS° = §°, (fe)°° = fe. (8) By Proposition 1.8, this is
clear.

Lemma 24. For each (x,y)eS°xS° let oy ,):Re-1,xLy,-1—=1 and P, ;) Re-1, %

L,,-.—»A be mappings defined by (f,e)u, ,,=xfey(xfey)° and (f,e)B.,,=(xfey)°xfey,
respectively. Then:

(1) (f; €)%, ) € Lyrer=pixrer=n-+ and (f,€)Bix,5) € Rx(ger=y - 1x(rey=ys
(2) if feR;-1,g€L,,-1,heR, .., and keL,,-,, then

(.,; g)a(x, y)((.f; g)ﬁ(x. y)h, k)a(x(fg)”y. 2) = (.f; g(h’ k)a(y. 2))a(x.)'(hk)°°z)’

(f; g(h’ k)a(y. z))ﬂ(x. y(hk)"’z)( h’ k)ﬁ(y, 2= ((j; g)ﬁ(x, y)h’ k)ﬂ(x(fg)”y, z)
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and

(SN, &)Bx. k) = (f glh, k)agy, ) Y(hK)*°,

(3) (x7'x, yy™ oy =xyxy) "" and (x7'x,yy ™),y =(xy) "' xy, and
(4) if S° is an S-inverse transversal of S, then (f°,e)a s = f°e and (f,€°)B s o= f€°.

Proof. (1) Let (f,e)eR, -1, x L,,-1. Then, by (1.1), we have
(xfey)’ =y '(x"'xfeyy™)x =y i (f fee)x =y (fe)’x " =(x(fe)*y) T,
so that
((f, %, )° = (xfey(x fey))° =(efey)**(x fey)° = x(f &) y(x(fe)*°y) "

(2) By using (1.1), we can tediously but easily show that
(£, 80, (S, 8)Bix, s K)lx(rgy=y. 2)
= ngyth(ngyth)o = (j; g(h’ k)a(y,z))a(x, y(hk)°z)» (.f; g(h, k)a(y. z))ﬂ(x, y(hk)“z)(h9 k)ﬂ(y,z)

= (ngyth)Ongyth = ((f’ g)ﬂ(x. y)h’ k)ﬂ(x(fy)“y, z)

and

(8N S, 8)Bx. 1) =(f&yhk)>® = (f g(h, k)ay, ) y(hk)*°.

(3) By the definition, this can be easily proved.
(4) By using (1.5), this can be easily proved.

Let M and N be two sets. A partial mapping from M to N is a mapping from a subset
C of M into N. The set of all partial mappings form M to N is denoted by PT(M, N).
Then, by Lemma 24, o ,ePT(AxLI) and B ,cPT(AxI,A) with dom(a, ,)=
dom (ﬂ(x.y)) =Rx' 1x X Lyy‘ 1.

Theorem 2.5. Let S° be an inverse semigroup with the semilattice E° of idempotents, and
let 1 be a lower partial chain of left zero semigroups {L,:a€ E°} and A an upper partial
chain of right zero semigroups {R,;a€E°}. Suppose that I and A have a common
semilattice transversal E°. Let A x I-8°, (f,e)— f *e be a mapping satisfying:

(1*) f°(f *xe)e’= [ xe,
(2%) fore=fe",
(3*) fxf°=f°and e°xe=¢e° and
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@%) if fo=(f*e°)(f*e°)7 ", then f°=f=e° and if e®=(f*e)"(f°*e), then =
SCre
Suppose that, for each (x,y)eS°xS°, there exist o, ,ePT(AxI,I) and B ,€
PT(A x 1, A) satisfying:

(a*) dom (o, ) =dom (B, ;) = Re- 15 X Lyy-1, (f; €)% 1) € Luseappistsrern -2 and (f,€)Bx ) €
R(X(f se)y)” Ix(f e}y
(b*) if feR,-,, geL

heR,-, and keL,, -1, then

yy~1s ~ly

A g)“(x, y)((f; g)ﬂ(x,y)ha k)a(x(ftg)y, = (£ g(h, k)a(y, z))“(x, y(hek)z)

(f; g(h’ k)a(y. z))ﬂ(x, yth tk)z)(h’ k)ﬁ(y, z) = ((.f; g)B(x. y)h9 k)B(x(ftg)y, z}

and

(f *N(f8)Bix yh* k) =(f *glh, k)a,,))y(h k), and

(€*) (x71%, 9y ™ D,y =xy(xy) " and (x 7%, yy ™ B, 5 =(xy) ' xy.

Define a multiplication on the set W={(e,x,f)elIxS°xA:e€L-1,f€R,-1,} by
(e,x, )&, y, ) =(e(f,8)%x. ), X(f *8)y, (f,8)Bx.;yh)- Then W is a regular semigroup with
an inverse transversal isomorphic to S°.

Conversely, every regular semigroup with an inverse transversal can be constructed in
this way.

Proof. We can easily show, by using (a*) and (b*), that W is a semigroup. Let
We={(e,x, f)e W:e, f eE°}. Then (e,x, f)e W° if and only if e=xx"! and f=x"'x. By
(2% and (c*), we obtain (xx~ L, x,x 'x)(yy ™4, 3,y y)=(xy(xy) "1, xy,(xy) " *xy), which
shows W°~S§°, so that W° is an inverse subsemigroup of W.

For (e,x,f)eW, by (3*), we have x(f*f)x '=xf°x"'=xx"'=e°, so that
(i ) x-y€Ls and  (f, f)Bx.x-y€R,. Thus we have (ex, f)(f°,x ' e)=
(e(f, £, x-1), €% (f f)Bix x-1)€°) =(e,€°,€°). Again by (3%*), e°(e°*e)x=x, so that
(e°,e)ae yEL, and (e €)fs R Thus we have (ex, f)(f °x e ex, f)=
(e,e°,e°)(e, x, f)=(e(€°, €)1 X, (€%, €)B (e 0 f) = (&, X, f) Similarly we obtain
(fo,x L e e x, N, x~1,e)=(f°,x1,e°. Consequently (f°,x~1,€° is an inverse of
(e,x, f) in W°. '

Let (g°, y,h°) e W° be an inverse of (e, x, f) € W. Then

(ea X, f)=(e’ X, f)(go’ Y, ho)(e’ X, f)=( .. .,X(f *go)y1 (ﬂgo)ﬂ(x,y)ho)(e’ X, f)
=(..., x(f * g f.8°)Bx. yh° % €)x,...).

Thus we have

xx T 2 x(f *g)px(f *g°)y) !
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2x(f * gL, 8°)Bix, h° * )X(X(f * g )N(£,8)Bx.pyh° * €)%) "

=xx"!,

so that xx ™' =x(f *g°)y(x(f *g°)y) " !. By (1%)

xThx=x"lexTlx=x" (S g2)yy (S +g%) T x T x

=f(f+8)g°(f*8) ' fo=(f*+£)(f +g°) "
By (4*), we obtain f°= f xg° and similarly e°=h° xe. Since

(o]

ee=xx"1=x(f*g)y(x(f xg%)y) ",

(f.8°)%sx, € L. Thus we have

(&, 1) =(g° y, h°) (e, x, 1)(&°, y, 1) = (&°, y, h°)(e( £, 8°)tx, yy X(f *£°)y:-..)
=(&% . 1) e, xf°y,... )= (g% y, h°) (e, xy,...) = (..., y(h° * &)xy,...)

=(...,ye’xy,...)=(...,yxy,...),

so that y=yxy. Since y 'y2(xy) 'xy2(yxy)~'yxy=y7'y,y"'y=(xy)"'xy and
(.f;go)ﬂ(x,y)e Ry. Thus we have (e, x,[f)=(e,x, f)(g°y,h°)(e x, f)=(e,xy,h°)(e,x, )=
(...,xyx,...), so that x=xyx. Consequently y=x""!. Thus each element (e, x, f) € W has
the unique inverse (f°,x ™, ¢€°) in W°,

Conversely, let S be a regular semigroup with an inverse transversal S°. By Lemma
2.1, Iy and Ag are a lower partial chain of left zero semigroups {L,:ae E°} and an upper
partial chain of right zero semigroups {R, ae E°}, respectively. For (f,e)e AgxIs, put
f*e=(fe)°°. Then, by Lemma 2.3, * is a mapping from Agx I into S° satisfying the
conditions (1*)-(4*). For each (x,y)eS°xS° and for every (f,e)eR,-i . xL,,-1, put
(fi&)an,=xfey(xfey)> and (f e)f.,=(xfey)°xfey. Then, a ,ePT(AxI,I) and
Bix., € PT(AxI,A), and by Lemma 2.4, they satisfy the conditions (a*)—~(c*). Thus we
can construct a semigroup W ={(e,x,f)elgxS°xAg:ieeL,, -\, f€R,-1,} under the
multiplication (e, x, f)(g, y, h)=(ex fgy(xfgy)°, x(f8)*°y,(xfgy)°’x fgyh). Then, by (1.6),
W ~ 8. The proof is complete.

3. Application to special cases
(1) S-inverse transversals

Lemma 3.1. In Theorem 2.5, if the mapping * satisfies the condition (1*), and (2°)
[*e°=f°xe=fe° instead of the conditions (2¥), (3*) and (4*), then W is a regular
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semigroup with an S-inverse transversal isomorphic to S°. Conversely, every such semigroup
can also be so constructed.

Furthermore, if a binary operation o is defined on I [resp. A} by eog=e(e’, g)ot(.- 4~ for
e,gel [resp. hog=(f,h°)B o 1h for fhe A], then I(o) =1y [resp. A(o)~Ay].

Proof. It is clear that (2°) implies (2*), (3*) and (4*). Thus, it is enough to show that
W*® is an S-inverse transversal of W. Let (e, x, f),(g, y, h) e W, Then, by (2°), we have

(e:x, )&, v, W)°=((f*,x"",¢°) (&, y, h))°

=(....,x Y’ *g)y,...)°

1, 0,0

=(...,x 'e%g%y,..)°=(...,x"'y,...)°
=) Ty Ty T LT T ) T
=( x0Ty () Ty T )
=y 'y y Ly Hex T x, x T x)

=(g, 5. W)(e,x, f)*°,

and similarly ((e, x, f)(g, v, B)°)°=(g, y, h)°°(e, x, h)°, so that, by (1.5), W° is an S-inverse
transversal. By (5) of Lemma 2.3, the converse assertion is clear.

For the last assertion, by a part of the proof of Theorem 2.5, (e,x, f)(e,x, f)°=
(e,e®,e°), which shows that (e,x,f)ely if and only if x=f=e° Let (e e’ e,
(g.8°,89€ly. Then, by (1*) and (2°), e°(e°*g)g°=e’+g=e°g°, so that
(e,e%e°)(g, 8% 8°) = (e(e°, 8)a (e, 4, €°8°, (€°, 8) e, 8°). Since Iy is a sub-band of W,
(e(e®, 8)oer, g, €°8°,(€°,8) Bier. 8"V EIw, so  that (e, g)f- 8" =€°¢°. Consequently
(e,e’,e°)(g,2°, g°)=(eog,e°g’ e°g°), which shows that Iy ~I(o).

By Lemmas 2.2 and 3.1, we obtain:

Theorem 3.2. Let S° be an inverse semigroup with the semilattice E° of idempotents,
and let I be a semilattice of left zero semigroups {L,;:a€ E°} and A a semilattice of right
zero semigroups {R,:ae€ E°}. Suppose that I and A have a common semilattice transversal
E°. Let Ax1-8°/(f,e)— f *e be a mapping satisfying:

(1*) fo(f*e)e°=f*eand (2°) fOre=fxe°= f°€°.

Suppose  that, for each (x,y)eS°xS°, there exist o ,ePT(AxI,I) and
Bix.» € PT(A x 1, A) satisfying the conditions (a*), (b*), and (c*) in Theorem 2.5, and (d¥%)
(f°.0)aye = f°e and (f e°)P - . =f€°. Define a multiplication on the set W=
{le.x,f)eIxS°xA:eeL,.-\, f€R,-1,} as in Theorem 2.5. Then W is a regular

semigroup with an S-inverse transversal isomorphic to S°, and Iy~I and Ay~A.
Conversely, every such semigroup can be so constructed.
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Proof. It is enough to show that I,~I and Ap~A. Let e,gel. Then, by (d*),
e(e®, 8)u - - =ee’g =eg, so that the binary operation o in Lemma 3.1 coincides with the
product in I. Thus I, ~1, and similarly A, ~A.

(2) Weakly multiplicative inverse transversals

Lemma 3.3. In Theorem 2.5, if the mapping * is A xI—E° instead of A x I-8°, then
W is a regular semigroup with a weakly multiplicative inverse transversal isomorphic to S°.
Conversely, every such semigroup can be so constructed.

Proof. It is enough to show that W* is weakly multiplicative. Let (e, x, f),(g, v, h) e W.
Then, since f *ge E°, we have

(e, x, 1)°(e, x, )(&, v, 1)(&, ¥, 1)) =((f°, £ °. [)(&, 8% 8N =(..., [°(f *8)g",-..)°

=(...,f*8...)'=(f*g, [ *g, [ xg)e E(W°),
so that W° is weakly multiplicative. By (6) of Lemma 2.3, the converse assertion is clear.

By Theorem 3.2 and Lemma 3.3, we obtain:

Theorem 34. Let S°, E°, I and A be as in Theorem 3.2, Let AxI—>E°(f,e)—>f *g be
a mapping satisfying the condition (1*) and (2°). Suppose that, for each (x,y)eS°xS§°,
there exist a, ,€ PT(Ax1,1) and B, , € PT(A x1I,A) satisfying the conditions (a*)—(d*).
Define a multiplication on the set W={(e,x, f))elxS°xA:eeL,.-1, feR.,-1,} as in
Theorem 2.5. Then W is a regular semigroup with a weakly multiplicative inverse
transversal isomorphic to S°, and 1y, ~1I and Ay ~A. Conversely, every such semigroup can
be so constructed.

(3) Orthodox semigroups

Lemma 3.5. In Theorem 2.5, if the mapping * satisfies (1°) f * e= f°e° instead of (1*)-
(4%), then W is an orthodox semigroup with an inverse transversal isomorphic to S°.
Conversely, every such semigroup can be so constructed.

Proof. It is clear that (1°) imi)lies (1*)-(4*). Thus, it is enough to show that W is
orthodox. Let (e, x, f),(g, y, h) € W. Then we have

(e, x, Ng v, W)°=(....,x(f*2)y,...)°’=(....,xf°%,...)=(...,xy,...)°

=((xy) " 'xp, (xp) " xp(xy) )

=(y—-lx—l(y—lx—l)—l,y—lx—l,(y—lx—l)—ly—lx—l)
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=(y7 'y Ly T x T xx T = (g, 5, ), x, S

By Proposition 1.8, W is orthodox. By (8) of Lemma 2.3, the converse assertion is clear.

If the mapping * in Theorem 2.5 satisfies the condition (1°), then x(f *e)y=xy for
(f,e)eR, -1, xL,,-1, so that we can omit the mapping *. Thus, by Theorem 3.2 and
Lemma 3.5, we obtain:

Theorem 3.6. Let S°, E°, I and A be as in Theorem 3.2. Suppose that, for each
(x,y)€S° x S°, there exist o, ,, € PT(A x1,1) and B, , € PT(A x 1, A) satisfying:
(a°)dom (a, ) =dom (B, ) =R, -1, X Ly -1, r1an(a,,) S Lyy,-1 and ran(f, ,) <

R(xy) ~lxys

(b°)if f €R,-1,,8€L,,-s, heR -, and ke L,,-., then
(f. 82, ([, 8)B i, syhs K)U(y, 2y = (s 8Lh K) 0ty 2))x, 2,
(f8(h, Ky, B, yo(Bs K) By, 2y = (S 8)Bix, y, K)Bisy, 21
and (c*) and (d*) in Theorem 3.2. Define a multiplication on the set
W={(e,x,[)elxS°xA:e€L, -1, f€R,-1,}

by (e, x, f)(g, ¥, ) =(e f,8)x, ) XV (f:8)Bix.;yh). Then W is an orthodox semigroup
with an inverse transversal isomorphic to S°, and Iy, ~I and Ay ~A. Conversely,

every such semigroup can be so constructed.

A left [resp. right] inverse semigroup is an orthodox semigroup whose band of
idempotents is left [resp. right] regular.

Lemma 3.7. In Theorem 3.2, if each right zero semigroup R,, a€ E°, is trivial, that is,
A=E° then W is a left inverse semigroup with an inverse transversal isomorphic to S°,
and Iy ~1. Conversely, every such semigroup can be so constructed.

Proof. Let (e,x, f)e W. Since feE°, f=x"'x. Let (¢,x,x"'x)e W be an idempotent.
Then (e, x,x 'x)=(e,x,x 'x)(e,x,x 'x)=(...,x(x " 'x*e)x,...)=(...,xx " 'xe°x,...)=
(...x2,...), so that x=x2€E°. Thus, (¢,x,x 'x)=(e,e°e°, which shows E(W)=1I.
Consequently, the set E(W) of idempotents of W is left regular, so that W is a left
inverse semigroup.

In Lemma 3.7, for ge L we have x(x 'x*g)y=xx"'xg’y=xy, so that the

mapping * can be omitted.

yy~ b

Corollary 3.8 ([8, Theorem 1]). Let S° and I be as in Theorem 3.2. Let ¢ be an anti-
homomorphism S° into End (I), x—a(x) satisfying (1) L,,-16(x) S L, -1, (2) (yy ™ Ha(x) =
xy(xy)~" and (3) es(f)=ef".
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Define  a  multiplication on  the set W={(e,x)elxS8%e€L,,-1} by
(e,x)(g, v)=(e(go(x)), xy). Then W is a left inverse semigroup with an inverse transversal
isomorphic to S°, and Iy, ~1. Conversely, every such semigroup can be so constructed.

Proof. For each (x,y)€S°xS° and for every eeL,,-., we take (x™'x,e)a,,, =eo(x)
and (x7'x,e)B.,,=(xy)"'xy. Then we can show that a,, and B, , satisfy the
condition (a*)—-(d*) in Theroem 3.2. Thus, by Lemma 3.7, we can construct a left inverse
semigroup W' ={(e,x,x 'x)el x S°x E>:e€ L, -1} under the multiplication

(ea X, x~ lx)(g’ Vs ,V_ ly) =(e(x_ lX, g)a(x.y)’ Xy, (x_ lxa g)ﬁ(x.y)y_ 1y) =(e(ga(x)), Xy, (Xy)_ lxy)'

Let W —W be a mapping given by (e, x,x 'x)—(e,x). Then the mapping is clearly an
isomorphism. Thus W is a left inverse semigroup with an inverse transversal isomorphic
to §°, and Iy ~1I. The proof of the converse is the same as in [8].

(4) Quasi-ideal inverse transversals

Corollary 3.9. ([3, Theorem 4.2]). Let S°, I and A be as in Theorem 3.2., and let
A X I-8°(f,e)> f *e be a mapping satisfying the conditions (1*) and (2°) in Theorem 3.2.
Suppose that, for each (x,y)e S° x §°, there exist a, ) and B, in PT(A x I, E°) satisfying
the condition (a*) in Theorem 3.2. Define a multiplication on the set W={(e,x, f))e
IxS°xAeeL .-, f€R,-1,} as in Theorem 3.2. Then W is a regular semigroup with a
quasi-ideal inverse transversal isomorphic to S°, and I, ~1 and Ay, ~A. Conversely, every
such semigroup can be so constructed.

Proof. For (fie)eR, -1, X L,,-1, since (f,e)a,,€E°(f,e)xy. , =x(f *e)y(x(f *e)y)~*
and similarly (f, e)fx., =(x(f *e)y) " 'x(f xe)y. Then we can easily show that « , and
B(x.yy satisfy the conditions (b*)—(d*) in Theorem 3.2. Thus W is a regular semigroup
with an S-inverse transversal isomorphic to §°, and I, ~I and A, ~A. For (e,x, f)eW
and for (g°y,h°),(k° z,m°)eW°, we can show that (g° y,h%(e, x, f)(k° z,m°)=
(yxz(yxz) ™!, yxz,(yxz) " *yxz)e W°, so that W° is a quasi-ideal of W. By (7) of Lemma
2.3, the converse assertion is clear.

Corolloray 3.10 ([9, Theorem 2]). In Corollary 3.9, if the mapping * is AxI—E°
instead of AxI—-S° then W is a regular semigroup with a multiplicative inverse
transversal isomorphic to S°, and Iy ~1 and Ay =A. Conversely, every such semigroup can
be so constructed.

Proof. For (f,e)eR,-1,x L, -1, since f*ee E°, we have (f, e, ,=x(f*e)x~ ' and
(./; e)ﬂ(x,y)=y_l(f *e)y‘ From thlS faCt’ we haVe (e7 X, f)o(es x’ f)(g9 y’ h)(g$ y’ h)0=

(ffo . e g%8)=(f *g, f *g, [ *g)e E(W°), so that W° is multiplicative.

By (1.2), I, [resp. Ay ] in Corollaries 3.9 and 3.10 is a left [resp. right] normal band.
Since I, ~1 [resp. Ay ~A], I [resp. A] is necessarily a left [resp. right] normal band.
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Though the condition (1) g°(f*e)=g°f *e and (f xe)h°=f *eh® has been used
instead of (1*) f°(f*e)e°=f+*e in [3] and [9], Corollaries 3.9 and 3.10 can be
obtained under the condition (1*) which is weaker than (1).

Moreover, we can obtain construction theorems on idempotent-generated regular
semigroups with inverse transversals and bands with inverse transversals, by taking
§°=E° in Theorem 3.4 and Theorem 3.6, respectively.
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