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Abstract It is proved that if ϕ : A→B is a local homomorphism of commutative noetherian local rings,
a nonzero finitely generated B-module N whose flat dimension over A is at most edimA−edimB is free
over B and ϕ is a special type of complete intersection. This result is motivated by a ‘patching method’
developed by Taylor and Wiles and a conjecture of de Smit, proved by the first author, dealing with the
special case when N is flat over A.
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1. Introduction

The work of Wiles and Taylor-Wiles [18, 20] on modularity lifting theorems relies

on a patching method that has been generalised to prove a series of remarkable

results that verify in many cases the Fontaine–Mazur conjecture. The Fontaine–Mazur

conjecture relates geometric representations of absolute Galois groups of number fields
to automorphic forms and motives. The spectacular proof by Newton and Thorne [17] of

the automorphy of all symmetric powers of Galois representations associated to classical

newforms is a recent example.
One of the ingredients in the patching method of Wiles, Taylor-Wiles et al. is a

commutative algebra result that for our purposes is best summarised in [8, Proposition

2.1]. The assumptions there are used to reduce the proof to a statement about modules
over regular local rings, which follows from the Auslander–Buchsbaum formula. We spell

this out in the statement below, as it gives a context for the results we prove here.
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Proposition 1.1. Let O be a discrete valuation ring, A := O[[x1, . . . ,xr]] and ϕ : A→ B

a map of O-algebras. Suppose the ring B is a quotient of O[[y1, . . . ,ys]] and N is a nonzero

B-module that is finitely generated as an A-module and satisfies projdimAN ≤ r−s. Then
N is a free B-module and B = O[[y1, . . . ,ys]].

Proof. Since N is finitely generated over A, the depth formula of Auslander and

Buchsbaum yields

depthAN +projdimAN = depthA= r+1

so that depthAN ≥ s+1. This explains the inequality on the left:

s+1≤ depthAN = depthBN ≤ dimB ≤ dimO[[y1, . . . ,ys]] = s+1.

The equality holds as N is finitely generated as an A-module and the inequality on the

right holds because B is a quotient of O[[y1, . . . ,ys]]. It follows that B and O[[y1, . . . ,ys]]

have the same dimension and hence that they are equal, for the former is a quotient of

the latter, which is a domain. In particular, B itself is regular and projdimBN is finite.
Then, given depthBN = s+1, another application of the Auslander–Buchsbaum formula

yields that N is a free B -module.

Bart de Smit made the remarkable conjecture that if A→B is a local homomorphism of
(commutative) Artinian local rings of the same embedding dimension, then any B -module

that is flat as an A-module is also flat as a B -module. This strengthens Proposition 1.1

in the case r = s and allows one in principle to dispense with patching in the techniques
à la Wiles to prove modularity lifting theorems.

In [5, Theorem 1.1] the first author proved de Smit’s conjecture. The connection to

patching is explained, for example, in [5, §3]. In fact, in [5] it is proved that if A,B are
noetherian local rings with edimA≥ edimB and N is a finitely generated B -module that

is flat over A, then N is flat over B. We extend [5, Theorem 1.1], giving en passant a new

and simpler proof of it by proving the following.

Theorem 1.2 (see Theorem 3.1). Suppose ϕ : A → B is a local homomorphism of
noetherian local rings and N is a nonzero finitely generated B-module whose flat dimension

over A satisfies flatdimAN ≤ edimA−edimB; then N is free as a B module and ϕ is an

exceptional complete intersection map.

We say ϕ is exceptional complete intersection if it is complete intersection and edimA−
dimA = edimB−dimB; see 2.14. When ϕ is surjective, with kernel I, this property is
equivalent to the condition that I can be generated by a regular sequence whose images are

linearly independent in the cotangent space mA/m
2
A. There is a similar characterisation

of this property for general maps in terms of the cotangent space of ϕ; see Section 2 for
details.

The more general hypothesis in our theorem as opposed to [5, Theorem 1.1] gives us the

freedom to reduce its proof to the surjective case, using standard results in commutative
algebra. This is instrumental in leading to a proof that is simpler than the one presented in

[5] as we can apply an induction on edimA− edimB. A key ingredient in this induction

step is a theorem of Nagata that tracks the projective dimension of finitely generated
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modules along surjective exceptional complete intersection maps; see 2.18. In fact, our
main theorem, Theorem 3.1, can be seen as a converse to this result. A ‘better’ converse

is proved in Theorem 3.2.

Work of Calegari and Geraghty [7] in ‘positive defect’ situations, extending the patching
method in [18] to situations where one patches complexes rather than modules, suggests a

version of Theorem 1.2 dealing with complexes; see also [13, 19]. The Calegari–Geraghty

patching argument leads to a situation where one can apply Proposition 1.1 to prove

the faithfulness of the action of a deformation ring on the cohomology in ‘top degree’ of
a certain arithmetic manifold. We expect that a version of Theorem 1.2 for complexes

would allow one in principle to obviate the need to patch in positive defect situations,

just like the application of [5, Theorem 1.1] in [16, §4]. We hope to return to this topic
in the future.

2. Local algebra

This section is mostly a recollection of some basic facts from local algebra for use in the

proofs in Section 3. The only new material concerns a class of local maps introduced
here called exceptional complete intersections. Much of the discussion in this section is

geared towards characterising these maps in terms of their tangent spaces. This is easy to

do for surjective maps and even for maps essentially of finite type. With an eye towards

future applications, we treat more general maps of noetherian rings. To that end, it
will be convenient to use André–Quillen homology modules. In fact, we require only the

components in degrees 0 and 1, which are easy to describe, as we do below, and the

Jacobi–Zariski sequence. Most of what is needed is already in [14]; see also [4, 11]. We
also need to refer to [2] for more recent work on complete intersection maps.

2.1. Let A→B be a map of rings and M a B -module. We write Di(B/A;M) for the ith

André–Quillen homology of the A-algebra B, with coefficients in M, namely:

Di(B/A;M) := Hi(LB/A⊗B M)

where LB/A is the cotangent complex of the map A→ B. One has Di(B/A;M) = 0 for

i < 0 and

D0(B/A;M) = ΩB/A⊗B M

where ΩB/A is the module of Kähler differentials of B over A. If A�B is surjective, with

kernel I, then D0(B/A;M) = 0 and from [14, Lemma 3.1.2] one gets that

D1(B/A;M) =
I

I2
⊗B M. (2.2)

Given maps of rings A→B → C and a C -module N, one has an exact sequence

· · · −→Di+1(C/B;N)−→Di(B/A;N)−→Di(C/A;N)−→Di(C/B;N)−→ ·· ·

called the Jacobi–Zariski exact sequence associated to the maps. We only need the part

of the sequence for i≤ 1 and for this see [14, §§2.3.5].
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2.3. By a local ring we mean a commutative, noetherian, local ring. We write mA for the
maximal ideal of A and kA for the residue field A/mA. The cotangent space of A is the

kA-vector space

mA

m2
A

∼=D1(kA/A;kA);

the isomorphism is by (2.2). The rank of this vector space is the embedding dimension

of A, denoted edimA. There is an inequality dimA ≤ edimA, where dimA is the Krull

dimension of A; when equality holds, the ring A is said to be regular. In this case, one
has Di(kA/A;−) = 0 for i ≥ 2 and the converse holds as well; see 2.10, keeping in mind

that A is regular if and only if the quotient map A→ kA is complete intersection.

2.4. We say ϕ : A → B is a local map to mean that A and B are local rings and ϕ is

a homomorphism of rings satisfying ϕ(mA) ⊆ mB . The closed fibre of such a map is the

local ring B/mAB, with maximal ideal mB/mAB and residue field kB .
It is helpful to think of D1(B/A;kB) as the cotangent space of the map A→ B; when

B =A/I, it is I/mAI. Here is a simple but useful observation.

Lemma 2.5. Let A→B be a surjective local map. The rank of the map

D1(B/A;kB)−→D1(kB/A;kB)

induced by the surjection B → kB equals edimA− edimB.

Proof. Set k := kB . The Jacobi–Zariski sequence induced by A→B → k starts as

D1(B/A;k)−→D1(k/A;k)−→D1(k/B;k)−→ 0.

The result is clear from the additivity of rank on exact sequences.

2.6. Following [3], we say that a local map ϕ : A→ A′ is weakly regular if it is flat and

its closed fibre A′/mAA
′ is regular. In this case there are equalities

dimA′ = dimA+dim(A′/mAA
′)

edimA′ = edimA+dim(A′/mAA
′).

The first equality is well-known; see [6, Theorem A.11]. One way to verify the second
one is to consider the maps A′ → F → k′, where F := A′/mAA

′ and k′ := kA′ and the

associated Jacobi–Zariski sequence

0 = D2(k
′/F ;k′)−→D1(F/A

′;k′)−→D1(k
′/A′;k′)−→D1(k

′/F ;k′)−→ 0

where the equality holds because F is a regular local ring; see 2.3. Since ϕ is flat, base

change [14, §§2.3.2] yields

D1(F/A
′;k′)∼=D1(kA/A;k

′)∼=D1(kA/A;kA)⊗kA
k′.

Thus, the sequence above gives the desired equality.

2.7. Given an A-module M and a nonnegative integer n, we write flatdimAM ≤ n to

indicate that M has flat dimension ≤ n; that is, M has a flat resolution of length at

https://doi.org/10.1017/S147474802100061X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802100061X


Freeness Criterion 2121

most n. This condition is equivalent to TorAn+1(−,M) = 0. When these conditions hold,

TorAi (−,M) = 0 for all i≥ n+1.

When the A-module M is finitely generated, its flat dimension coincides with its
projective dimension.

2.8. If ϕ : A→ A′ is weakly regular, then for any finitely generated A′-module N there
are inequalities

projdimA′ N ≤ flatdimAN +edim(A′/mAA
′)

= flatdimAN +edimA′− edimA.

See [3, Lemma 3.2] for the inequality; the equality is from 2.6.

2.9. A regular factorisation of a local map ϕ : A→B is a decomposition

A
ϕ̇−−→A′ ϕ′

−−→B

of ϕ where ϕ̇ is weakly regular and ϕ′ is surjective; see [3]. It is clear that such

factorisations exist if ϕ is finite and, more generally, essentially of finite type; that is,
when B is a localisation of a finitely generated A-algebra. The main result of [3] is that

such factorisations exist also when B is complete with respect to its mB-adic topology;

this extends Cohen’s structure theorem for complete local rings.
The map ϕ is formally smoothable if there exists a factorisation as above of the

composition A→ B → ̂B, where ̂B is the mB-adic completion of B, in which the closed

fibre of ϕ̇ is even geometrically regular over kA, the residue field of A. Such factorisations
exist when, for example, ϕ is essentially of finite type or the extension of fields kA → kB
is separable; see [3, (1.1.2)].

2.10. A surjective local map A→B is complete intersection if its kernel can be generated
by a regular sequence. In this case, if B =A/I, then I/I2 is a free B -module of rank equal

to dimA−dimB. Thus,

D1(B/A;M)∼= I

I2
⊗B M ∼=M c where c= dimA−dimB. (2.11)

Moreover, Di(B/A;−) = 0 for i ≥ 2, and this property characterises the complete

intersection property [2, (1.2)].

2.12. Let ϕ : A→B be a local map and let ̂B be the mB-adic completion of B. Following

[2], we say that ϕ is complete intersection if in some regular factorisation

A→A′ ϕ′

−→ ̂B

of the composed map A → B → ̂B, the surjective map ϕ′ is complete intersection in

the sense of 2.10. This property is independent of the choice of factorisation. When
A → A′′ → B is a regular factorisation of ϕ, ϕ is complete intersection if and only if

A′′ → B is complete intersection. The class of complete intersections is closed under

composition and flat base change; see [2] for proofs of these assertions.
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Using regular factorisations of maps, one can often reduce questions about general
complete intersection maps to the surjective case; see, in particular, the proof of Theorem

3.1.

Lemma 2.13. When ϕ is complete intersection there is an inequality

edimA−dimA≤ edimB−dimB.

Proof. We may assume B is mB-adically complete. Consider a regular factorisation A→
A′ →B of ϕ. Since ϕ is complete intersection, Lemma 2.5 and (2.11) yield

edimA′− edimB ≤ dimA′−dimB.

This gives the inequality below:

edimA−dimA= edimA′−dimA′ ≤ edimB−dimB.

The equality is from 2.6.

2.14. We say that a complete intersection map ϕ is exceptional if the inequality in Lemma

2.13 is an equality: ϕ is complete intersection and

edimA−dimA= edimB−dimB.

Thus, for example, for such a ϕ, the ring A is regular if and only if B is regular. Moreover,
one can check easily using a regular factorisation of ϕ that one also has

dimA−depthA= dimB−depthB.

This means that A is Cohen–Macaulay if and only if B is.

It is immediate from 2.6 that weakly regular maps are exceptional complete intersec-
tions. Here is another simple family of examples with this property.

Example 2.15. Let A,B be regular local rings. Then any local map ϕ : A → B is

exceptional complete intersection. Indeed, since

edimA−dimA= 0 = edimB−dimB,

it suffices to verify that ϕ is complete intersection. This can be checked using André–

Quillen homology. Here is a direct argument: any surjective map between regular rings is

complete intersection by Chevalley’s theorem [6, Proposition 2.2.4], and one can reduce
to this case using regular factorisations 2.9.

The exceptional complete intersection property can be expressed in terms of André–

Quillen homology, at least for formally smoothable maps.

Lemma 2.16. Let ϕ : A → B be a formally smoothable local map that is complete
intersection. Then ϕ is exceptional if and only if the natural map

D1(B/A;kB)−→D1(kA/A;kA)⊗kA
kB

is one-to-one.
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Proof. In what follows we write k for kB . First consider the case when ϕ is surjective
and complete intersection, say B =A/I. The complete intersection property implies that

the rank of the k -vector space D1(B/A;k) is dimA−dimB, by (2.11). Given Lemma 2.5

it is then clear that ϕ is also exceptional if and only if the map

D1(B/A;k)→D1(k/A;k)

is one-to-one.

In the general case, we can assume B is mB-adically complete. Let A→ A′ → B be a

regular factorisation of ϕ. Since D1(A
′/A;−) = 0, by [2, (1.1)], for any A′-algebra C, it

follows from the Jacobi–Zariski sequence induced by A→ A′ → C that the natural map
is one-to-one:

D1(C/A;−)−→D1(C/A′;−).

This justifies the exactness in the rows in the diagram below:

0 D1(B/A;k) D1(B/A′;k) D0(A
′/A;k) · · ·

0 D1(k/A;k) D1(k/A
′;k) D0(A

′/A;k) · · ·

The diagram is commutative by functoriality of André–Quillen homology. The vertical

maps on the left and in the middle are induced by B→ k. A simple diagram chase reveals

that if one of these is injective, then so is the other. It remains to observe that since

A′ → B is surjective, the already established case of the result implies the middle one is
injective if and only if A′ →B is exceptional.

It follows from Lemma 2.16 that when ϕ : A→B is surjective, it is exceptional complete

intersection if and only if Ker(ϕ) is generated by a regular sequence whose image in
mA/m

2
A is a linearly independent set. The forward implication need not hold when ϕ is

not surjective.

Example 2.17. Let k be a field and consider the map of k -algebras

ϕ : k[|x,y,z|]−→ k[|s,t|] where x �→ s2,y �→ st,z �→ t2.

This map is exceptional complete intersection; see Example 2.15. It is easy to check that
Ker(ϕ) = (xz−y2); in particular, it is contained in m2

A.

Next we record a result of Nagata [15, §27] that tracks the projective dimension of

modules along surjective exceptional complete intersections.

2.18. Let ϕ : A→ B be a surjective local map and N a finitely generated B -module. If

ϕ is exceptional complete intersection, then

edimA−projdimAN = edimB−projdimBN.

In particular, projdimAN is finite if and only if projdimBN is finite.
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See Theorem 3.3 for a version dealing with non-necessarily surjective exceptional
complete intersections and Theorems 3.1 and 3.2 for converses.

3. Criteria for detecting exceptional complete intersections

We begin this section by proving Theorem 1.2 from the Introduction, in a slightly more

elaborate version. The last part recovers [5, Theorem 1.1]. We should note that if the

B -module N happens to be finitely generated over A, as would be the case if ϕ is a finite
map, then its flat dimension equals the projective dimension.

Theorem 3.1. Let ϕ : A → B be a local map with edimA ≥ edimB. If there exists a

nonzero finitely generated B-module N satisfying flatdimAN ≤ edimA−edimB, then the
following conclusions hold:

(1) N is free as a B-module;

(2) ϕ is an exceptional complete intersection;

(3) flatdimAN = flatdimAB = edimA− edimB.

In particular, if N is flat as an A-module, then edimA= edimB and ϕ is flat.

Proof. We first reduce to the case when ϕ is surjective. To that end, note that if ̂B is

the completion of B at its maximal ideal, then for any finitely generated B -module W

the flatness of the map B → ̂B implies

TorAi (−,W ⊗B
̂B)∼=TorAi (−,W )⊗B

̂B for each i.

The completion map is faithful, so flatdimA(W ⊗B
̂B) = flatdimAW . Also, the B -module

W is free if and only if the ̂B-module W ⊗B
̂B is free. So replacing B by ̂B we can assume

ϕ has a regular factorisation:

A
ϕ̇−−→A′ ϕ′

−−→B;

see 2.9. The first inequality below is by 2.8:

projdimA′ N ≤ flatdimAN +dim(A′/mAA
′)

≤ edimA− edimB+dim(A′/mAA
′)

= edimA′− edimB.

The second one is our hypothesis, whilst the equality is from 2.6. We claim that it suffices
to prove the result for ϕ′.
Indeed, this is clear for (1) as it concerns only the B -module structure on N. For (2)

the desired conclusion holds because ϕ is complete intersection if and only if ϕ′ is, by 2.12
and then the fact that one of them is exceptional if and only if the other is is immediate

from 2.6. Finally, if the equality in (3) holds for ϕ′, then the inequalities above become

equalities, so the desired equality holds also for ϕ.
Thus, we assume ϕ is surjective and hence that N is finitely generated over A.

We first settle the case when the B -module N is faithful; that is, when annAN =Ker(ϕ).

We argue by induction on edimA− edimB. The base case is when edimA = edimB, in
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which case flatdimAN ≤ 0; that is, N is free as an A-module. This implies Ker(ϕ) = 0

and then the desired result is clear.

Suppose that edimA− edimB ≥ 1. Then the ideal Ker(ϕ) is nonzero and so the
hypothesis that projdimAN is finite implies annAN , which is Ker(ϕ), contains a nonzero

divisor, by a result of Auslander and Buchsbaum [1, Lemma 6.1]. Moreover, since

edimA− edimB ≥ 1, the ideal Ker(ϕ) is not contained in m2
A, so there exists a nonzero

divisor, say x, in Ker(ϕ) \m2
A. The existence of such an x follows by a standard ‘prime

avoidance argument’ where at most two of the ideals are allowed not to be prime; see, for

example, [12, Theorem 81]. Consider the factorisation

A−→A/xA
ϕ−−→B

of ϕ. Since x is a nonzero divisor not contained in m2
A, there is an equality

projdimA/xAN = projdimAN −1;

see 2.18. Evidently, edim(A/xA) = edimA−1. Thus, the induction hypothesis applies to

ϕ and yields that ϕ is an exceptional complete intersection and also that N is free as a

B -module. It remains to note that, by the choice of x, the map ϕ is also an exceptional

complete intersection.
This completes the proof when N is faithful as a B -module.

For the general case, set I := annBN and B :=B/I. Consider the composition

ψ : A
ϕ−−→B −→B.

Since N viewed as a B-module is faithful and edimB ≤ edimB, the already verified case
of the result applied to ψ yields that N is free as a B-module and also that ψ is an

exceptional complete intersection. To complete the proof, it suffices to verify that I = 0.

As ψ is an exceptional complete intersection, one gets the first equality below.

edimA− edimB = projdimAB

= projdimAN

≤ edimA− edimB

≤ edimA− edimB.

The second equality holds because N is free as a B-module, the first inequality is by
hypothesis, whilst the second one holds because B is a quotient of B. It follows that

edimB = edimB; that is, I ⊆ m2
B . The maps A → B → B induce the exact row in the

diagram below:

D1(B/A;k) D1(B/A;k) D1(B/B;k) 0

D1(k/A;k)

π

The diagonal arrow is induced by the maps A→B → k and the vertical one by the maps

A → B → k; it is an inclusion because A → B is an exceptional complete intersection;
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see Lemma 2.16. Since edimB = edimB, the ranks of the latter two maps are equal by
Lemma 2.5. It follows that π is onto and hence

I

mBI
=D1(B/B;k) = 0.

Nakayama’s lemma yields I = 0, as desired.

Here is a variation on Theorem 3.1; unlike in that statement, we have to assume a priori
that the projective dimension of the B -module N is finite. Compare the hypotheses with

Nagata’s Theorem 2.18.

Theorem 3.2. Let ϕ : A→B be a local map and N a nonzero finitely generated B-module

N of finite projective dimension. There is then an inequality

flatdimAN −projdimBN ≥ edimA− edimB.

Moreover, if equality holds, then ϕ is an exceptional complete intersection.

The inequality in the statement can be strict: let A be a field, B a ring of formal power
series over A, and set N :=B.

Proof. We can assume flatdimAN is finite. First we treat the case when ϕ is surjective.

Since N is a nonzero finitely generated B -module that is of finite projective dimension

over both A and B, it follows that projdimAB is finite by [10, Theorem IV]; see also

[9, Remark 5.6]. This fact will be crucial in the ensuing proof.
Keep in mind that the projective dimension of N over B and that of N and B

over A are finite. Thus, repeatedly applying the equality of Auslander and Buchsbaum

[6, Theorem 1.3.3] yields

projdimAN −projdimBN = (depthA−depthAN)− (depthB−depthBN)

= depthA−depthB

= projdimAB.

We have also used the fact that the depth of M over A is the same as that over B. It thus

suffices to prove the result for N =B, namely, that there is an inequality

projdimAB ≥ edimA− edimB.

The fact that ϕ is an exceptional complete intersection if equality holds then follows from

Theorem 3.1.

From this point on, the proof flows as in that of Theorem 3.1: We argue by induction
on edimA− edimB; the base case when this number is zero is again a tautology. When

edimA−edimB ≥ 1, one can find a nonzero divisor x in Ker(ϕ)\m2
A. Then from Nagata’s

Theorem 2.18 one gets the equality below:

projdimAB = projdimA/xAB+1

≥ edim(A/xA)− edimB+1

= edimA− edimB.
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The inequality is by the induction hypothesis. This gives the desired inequality.
This completes the proof of the result when ϕ is surjective. The general case is settled

by the standard reduction to the surjective one: Completing B at its mB-adic topology,

we can assume ϕ has a regular factorisation A → A′ → B. Then one has inequalities,
where 2.8 gives the first one:

flatdimAN −projdimBN ≥ projdimA′ N −projdimBN +edimA− edimA′

≥ edimA− edimB,

and the second one is by the already established case of the result, applied to the

surjection A′ → B. This gives the stated inequality and also that if equality holds, then
projdimA′ N −projdimBN = edimA′−edimB, which implies ϕ′ is exceptional complete

intersection; thus, ϕ has this property, by definition.

The result below complements Theorem 3.2 and is an extension of Nagata’s Theorem

2.18 to maps that may not be surjective.

Theorem 3.3. If a local map ϕ : A → B is exceptional complete intersection, then for

any finitely generated B-module N, one has

edimB−projdimBN ≥ edimA−flatdimAN ;

in particular, flatdimAN is finite if and only if projdimBN is finite. Equality holds when

the map ϕ is finite.

The inequality in the statement can be strict if ϕ is not finite: Let k be a field and

ϕ : k[[x,y]]→ k[[s]] the map of k -algebras that maps x,y to 0 and take N = k[[s]].

Proof. As before, we can assume ϕ has a regular factorisation A → A′ → B. Then it
follows from 2.8 that flatdimAN is finite if and only projdimA′ N is finite; since A′ →B

is a surjective exceptional complete intersection, Nagata’s Theorem 2.18 yields that the

latter holds if and only if projdimBN is finite. Thus, in the rest of the argument we
can assume that flatdimAN and projdimBN are finite. Then the desired inequality is

already in Theorem 3.2.

When ϕ is finite, N is also finitely generated over A, so flatdimAN =projdimAN . This

and the Auslander–Buchsbaum equality give the first equality below:

edimA−flatdimAN = edimA−depthA+depthAN

= edimB−depthB+depthBN

= edimB−projdimBN.

The second equality follows from the displayed equalities in 2.14 and the fact that depth

of N over A equals its depth over B, since ϕ is finite. The last equality is again by the
Auslander–Buchsbaum equality.
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