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Introduction. We denote by Autsn(G) the set of all automorphisms that fix every
subnormal subgroup of G setwise. In a recent paper [7] Robinson showed that the
structure of Autsn(G) is quite restricted for a finite group G. Our aim in this paper is to
show that more detailed information about the structure of Autsn(G) can be obtained by
focussing on its action on F*(G), the generalised Fitting subgroup of G.

For the remainder of this paper G will denote a finite group and we will write
A = Autsn(G). We denote by £(G) the layer of G and recall that F*(G) is a central
product of £(G) and F(G), the Fitting subgroup of G. (See, for example, Section 13 of
Huppert and Blackburn [6].) We denote by r the natural homomorphism of G onto
Inn(G). We set C = CA(F*(G)). For an arbitrary finite group we obtain the following
structure.

THEOREM 1. For a finite group G we have E(A) = E(G)T and A/(E(A)C) soluble with
derived length at most 3.

Note that C is an abelian normal subgroup of A by Lemma 5 of Robinson [7],
Theorem 13.2 of Huppert and Blackburn [6] and Lemma 3 of P. Hall [5], and so we have
that C<F(/4). It then follows that £(E(A))C is abelian (by Huppert and Blackburn [6,
Theorem 13.15], with £(E(A)) the centre of E(A)) and so A is abelian-by-completely
reducible-by-soluble of derived length at most 3. We also get a criterion for A to be
soluble; it is equivalent to the one given in Corollary 3 of Robinson [7], since the
Wielandt subgroup w(G) of G is soluble if and only if E(G) = 1.

COROLLARY 2. The group A is soluble if and only if F*(G) = F(G).

When A is soluble we can obtain further restrictions on the structure of A. In the
finite case, Theorem A of Franciosi and De Giovanni [4] tells us that A is metabelian if G
is soluble and Teorema A of Dalle Molle [3] tells us that A is supersoluble if G is soluble.
We can extend these results in the following way.

THEOREM 3. Suppose that G is a finite group with F*(G) = F(G). Then A is
metabelian and supersoluble. Moreover, if n is the set of primes dividing \F(G)\, then
\A/F(A)\ s H ( p - 1 ) and the nilpotency class of F(A) is bounded by max{ep}, where pep

pe/r pert

is the exponent of the Sylow p-subgroup of F(G) D w(G).

The proof of Theorem 3 in fact will often give more information about A if there is
more information about G; for example if all the Sylow subgroups of F(G) are
nonabelian then A is nilpotent.

t It is a pleasure to acknowledge the hospitality of the University of Mainz, where the work for this paper
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We also give examples to show that restrictions on the structure given as a
consequence of Theorem 1 and by Theorem 3 are best possible. Robinson [7] shows that
A/(A fllnn(G)) has derived length at most 4 and asks if this is best possible. We have
been unable to decide if A/(A fl Inn(G)) has derived length at most 3.

Proof of Theorem 1. If we denote by Z the centre of E(G), then E(G)/Z is a direct
product of nonabelian simple groups. Now A induces a group of automorphisms on
E(G)/Z, fixing each simple factor setwise. It follows (using Proposition 4 of Robinson [7])
that if a e A(3\ the third term of the derived series of A, then a acts on each simple factor
and hence on E(G)/Z as an inner automorphism. Thus for some x e E(G) we have
P = a~1xt acts trivially on E(G)/Z. We claim that /3 acts trivially on E(G). To see this,
let p be a prime and Zp> be the Hall p'-subgroup of Z. It is clearly enough to prove that /3
acts trivially on E(G)/ZP' for an arbitrary prime p. Thus we may assume that Z is a
p-group for some prime p. Suppose that q is a prime different to p and let Q be a Sylow
g-subgroup of E(G). Then QZ is fixed setwise by /3 and since Q is the unique Hall
p '-subgroup of QZ we must have Q also fixed setwise by /3. We also have that Q is fixed
elementwise by /3 modulo Z and hence we conclude that /3 acts trivially on Q. Since each
finite simple group is divisible by a prime other than p, we have E(G) generated by its
Sylow g-subgroups, q ¥=p, and hence /? acts trivially on E(G).

Next we observe that if a € A(3) and JC E E(G), we have a E CA(F{G)) (since A acts
as a group of power automorphisms on F(G)) and x e CC(F(G)) (since [E(G), F(G)] = 1
by Huppert and Blackburn [6, Theorem 13.15]). Thus we have /3 E CA(F(G)) and then,
by the previous paragraph, /3 E CA(F*(G) = C. Thus we have a e E(G)XC. It follows
immediately that ,4(3)<£(G)TC. A subnormal quasisimple subgroup of E(G)r is also a
subnormal subgroup of A and so we have E{G)Z <E{A). (See for example Section 31 of
Aschbacher [1].) Since A/E(G)r is clearly soluble, we have E(A) < E(G)r also and hence
E(A) = E(G)T. This completes the proof of Theorem 1.

To prove Theorem 3 we first need a lemma which tells us about the action of A on
G/F*(G).

LEMMA 4. Let G be a finite group with F(G) = F*(G). If as A, then we have
g-'g°sF(G)nw(G)JorallgsG.

Proof. If g E G and a e A, we put b = g~]g". Then a acts as a power automorphism
on F(G) and thus as a universal power automorphism on F(G)/F(G)', by Theorem 3.4.1
of Cooper [2]. Since bz = {gr)~1a~1gTa, if x e F(G) then xb is congruent to JC modulo
F(G)'. We then deduce b e F(G) from the facts that F*(G/F(G)') = F(G)/F(G)' and
that the generalised Fitting subgroup contains its own centraliser.

We also have bz mA ninn(G) = w(G)T and hence b e w(G). This completes the
proof.

Proof of Theorem 3. Suppose that G is a finite group with F*(G) = F(G). Following
Robinson [7] we observe that A' centralises F(G) and hence, by his Lemma 5, also
G/F(G). Thus A' is abelian and A is metabelian.

If n is the set of prime divisors of F(G), we choose normal subgroups Qp, where
pen, such that if Pp is the Sylow p-subgroup of F(G) then Qp n Pp = 1 and G/Qp has no
normal p'-subgroups. (Such a choice is always possible; we may choose Qp to be a
maximal normal subgroup of G with QpOPp^l.) Since Qp is fixed by A we have a
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natural homomorphism of A into Aut(G/Qp); we denote the image of A by Ap and the
kernel by Kp. Note that since p) QP = 1 we also have (~) Kp = l. Thus A is a subdirect

/?e/r pen

product of the Ap and so to prove the remainder of Theorem 3 it will be enough to prove
that Ap is supersoluble, with \Ap/F(Ap)\ < p - 1 and F(AP) a nilpotent group of class at
most ep. We set Gp = G/Qp.

Denote by Fp the Fitting subgroup of Gp and by Wp the image of Pp D w(G) in Gp.
We have that ^ p acts trivially on Gp/Fp and as power automorphisms on Fp. Thus CAp(Fp)
acts trivially on both Gp/Fp and /̂ , and it follows that CA (Fp) is an abelian normal
p-subgroup of Ap. Suppose now that Fp is nonabelian. Since Ap acts on Fp as a power
automorphism, AP/CA (Fp) is an abelian p-group, by Cooper [2, Corollary 5.1.2] and so
Ap is a p-group. Next suppose that Fp is abelian. UWP¥= Fp then any automorphism a in
Ap of order prime to p acts trivially on Fp/Wp and since a maps each element of Fp to the
same power by Cooper [2, Theorem 3.4.1] we must have a = 1. It follows that Ap is a
p-group. If Wp = Fp, then Ap/CAp(Fp) is a cyclic group of order dividing pep~\p -1); it
then follows that Ap has a normal p-subgroup of index dividing p — 1 and so is clearly
supersoluble with \ApIF{Ap)\<p -1 and moreover F(AP) has class equal to that of its
Sylow p-subgroup, since the Sylow p'-subgroups are cyclic.

We now have the Sylow p-subgroup, Bp say, of Ap acting trivially on Gp/Wpy by
Lemma 4. If we set W, = Wp

p\ then Bp acts trivially on W /̂Wy+j. Thus Bp stabilises a series
of normal subgroups of length ep +1 and so, by Lemma 3 of Hall [5], we have Bp

nilpotent of class at most ep.

Examples. Our first example is a group G with trivial centre for which Autsn(G) is
abelian-by-completely reducible-by-soluble of derived length 3. We begin by choosing H
to be a simple group whose outer automorphism group is isomorphic to S4; (for example,
as in Robinson [7], we may take H = D4(3)). Next we take SL3(7); (note that the centre of
5L3(7) is of order 3). Now let a be the automorphism of SL3(7) given by the transpose
inverse map; (note that a is an automorphism of order 2 which inverts the central
elements of SL3(7)). Let K be the semidirect product of 5L3(7) by (a). Then K has trivial
centre. We now set G = H X K and claim Autsn(G) has the required properties. To
see this note that Aut(//) x K is isomorphic to a subgroup Aut(G). It is now easy
to check that this subgroup fixes each subnormal subgroup of G setwise and that
(Aut(//) X K)m = Inn(//) X SL3(7), which is abelian-by-completely reducible.

For our next example, given a positive integer e and an odd prime p, we construct a
group G for which F(G) D o>(G) has exponent pe, A has F(A) a p-group of class e and
\A/F(A)\ = p - 1. Let X be a cyclic group of order pe. Then Aut(A') is the group of power
automorphisms of X and is cyclic of order pe~x(p — 1). If H is the holomorph of X, then
H is the semidirect product of X and Aut(A'). We let Y be the subgroup of Aut(X) of
order 2 and then we take for G the subgroup XY of H. The automorphism group of G is
then just H and we then have easily that Aut(G) = Autsn(G) = H. Thus F(H) is the
extension of A' by a cyclic group C of order pe~x and so \H/F(H)\ =p-\. Finally, it is
easy to see that the class of XC is e.
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