
T H E B E S S E L P O L Y N O M I A L S 
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1. Krall and Frink [2] have recently considered in connection with certain 
solutions of the wave equation a system of polynomials yn(x), {n = 0, 1, 2, . . .)» 
where yn is defined as that polynomial solution of the differential equation 

d2y dy 
(1) x> — + (2* + 2) - = »(» + l)y 

which is equal to unity when x — 0. 
They note the relationship of these polynomials to Hankel's functions of 

imaginary argument and establish among other results: 

(2) yn = 2~V/*Z)n(x2V-2/a0 (D = j J 

• (n + r)! /x\r 

r «o (n-r)lrl \ 2 / ' 

(3) yn+i = (2» + 1 ) ^ „ + yn-u 

1 

(4) W 
- 2 / ^ ( - ) n + 1 2* . 

c ^ ^ 7 1 2^ + 1 

where C is the unit circle or any contour surrounding x = 0 and emn = 0,1 
according a s m ^ w , m = w. 

It seems worthwhile to point out that the polynomials yn are effectively the 
same as those encountered by T. W. Chaundy and the author in the course 
of a wider investigation [1], Recognition of this fact leads to a more economic­
al determination of the principal formulae of [2] as well as to other properties 
not mentioned by the authors of that paper. I therefore develop in more 
detail than was previously possible the properties of the polynomials in question. 

2. It was shown in [1, pp. 478, 485] that the differential equation 

(5) 6(0 - 2» - l)y = x2y (ô = x —J , 

where n is zero or a positive integer, has the solutions 

y = On{x)e~x, 6n(— x)ex, 

where 6n is a polynomial of degree n in x defined by 

(6) do = 1, Bn = (-)ne*(ô - 1)(« - 3) . . . (8 - 2» + l)e~\ 
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We note that in 0n the coefficient of xn is unity and that more explicitly 
n (n+r)\xn~r 

(7) 6n~ r? 0 2'(»-r)!r! ' 

A comparison of (7) with (2) shows that 

(8) yn(x) = xnen(l/x), 

an identification which may be made without a knowledge of the explicit 
forms of 0n,yn by observing that, on setting y = 6ne~x in (5), we obtain 

5(5 - 2n - l)0n = 2x(8 - n)dn, 

whence, without difficulty, xndn(l/x) is a solution of 

(9) ôz + ix(ô -n)(ô + n + l)z 

which is the " 5 " form of (1). 

3. The zeros of 0n, and so of yn, have properties not mentioned in [2], It 
was for instance shown in [1], as a corollary to a more general argument, that 
zeros ar (r = 1, 2, . . . , n) of Bn satisfy the relations 

(10) £ ar1 = - 1, Ê ar1'28 = 0 (s = 2, 3, . . . , n). 
r = l r = l 

Hence the zeros br of yn obey the relations 

(11) E br = - 1, L V s " 1 = 0 (5 = 2, 3, . . . , n). 
r=l r = l 

An ad hoc proof of (10) is immediate: for let o^ denote the sum of the &th 
powers of the zeros of 6n and let Bn — ex<j>n, then 

<t>fn , -, On 
CD 

*•*-!, C-&. (12) ^ + i = ^ = - . £ r 

Reference to (6) shows that the expansion of <j>n in ascending powers contains 
no odd powers of x of index less than 2n + 1. In consequence the expansion of 
<i>fn/<t>n contains no even powers of x with index less than 2n and so, on equating 
coefficients in (12), we have (10). 

We may also establish the following results: 

(13) The polynomials 0n, 0 n + i have no zero in common and no 6n has a repeated 
zero. 

(14) The polynomial 6n has at most one real zero. 

Proofs of the statements in (13) are obtained by a familiar argument from 
the identities1 

xIt is worthy of notice that, if we define 0_n = ^x 2n9n—i the relations (15), (16) as well as 
the differential equation 

5(5 - 2n - l)0n = 2x(5 - n)6n 

are also satisfied for negative integral n. 
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(15) 6'n - 6n = ~ Xdn-U 

(16) 0n+i - x20n_i = (2n + l)Sn, 

the latter of which is equivalent to (3). 
To establish (15) we observe that 

e~x(Ô - x)6n = ôdne~x 

= (~) n (5 - 3)(8 - 5) . . . (8 - 2n + 1) « (« - l)e"« 

= (~) n (5 - 3) . . . (8 - 2» + l ) x V * 

= (-) nx 2(8 - 1) . . . (8 - 2» + 3)er* 

Again from (6) 
(8 - 2n - l)ene~x = - fln+rf"*, 

i.e., tf(0'n - dn) = (2W + l)0n ~ dn+l 

and, substituting on the left from (15), we have (16). 
To prove (14) let 

z\ — e~xdn(x), z2 = ex6n(— x), 
then from (5), 

ziz'2 — z2z'i = Cx2n 

or, 

(17) 6n(- X)d'n(x) + dn(x)d'n(- x) = 2 0 n ( x ) 0 n ( ~ x) + Cx2n, 

where C is a constant shown by a simple calculation to be 2(—• l ) n + 1 . Now in 
9n(x) all coefficients are positive and so all real zeros are negative. If possible 
let — a, — P be two consecutive real zeros. Then, from (17), 

On(a)0'n(- a) = Ca2\ dn(P)d'n(- P) = Cp2n. 

But dn(a), Sn(P) are both positive and so 0'n(— a), Br
n{— P) have the same 

sign which is impossible. Hence 6n has at most one real zero. 
It is natural to enquire whether the zeros (br) of yn(x), in some order or other 

furnish the only solutions of the system of equations 
n n 

£ *r = - 1, £ x28'1 = 0 (s = 2, 3, . . . , n). 
r=l r = l 

This is in fact the case for, if (xr) is any solution, let — xr = yr- Then 

£ b28~l + £ yr28-1 = 0 (s = 1, 2, . . . , n). 

The elementary symmetric functions ^425-i of the numbers (6r), (yr) to&<^ 
together therefore vanish when 5 = 1, 2, . . . , n and the (èr), (yr) are the roots 
of an equation 

t2n+A2t
2n~2 + ... + A2n = 0, 
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containing only even powers of /. To every root / there corresponds a root 
— /. Now reference to (17) shows that no two zeros of 0n can differ in sign 
only and the same is therefore true of the (&r). Hence the (yr) are the (br) 
in some order or other. 

4. A pseudo-generating function for 6n(x). I establish the formula 

p2xu oo Û (x\ 

(18) - i — - = E - ^ [2«(1 - «)]» 
1 — 2u w=o n\ 

for sufficiently small values2 of u, from which the generating function for yn 

and other variants in [2] may be derived. For the right-hand side of (18) is 

ex Z ( - ) * [ - ^ ^ (Ô - 1)(« - 3) . . . (ô - 2n + 1) e~° 
»=o n 

00 00 
(_)»[2«(1 - * ) ] n , ( _ x ) * 

= « Z Z -——— — (in — 1) • • • 0» — 2n + 1) ' 
w=o w=o w! w ! 

oo oo 

e x z ^ — ^ - — — [4«(i -«)]" 
m =0 n=0 w ! « ! 

= e* D ^ — ^ - (1 - 4M + 4M2) *m-* 
00 

m=o m ! 

6* " ( - x)m(l - 2uY 

1 — 2u m=\ m 

olxu 

1 - 2u 

5. The authors of [2] have also considered the equation 

x2 — + (ax + b) — = w(w + a •— 1)% 

or 
bôy + x(ô + n + a — 1) (5 - n)y = 0, 

with polynomial solutions yn(x1a}b) made definite by the supplementary con­
dition3 yn(0) = 1. Defining <t>n(x,ayb) = <£n by 

we find that <j>n is a solution of 

(19) 0(5 + 1 - a - 2n)z = &x(5 - »)*, 
2We may take conveniently 0 < u < ^. 
3It is evident from the second form of the differential equation that the constant b is a mere 

scale-factor, and nothing would be lost by considering only b = db 1. I retain b for the sake 
of comparison with the formulae of [2]. 
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a n d t h a t e bx<t>n is a solut ion of 

(20) 8(0 + 1 - a - 2w)w = - bx{8 - n - a + 2)w. 

We note that, if a = 2, (19) and (20) differ only in the sign of b and that (20) 
will then have the solutions 

<r6x<K(x,2,6), *n(x,2, - &) 

leading us back effectively to the theory of §2. 
We observe also that, if n + a — 2 is zero or a positive integer, (20) will 

have a polynomial solution of that degree. I now show that equation (20) has 
the solution 

(21) w=(8-n-a + 1)(5 - n - a) . . . (Ô - 2n - a + 2)e~bx. 

For 
è(Ô - 2n - a + \)w = (Ô - n - a + 1) . . . (Ô - 2n - a + l)ôe~bx 

= (Ô - n - a + 1) . . . (Ô - 2n - a + 1 ) ( - bx)e~-bx 

= - 6* (8 - » - a + 2) . . . (Ô - 2» - a + 2)e"6 : r 

= — Zw(8 — w — a + 2)ze>. 

Recal l ing t h a t t h e coefficient of xn in <j>n is u n i t y we h a v e 

(22) <t>n{xyaj)) = ( - b)-nehx(d - n - a + l)...(Ô-2n-a + 2)e~hx 

= (— b)~nebxxa+2n~1Dn(x~a~n+1e~bx), 

the latter form being equivalent to (47) of [2] and to (2) of the present note 
on setting a = b — 2. Thus, in addition to the formula (6) for the 6n of §2, 
we have 

(23) e-2xdn(x) = ( - | ) n ( 5 - n ~ 1) . . . (Ô - 2n)e~2x 

= (- DV^^^x'^r 2 2 ) . 
6. The operational methods of the present note enable me to repair one 

omission in [2], namely the failure to supply a generating function for the 
polynomials yn(x,a,b). I establish in the first place the result 

(24) (1 - uY~«eb™ = J [bu(l ~ u)]nd>n ^ 
1 — 2u «=o n\ 

which reduces to (18) when a = b = 2. We require the auxiliary formula 

(25) E ( n ~ * ) n [ " ( 1 ~ " ) r = (1 - 2«)~1(1 - u)k+\ 
»=o w! 

which may be proved as follows. 
The coefficient of u8 in 

~ (n - fe)n^(l - ^)n~1~ fc
 ig * (-)°-n(2n - k - s)s 

M=O w! «=o nl(s — #)! 
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and this is the coefficient of ts in the expansion of 

* ( - ) w s ! 
«=o n\(s — n)\ 

(1+/)*+•-*» = (1+/)*+*[!-(1+/)- 2] 8
 = ( l+*)*-y(2+*) f 

in which the coefficient of t8 is 2s. 
Returning now to (24), on the right we have, by (22) and (25), 

ebx £ (-)»[«(! ~ «)]" £ ( « - 2 » - a + 2), (-&*)" 
»=o w! w=o m! 

= e>* £ (~ M " £ (» + « - ! - »)-[«(! ~ «)]" 

^ ( i - * ) - * £ ( - ^ ^ ~ «>' " ( - bx)m(l - ^m+2-
m = 0 ml 

= (1 - 2w)"1(l ~ w)2~°e6a;u , 

as required. Writing x~l for x and #w for u in (24), we have 

( 2 6 ) (1 - xu)*-aebu
 = g &nyn(*,a,&)Nl ~ **)]» 

1 — 2xu n=o n\ 
and, setting 

2w(l - x«) = *, or 2*w = 1 - (1 - 2*/)* 

in (26), we find 

[i . i ( i _ 2^)*]»-»(l - 2 ^ ) " * exp [ ~ { 1 - (1 - 2**)*}] 

" (ft/2)»yn(s,a,ft)*n 

which may serve as a generating function for the polynomials yn{xiayb). 

7. In this section I assume that a is a positive integer. The results obtained 
may in certain circumstances be extended to negative integral and zero values 
of a but at the cost of their ceasing to hold for all n. 

In the first place we observe that, when a is a positive integer (20) has a 
polynomial solution of degree n + a — 2 and a series solution in ascending 
powers of x led by x2n+a~1. On the other hand we see that the expansion of 
the w defined by (21) lacks all terms with indices between n + a — 1 and 
2n + a — 2 inclusive. The expansion may in fact be divided by this gap into 
two parts furnishing respectively a polynomial and a series solution. A more 
important consequence of this gap in the expansion of w is the following. 
From (21) we have 

a+n-2 oo 
e'hX<t>n = £ CrX

r + E C2n+a+rX2n+a+r 

r=0 r = - l 
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where 
Co = b~n(n + a - l)n > c2n+a-i = ( -&)n + a~^!/(2w + a - 1)!. 

Suppose now m < n\ then in the expansion of e~hx$m<bn the term in xm+n+a~~1 

is missing, while in the expansion of e~hx<i>n2 the coefficient of x 2 n + ° _ 1 is c0C2n+a-i. 
Hence, if C is any contour surrounding x = 0, 

(28) ^ . 
2flTfc J 

<i>m<t>ne-hx
 dx = emB(~)n^r^! 

c xm+n+a Qfl + a - 1)0 + 0-2)! 

and, on changing the variable to 1/x, 

(29) ^ . 
2ir* J 

ym{x,afi)yn(x,ajb)e-hf* d% __ emn{-)n+a-lba-ln\ 

c x2~a (2n + a - l)(n + a - 2)! 

which reduces to (4) when a — b = 2. The problem of an appropriate weight 
function when a is not integral has been considered in [2], and to that discussion 
I have nothing to add. 
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