
Gabber rigidity in hermitian K-theory

Markus Land
Mathematisches Institut, Ludwig-Maximilians-Universität München,
Theresienstraße 39, 80333 München, Germany
markus.land@math.lmu.de

(Received 23 February 2022; accepted 3 March 2023)

We note that Gabber’s rigidity theorem for the algebraic K-theory of henselian pairs
also holds true for hermitian K-theory with respect to arbitrary form parameters.
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Let R be a commutative ring and m ⊆ R an ideal such that (R,m) is a henselian pair.
Standard examples include henselian local rings like valuation rings of complete
nonarchimedean fields as well as pairs where R is m-adically complete or where m
is locally nilpotent. We write F = R/m and let n be a natural number which is
invertible in R. Then Gabber’s rigidity theorem [5] says that the canonical map

K(R)/n −→ K(F )/n

is an equivalence; this result was preceded by work of Suslin [13] who showed this
conclusion for henselian valuation rings. See also [4] for an extension of this result,
involving topological cyclic homology, to the case where n need not be invertible in
R and a general discussion of henselian pairs. The purpose of this short note is to
use the results of [2, 3] as well as [6] to show that Gabber’s rigidity property also
holds true for hermitian K-theory, a.k.a. Grothendieck–Witt theory.

To state the main result, let λ be a form parameter over R in the sense of
[12, §3], see also [1, definition 4.2.26]. In loc. cit. it is explained that such a form
parameter λ is equivalently described by a Poincaré structure Ϙgλ

R in the sense of
[1] on Dp(R) which sends projective R-modules to discrete spectra. Here, Dp(R)
denotes the stable ∞-category of perfect complexes over R. We will assume that the
Z-module with involution over R underlying the form parameter λ is given by ±R,
that is, given by the R-module R with C2-action either the identity or multiplica-
tion by −1, viewed as an R ⊗ R-module via the multiplication map. There is then
an induced form parameter on F whose associated Poincaré structure on Dp(F )
we will denote by Ϙgλ

F , see remark 4 below for details. The construction is made
so that the extension of scalars functor canonically refines to a Poincaré functor
(Dp(R), Ϙgλ

R ) → (Dp(F ), Ϙgλ
F ) and therefore a map on Grothendieck–Witt theory.

Standard examples of form parameters capture the notion of quadratic, even and
symmetric forms (as well as their skew-quadratic, skew-even and skew-symmetric
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cousins) with associated Poincaré structures Ϙ±gq, Ϙ±ge and Ϙ±gs. A further example
is provided by the Burnside Poincaré structure Ϙb whose L-theory was calculated
explicitly for Z in [3, example 1.3.18] and whose 0’th Grothendieck–Witt group was
studied for commutative rings with 2 invertible in the PhD thesis of Dylan Madden
[10]. With this notation fixed, we have the following result.

Theorem 1. Let (R,m) be a henselian pair, F = R/m and let n be a natural number
invertible in R. Then the canonical map

GW(R; Ϙgλ
R )/n −→ GW(F ; Ϙgλ

F )/n

is an equivalence.

Proof. The main result of [2] gives a diagram of horizontal fibre sequences

and by Gabber rigidity, the left vertical map becomes an equivalence after tensoring
with S/n. Therefore, the statement of the theorem is equivalent to the statement
that the map

L(R; Ϙgλ
R )/n −→ L(F ; Ϙgλ

R )/n

is an equivalence. We then consider the diagram

where Ϙq±R denotes the homotopy quadratic Poincaré structure associated with the
invertible module with involution ±R which is part of the form parameter λ, and
likewise for Ϙq±F . We now observe that the formula for relative L-theory obtained
in [6] shows that the top and bottom horizontal cofibres are S[ 1

n ]-modules.
Indeed, [6] shows that the cofibre of the top horizontal arrow is a filtered colimit

of objects of the form

Eq
(
mapR(T ⊗R T,R) ⇒ (Σ1−σmapR(T ⊗R T,R))hC2

)

for T ∈ Dp(R), the bottom horizontal cofibre is described similarly1. Since
mapR(T ⊗R T,R) is canonically an R-module and n is invertible in R, it is also
an S

[
1
n

]
-module. Moreover, since Mod

(
S

[
1
n

]) ⊆ Sp is a full subcategory closed

1In [6], the authors in fact show that the relative L-theory in question, also known as normal
L-theory, is given by the C2-geometric fixed points of the real topological cyclic homology of

(Dp(R),Ϙgλ
R ). The equalizer formula is then reminiscent of the Nikolaus–Scholze formula for TC

[11].
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under colimits and limits, both terms in the equalizer, and therefore also the equal-
izer itself belong to Mod

(
S

[
1
n

])
. Consequently, the horizontal maps in the above

diagram become equivalences upon tensoring with S/n. The statement of the main
theorem is therefore equivalent to the statement that the left vertical map in the
above commutative square is an equivalence. This is a consequence of the work of
Wall’s [14] as explained in [3, prop. 2.3.7 and remark 2.3.8]. �

Remark 2. Restricting the situation above to form parameters rather than general
Poincaré structures on Dp(R) was merely a cosmetic choice to obtain a result about
classical Grothendieck–Witt theory: Indeed, it is again a consequence of the main
theorem of [2] that the diagram

is a pullback diagram for any Poincaré structure Ϙ on Dp(R) whose Z-module with
involution over R is given by ±R. The proof presented above therefore shows that
for any ring R in which n is invertible, the canonical map

GW(R; Ϙq±R)/n −→ GW(R; Ϙ)/n

is an equivalence so that Gabber rigidity also holds for the Poincaré structure Ϙ.
In particular, Gabber rigidity also applies to the homotopy symmetric Poincaré

structure Ϙ±s as well as the Tate Poincaré structure ϘtR, see [1, example 3.2.12].

Remark 3. Rigidity in hermitian K-theory has of course been studied in several
works before, see for instance [7–9, 15] for the case of rings with involution. The
main purpose here is to show how to use the formalism of Poincaré categories
and the main result of [2] to reduce rigidity in hermitian K-theory to rigidity
in algebraic K-theory and L-theory in a way that allows to treat general form
parameters.

Remark 4. In this remark, we describe how extension of scalars can be used to
prolong a form parameter over R along a map R → R′ of rings. It is here that
the assumption on the underlying module with involution is used. Indeed, we will
describe a general construction on Hermitian structures, and the assumption is used
to ensure that the given Poincaré structure is sent to a Poincaré structure rather
than merely a Hermitian structure.

Namely, in [1, §3.3], we have shown that the category of Hermitian structures
on Dp(R) is equivalent to the category ModN(R)(SpC2) = Mod(N(R)), that is, the
category of modules over the multiplicative norm2 N(R) in the category SpC2 of
genuine C2-spectra. Moreover, the category Mod(N(R)) is equipped with a canon-
ical t-structure whose heart is equivalent to the category of (possibly degenerate)
form parameters over R, see [1, remark 4.2.27]. Objects in Mod(N(R)) are described

2Also known as the Hill–Hopkins–Ravenel norm.
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by triples (M,N,α) where

– M is an object of ModR⊗R(SpBC2), where R ⊗ R is an algebra in spectra
with C2-action where the action flips the two tensor factors,

– N is an object of Mod(R) and
– α is a map N → M tC2 of R-modules,

see [1]; the Poincaré structures then consist of the above triples where M is invertible
in the sense of [1, def. 3.1.4]. We warn the reader that caution has to be taken in
regards to how M tC2 is to be viewed as an R-module, see e.g. [3, p. 7] for the details.
An object (M,N,α) is connective in the canonical t-structure on Mod(N(R)) if and
only if M and N are connective.

The Poincaré structure associated with the triple (M,N,α) is denoted by ϘαM .
Assuming that M is in the image of the canonical functor Fun(BC2,Mod(R)) →
ModR⊗R(Fun(BC2,Sp)), the triple

(M ′, N ′, α′) = (R′ ⊗R M,R′ ⊗R N,R′ ⊗R N → R′ ⊗R M tC2 → (R′ ⊗R M)tC2)

gives rise to a Poincaré structure on Dp(R′) for which the extension of scalar
functor canonically refines to a Poincaré functor (Dp(R), ϘαM ) → (Dp(R′), Ϙα

′
M ′), see

[1, lemma 3.4.3]. Now, if (M,N,α) was associated with a form parameter, then the
same need not be true for the triple (M ′, N ′, α′): Indeed, this is the case if and
only if Ϙα

′
M ′(R′) is a discrete spectrum which in general need not be the case (but

by construction it is always a connective spectrum). However, we may consider the
composite

M ′
hC2

−→ Ϙα′
M ′(R′) −→ τ�0Ϙ

α′
M ′(R′)

and denote its cofibre by N ′′. The pushout diagram of spectra

and the fact that (M ′)hC2 is coconnective shows that there is a canonical map
α′′ : N ′′ → (M ′)tC2 . By construction, the triple (M ′, N ′′, α′′) is an object of
Mod(N(R′))♥ and in fact identifies with τ�0(M ′, N ′, α′). This object determines
a Poincaré structure Ϙgλ′

associated with a form parameter λ′ over R′ for which
the extension of scalars functor refines to a Poincaré functor

(Dp(R), Ϙgλ) −→ (Dp(R′), Ϙgλ′
).

To give an example of this construction, we recall the genuine Poincaré structures
Ϙ�m
±R which, for m = 0, 1, 2 are the Poincaré structures Ϙgq±R, Ϙge±R and Ϙgs±R associated

with the classical (skew-) quadratic, even and symmetric form parameter over R,
respectively, see [3, remark R.3 and R.5]. In this case, the extension of scalars
functor associated with a ring map R → R′ indeed sends Ϙ�m

±R to Ϙ�m
±R′ .
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Remark 5. For the Poincaré structures Ϙ�m
±R one can give the following argument

that the map

GW(R; Ϙ�m
±R )/n −→ GW(F ; Ϙ�m

±R )/n

is an equivalence without appealing to the general formula for relative L-theory of
[6]. Namely, in [3, prop. 3.1.14] we have shown that the map

L(R; Ϙq±R)
[
1
2

] −→ L(R; Ϙ�m
±R )

[
1
2

]

is an equivalence for all m ∈ Z. Therefore, the proof of the theorem applies in the
case where 2 does not divide n. In the case where 2 divides n, we deduce that 2
is invertible in R in which case already the map Ϙq±R → Ϙ�m

±R is an equivalence of
Poincaré structures, see [3, remark R.4].

Remark 6. Suppose that R is an associative ring which is m-adically complete for
an ideal m ⊂ R. Then the result of Wall, see again [3, prop. 2.3.7], says that the
map L±q(R) → L±q(R/m) is an equivalence. To the best of our knowledge, it is not
known whether also the map K(R)/n → K(R/m)/n is an equivalence. However, if
it is, this argument shows that the same is true for Grothendieck–Witt theory and
vice versa.
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