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ON THE DIFFERENTIABILITY OF CONFORMAL
MAPS AT THE BOUNDARY"Y

B.G. EKE

1. Introduction. Let S be a simply connected domain in the w= u + iv
plane and let 8S denote its boundary which we assume passes through
w= co. Suppose that the segment L= {#u=u,; v=0} of the real axis lies
in S and that w. is the point of S accessible along L. Let z = z(w) = z(w)

+ iy(w) map S in a (1 —1) conformal way onto 3= {zz 2+ iy: —oo<uw

<+ oo; |yl < %] so that u_l)imox(u) = + o, The inverse map is w= w(z) =
u(z) + iv(z). S is said to possess a finite angular derivative at w. if z(w)— w
approaches a finite limit (called the angular derivative) as w—w. in certain
substrips of S.»

The problem of determining necessary and sufficient conditions for S to
have a finite angular derivative at w. has long been studied. (see [4], pp.

140, 216-7, for historical background). For the special cases when
T
()  scflrwl <2,

(b) aSc{ i< rwl=x],

Lelong-Ferrand ([4], pp. 215-6) has given a necessary and sufficient condition
and we state the result for case (a).

Tureorem A. For a domain Sc[lf w[<%} to have a finite angular deriva-

tive at w. it is necessary and sufficient that for each increasing unbounded sequence
{0,}3 such that
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2) More precisely: if z—w(z) tends to a finite limit as 2—2(w.) with |_# 2| <%—-5(5 >0).

This implies the above definition, and if, for each ¥ >0, there is a #(¥) such that {w: KRw>u¥);

| Fwl< '25 ~Yf}cs, then the implication can be reversed.

43

https://doi.org/10.1017/50027763000014045 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014045

44 B.G. EKE

oo

2 (One1 — 0,2 < + ©

n=1

we have the convergence of

£ (550 s 0,

n=1

where

V.= wmf v— sup v
UE[0n, Ons1l UE[dy, dns1]
u+ivedS, v>0 u+ived S, v<0

and ¢, is large enough for W, to be positive for all n.

DermniTION 1. &, denotes the class of simply connected domains S
lying in { | 7w <%} with w.=aS.

DeriniTION 2. &, denotes the class of simply connected domains S
with w.€34S and for which we can find a #,= #,(S) such that S assumes

finite area in {@w>u0; | 7wl >%] .

DErFInNITION 3.

= 91U92-

For u > u,, we denote by 6, the segment of {§w = #}NS which con-
tains w= u. The length of 6, will be 6(x). If Se &), then

Sm max (6(#) — z,0) du < + oo, (1)

wo

Remark. We may extend &, by defining new crosscuts @, in the fol-
lowing way (c.f. [4], p. 191). If « + -—’é& ¢ 0,, take @, to agree with 0, in
Fw=0.

If u +'iTnE@“’ then in the upper half plane @, coincides with @, in

ngwglzi« and is completed by a circular arc 7, centred on _# w=—g—,

pssing through « + iT”, lying initially in _Zw >L2 and of length 7(u).
We define ¢, analogously in _#w=0 where the circular arcs, if neces-
sary, are denoted by 7, with length 77(x).
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DIFFERENTIABILITY OF CONFORMAL MAPS 45

Suppose such circular arcs 7, can be found which are mutually disjoint
and such that the values of # for which 7, is defined can be partitioned
into disjoint intervals on which the 7, are concentric. Similarly for 7.

If S 7(u)du + S 7'(u)du is finite, the integrals being taken over values of
# in [u,, ) for which the integrand is defined, then we have broadened the
class &, Taking this larger class as &, does not affect the validity of
Theorems 1 and 2 (below) and this observation may be useful if, say,
O(u) = + on an unbounded sequence of intervals that are quite short.
We present the proofs however for the simpler case.

We shall prove

THEOREM 1. A necessary and sufficient condition for S€< to have a finite
angular derivative at w. is that given € >0 we can find a non-negative function P(u)
(defined for uw=uj, uj independent of &) such that

(i) fw: u= Sw=ui; | 7wl < 2 —pw)cs.

(i) S: Blu)du < + oo,

(iii) 18(uy) — Bluy)| < eluy — uy| for all wy, u, greater than uj.

Theorem 1 shows that if Sc{lf w| < —”2—] then a necessary and sufficient
condition for S to have a finite angular derivative at w. is that a large
subdomain of {If w] <%] having a smooth boundary is contained in S.
This necessary and sufficient condition is of a different nature to that given

in Theorem A.

DEerFINITION 4. &7 is the class of simply connected domains S with
w.=6S and such that
Sm max (0(u) — r,0)du << + co,
%o
Treorem B. (Warschawski [5] pp. 96-7, 100). If Sy, then a sufficient
condition for S to have a finite angular derivative at w. is that there is a non-
negative continuous function B(u) (u = u,) such that

(i) [w: U= Sw=u,; [fw|<-%«—13(u)]cs,

(i) S: Blu)du < + oo,
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u+B(u)
(iii) S B(z)dv = cB¥u) for some fixed ¢ >0, and all large u.
u—B(w)

Theorem 1 indicates that Warschawski’s condition is necessary when
Se < since (iii) of Theorem 1 implies (iii) of Theorem B. The condition
is not necessary however if Se &’. Consider the domain R which consists
of a union of rectangles

R, = [w=u+iv:ﬁ,,<u<ﬁ,,+1; —%+hn<v<%+hn]

<n=1,2,---;0<|h,,|<%)

together with segments of Qw = #,(n=1,2,-:-), where {4,}5 is an un-
bounded increasing sequence. Then Re <’ but Rez. If ”§1u3’2< + oo,
where v, = |h,s; — h,|, then R has a finite angular derivative at w..»> By
taking e.g. dpe1— @, =1, g}lv"= + o, we see that R omits an infinite
amount of area in {|_Zw|{<=z/2} and so Theorem B (ii) can never be sa-
tisfied for R.

Since &7c<’, Theorem 1 (sufficiency) follows from Theorem B,

For the necessity (§4), we first establish (Theorem 2, §2) another ne-
cessary condition. Theorem 2 shows, in particular, that for domains con-

sisting of the strip | _Zw| < —’zr— slit along the segments [@w= Uns | Fwl =

g%—zn], u,t oo (n—>o0), and u,,; —u, >ci% (all n, c >0, a=0), a ne-
cessary condition for a finite angular derivative at w.. is the convergence of

00
> a5 where
n=1

7=max (2,1 + a).®

Ahlfors ([1] p. 40) notes that >112< + oo is necessary if « =0, and Wolff
[6] proves, independently of the spacing restriction on the slits, that this
condition is also sufficient.

2. The condition C and Theorem 2. We assume Se<r and has a

finite angular derivative at w.. Then given Uf<0< r< %) we can find

3) This follows for instance from [4], p. 194, (4). It is now known that the conver-
gence of ;‘, vilogyz! is necessary and sufficient for R to have an angular derivative at W...

(Comment. Math. Helv. to appear)
4 For 0<a<l, this is an unpublished observation of Warschawski.
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@) such that {w:Qw=u,; | Fw|<¥}cS. Let I, I, denote the part of
4S in [w P Qw= u<%>;/w> 0] , [w : @wéu(—i});}’w<0] respectively. Iy,
I', are not necessarily connected.

Let {w, = u, + iv,}; be any sequence of points on I'; for which u,% co
<n—>oo; uy = u(%)) and which satisfies the following conditions to be
denoted by C:

c (@) vn:—%-—ln<%, all n,
C (it) Upsr — Uy =A%, (a,=1 all n; some fixed ¢ >0),

Cc  (in) min v= -2 — 2., where I, is a closed interval of length
wtively 2
uel,

CAnny

containing u, (possibly as an endpoint) and the intervals {7,}7 have disjoint
interiors.

Such sequences {w,}3, {I,}7 can always be found except when all points
of I'; with sufficiently large real part lie in v;—%. As Theorem 2 (below)
does not concern such S we suppose this not to be the case. To produce
examples of {w,}5, {I,}7 we may take u, to be the largest value of # for
which u + ¢ (% — 2n> el and I, =[u,,u,+ ca®], 1, being given small
enough. The largest value of # exists since S has a finite angular deriva-
tive at w.. The {a,}; are introduced in C (ii) to allow us to take the w,
close together and we note that 1 is the smallest value of «, which it is
necessary to permit.

THEOREM 2. Suppose that S€ <7 has a finite angular derivative at w. and
{w,}: is a sequence of points on 3S satisfying condition C, then 324+ < + oo,
n=1

3. Proof of Theorem 2. If condition C is satisfied for some ¢ >0 it is

satisfied for any smaller ¢, and we assume that 0<c¢< _5277 We work

with the crosscuts 4, defined as follows. If ue cLOJ I,, we take 0,=0,.
n=1

If usI,, 6, consists of a straight line segment from « + iv, to u — i#(u)
where #(x) is the smallest positive number such that # — i#(#)=4S, together
with the arc of a circle centred on u, + iv,, of radius |« — «,|, which
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begins at u, + iv,, lies initially in _#w = v, and terminates at the first point
of intersection with aS.

Then 6,, 6,, are disjoint in S if #,+ u, (the simple proof being ana-
logous to [3], §2).

Suppose x,(u), x,(#) are respectively the infimum, supremum of &z for
zez {6,}. By Ahlfors’ well known application of the length-area principle
({11, pp. 8-10), we obtain, for u(%)< uy < t,,

mils) — wi(u) 2 A

Y2 g — O(n)

o 0w du — u,.

ilaty) — 1y 2= ) — (oty) — w:(15)) + |

Since S has a finite angular derivative at w., it follows, in particular,
that:

x(uy) — u, tends to a finite limit as u,—> 4 o0}

S is semi-conformal at w.. and therefore wx,(u,) — 2,(u,) >0 as u,— o,
(for a proof, see e.g. [3] §5 or [5], p. 92).
Then we have

T %o 71,'_0(“) 5)

im Sul gy A<t @
Let

E-(us,u) = [y, o]\ ( U T, N[y, o)),
so that

 ~— §(u)du —2 _ ~_ 2 .
ol o = O ~Dduz=—-2 | max () —=,0)du,
E_(u1,u42) E_(u1,u3) E_(u1,u3)

and this remains bounded below as #,—+ . Thus (2) implies

_ N
Tm 3 S, (x — 0(u) du < + oo,

N—oon=1
Next, ES max(t(u)——’zz—, O>du is finite if Se <y and, using the estimate,

n=1J1I,

5) Using-the ideas of [2], we may replace lim by lim, but we do not need this fact here.
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T—0u)= 1, — % |y —u,| + (%— z(u)), uel,,
we find
n§1S1n<2n - —3_271— lu— u"l>du <+

whence Theorem 2 since

_ 3z _ ~ _ 3z 2~
|, (o= lu—w)auz 2,000 = 31,02
;%(4—3nc)cli““">0.

Remark. Taking a, = max (1,a), w, = #, + i (% - 2,,,) for the domain

|v] <% slit along {w: Sw=u,; | _Fw| ;%—— yn=1,2+- -}, we find that

Theorem 2 gives the observation at the end of §1.

4. Proof of Theorem 1 (necessity). The idea of the construction of
B(u) is to apply Theorem 2 (@, =1, all #) to a sequence of boundary points
satisfying condition C. Each point of 3S in [w: Rw >u<%>; 0< Fw< %]
will be “close to” a boundary point which belongs to the sequence.

Theorem 2 will show that the subdomain of S, lying in {w:@w>u<—g~);

0< 7 w<~g~], whose boundary has sides parallel to the coordinate axes and
which is naturally associated with condition C, omits only a finite amount
of area in [w: Kw > u(—’i—) ;0< 7 w<—§—} After applying similar conside-
rations to produce a subdomain of S in 0> _Fw>— —g— we obtain a boun-
dary of the required smoothness by omitting a further finite amount of area.

All points wedS with Sw= ué%u(%) have lfwlg%—— 1. We con-
sider first those points of 4S in [w: Sw=ul; fw;%——ll. Let E, = [u:
there is a point weadS with Sw = u=u{ and 2“<—§«—jf’w§2"}, and set,

if £+ ¢,

uy; = inf u,
ucs Ey

i1 = [0y, uy+ 1],

https://doi.org/10.1017/50027763000014045 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000014045

50 B.G. EKE

Au = sup S U) .
w=u+ivedS 2
ueiyy, v>0

Then 21 < 2;=1. Since the distance from w = 7 to the nearest point
4+ ivell, is a lower semi-continuous function of #, there is a smallest

number #,;, say, in the closed interval i,; such that #, + z(%— ,Zu) e .
Now define

uy, = inf u for ucE,N[uy; + 2, ),

T = [th15, 21o + 1],

/d
A = sup - v) ,
w=u+1vedS 2
Uiy, v>0

A2 being attained at # = #,,Eis, #;; minimal. Proceeding in this way, we
construct a finite number (zero, if E, is empty) of intervals iy; (1=<j=<n,)
such that

(1) Elm[un1 + 2, oo) = ¢’

(i1) the intervals i%; =[u, #y; + 2]1(1=j =n,) have disjoint interiors

and cover E,,

i) o+ (5 — 2y)e0S 1=j=n),

(iv) we can find a closed subinterval I;; of i,; of length 2;; such
that = u;€l,; 1=<j=mn,). Then {I;}:, satisfy C (iii) with ¢=1, a;=1
l=7=m),

(V) 721,j+1_&1.i;1;21j 1==n—1).

Next we introduce
E, = {u: there is a wedS with 8w = #= ] and 2"2<—’;——fw§2“1;
) n
u—pl =2 if pe Uit}
=

As above, we find intervals i, (1=<j=<mn,<+ ) of length 271; points

#s;E i for which u,; + z(—g— — Agj )E 0S, and such that uei,;,u + iveodS

imply v;%— Z5. The subinterval I; of i,; of length 2, is determined

as in (iv) above. The closed intervals i%; (1< j=n,) formed by extending
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iy to the right a distance 27! do not necessarily cover the set of u outside

TZE —v =271

tj i%; for which a v can be found with « 4+ iv€4S and 272 <
'JI‘—}lle intervals %, (1=<j=wn,) are now extended to both right and left by
the largest amount possible not in excess of 2° so that the new closed inter-
vals J; (1=<j=mn, have disjoint interiors, and 2<|/;| =4 1=j=mn).

. ny ng . . .
Then, for u=u{ and outside the set U J,;U U i},, any point u+ivEsS (v>>0)
=1 =1
has v=> % — 22,

Taking

E,= {u: there is a wedS with Sw = = u} and 2‘3<—’2L—fw§2'2;
. 7y nz |
lu —pl =21 if pe U J,;U U t’%‘;},
=1 j=1

we follow the process outlined above and define intervals I, Jm; 1 <7 =<1
<+ o0; m=1,2,---) inductively so that, for each j (1<j=<n, we have

(a) 2'21-m§l]mjlg4‘21-m, IIWLJI =1mjy
(0) g€ ;S imiC ik ;S s and i + i(%— sz-)eaS,
() if uely,;, u+ iveadS, then v= —g——— i

(d) 2™ <2y =2""™ so that 22, =< | Jnj] < 82mjs
M n, (T .
(e) u .Ulj,n,-U _Ulizﬂ,j covers the set of #u(=u}) for which a »(>0)
m=1j= j=
can be found so that # + ivedS and v< %—2‘1”‘1.

Then each value u(=u}) for which a v<0< v < %) can be found such

that « + iv€adS lies in some [,;. Suppose [,; = [#n;, u4,;] and denote by A
the set of accumulation points of {un;} 1=j=<n,;m=1,2,.--). Define

inductively
o, = infu, oy = inf  «,
ucA u€Anfo1+1, )
g3 = inf Uy oo, Cpit1 = inf Uy o oo
ucANfoz+271, ) ucAN[o,+n71, 0)

If Anle,,+ n3',0) = ¢ for some n,, then there will be a finite number of
values g,. Otherwise {¢,}7 is a monotonically increasing sequence with
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o, >+ as n—>+ oo, We set
K% =[o,— 1, o1+ 11N[ug, ),
Ki=[oo— 27, o2+ 27]N[oy + 1,00), - - +
Kﬁ = [Un - n_ls ('S + %_I]O[O‘n_l + (n - 1)—1900)1 vy
a finite or countable number of intervals having disjoint interiors, and

ordered so that g,eK} separates p,eKi from + oo in [u#f,0) if m>#n and
K%, K% are not empty. If u€K¥ and u + iveadS, v >0, it follows from (c)

and (d) that vgg——-%. Thus the area of
Ufw: gweky; £ —-L < su< T
n " 2 2n — = 2
is finite, and we also have
U[w:@wEK*' OSj’w<L—L]cS.
n n = 2 2n

There are no members of A in [#j,)\ UK* and so we can define a
reordering

an [Tnvfrlb] (71’1§7n+19 n=12,¢+++;, t,—>c0 as n-—)oo)

of those intervals J,; which are outside, or have a subinterval outside, UK%.

n
The subinterval of K, arising from the I,; is denoted by I,, and we also
set

Ay = Any Uy = I, when J,,=K,.

By construction, condition C (with ¢=1, a,=1 all #) is satisfied by
the sequence of boundary points w, = u, + ¢ (—% — 2n> and the intervals I,.
Theorem 2 indicates that

MAE< 4 oo,
n=1

Put
miny = y,,
u+ivEdS, v>0
ue K,
so that
< T _, <9
A= 5 Vo = 22,.
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We define a subdomain S, of SN{_Fw>0}n{&w >ul}. For uckK,
(m=1,2,++-), the points u + iveS, f 0<v<y,; if ue iCJlKn, but #e K%

for some m, then u + jveS; f 0<v < —g— - ﬁ ; for other values of #(=u}),
u+ iveS; if 0<v<-Z . Then 4S, consists of [«],) together with straight

2
line segments parallel to the coordinate axes. Further the area of
{w: Sw=up; 0< Fw< TZE ]\Sl is finite.
Given & >0, we draw straight line segments in S;, making angles ¢ or

7= — ¢ with the real axis, from the vertices of the polygonal line 45, with
positive imaginary part. This removes from S; a finite area of magnitude
013122, and the boundary of the new subdomain, S., consists of
{w: 8w >u}; Fw= 0}, a segment of 8w = #{, and a polygonal line none of
whose sides makes an angle greater than ¢ with both directions of the real
axis.

Using a sequence of boundary points on I, and the method described

above we construct S;cSn [w: fw>uj; — %<fw<0} such that the area

of {w:@w>u3; ——g—<fw<0]\85 is finite,.

The boundary of the largest subdomain of {w: w > u§; Fw=0}US,US}
which is symmetric about . #w = 0 will be described by a function »= (u)
having the desired properties. This completes the proof of Theorem 1 (ne-
cessity).
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