ON THE DIFFERENTIABILITY OF CONFORMAL MAPS AT THE BOUNDARY¹⁾

B.G. EKE

1. Introduction. Let S be a simply connected domain in the w=u+iv plane and let ∂S denote its boundary which we assume passes through $w=\infty$. Suppose that the segment $L=\{u\geqq u_0;\ v=0\}$ of the real axis lies in S and that w_∞ is the point of ∂S accessible along L. Let z=z(w)=x(w)+iy(w) map S in a (1-1) conformal way onto $\Sigma=\{z=x+iy:-\infty< x<+\infty;\ |y|<\frac{\pi}{2}\}$ so that $\lim_{u\to+\infty}x(u)=+\infty$. The inverse map is w=w(z)=u(z)+iv(z). S is said to possess a finite angular derivative at w_∞ if z(w)-w approaches a finite limit (called the angular derivative) as $w\to w_\infty$ in certain substrips of S.

The problem of determining necessary and sufficient conditions for S to have a finite angular derivative at w_{∞} has long been studied. (see [4], pp. 140, 216-7, for historical background). For the special cases when

(a)
$$S \subset \left\{ |\mathscr{I}w| < \frac{\pi}{2} \right\}$$
,

(b)
$$\partial S \subset \left\{ \frac{\pi}{2} \leq |\mathscr{I}w| \leq \pi \right\}$$
,

Lelong-Ferrand ([4], pp. 215-6) has given a necessary and sufficient condition and we state the result for case (a).

Theorem A. For a domain $S \subset \left\{ |\mathscr{I}w| < \frac{\pi}{2} \right\}$ to have a finite angular derivative at w_{∞} it is necessary and sufficient that for each increasing unbounded sequence $\{\sigma_n\}_1^{\infty}$ such that

Received June 10, 1969.

¹⁾ Work supported partially by U.S.A.F. Contract AFOSR-68-1514, with the University of California, San Diego.

²⁾ More precisely: if z-w(z) tends to a finite limit as $z\to z(w_\infty)$ with $|\mathcal{J}z|<\frac{\pi}{2}-\delta(\delta>0)$. This implies the above definition, and if, for each $\Psi>0$, there is a $u(\Psi)$ such that $\left\{w\colon\Re w>u(\Psi); |\mathcal{J}w|<\frac{\pi}{2}-\Psi\right\}\subset S$, then the implication can be reversed.

$$\sum_{n=1}^{\infty} (\sigma_{n+1} - \sigma_n)^2 < + \infty$$

we have the convergence of

$$\sum_{n=1}^{\infty} \left(\frac{\pi - \Psi_n}{\Psi_n} \right) (\sigma_{n+1} - \sigma_n),$$

where

$$\Psi_n = \inf_{\substack{u \in [\sigma_n, \, \sigma_{n+1}] \\ u+iv \in \partial S, \, v > 0}} v - \sup_{\substack{u \in [\sigma_n, \, \sigma_{n+1}] \\ u+iv \in \partial S, \, v < 0}} v$$

and σ_1 is large enough for Ψ_n to be positive for all n.

Definition 1. \mathscr{D}_1 denotes the class of simply connected domains S lying in $\left\{ |\mathscr{I}w| < \frac{\pi}{2} \right\}$ with $w_{\infty} \in \partial S$.

Definition 2. \mathscr{D}_2 denotes the class of simply connected domains S with $w_\infty \in \partial S$ and for which we can find a $u_0 = u_0(S)$ such that S assumes finite area in $\left\{ \Re w > u_0; \, |\mathscr{I}w| > \frac{\pi}{2} \right\}$.

Definition 3.

For $u > u_0$, we denote by Θ_u the segment of $\{\Re w = u\} \cap S$ which contains w = u. The length of Θ_u will be $\Theta(u)$. If $S \in \mathcal{D}$, then

$$\int_{u_0}^{\infty} \max \left(\Theta(u) - \pi, 0 \right) du < + \infty. \tag{1}$$

Remark. We may extend \mathcal{D}_2 by defining new crosscuts Φ_u in the following way (c.f. [4], p. 191). If $u + \frac{i\pi}{2} \notin \Theta_u$, take Φ_u to agree with Θ_u in $\mathscr{I}w \geq 0$.

If $u + \frac{i\pi}{2} \in \Theta_u$, then in the upper half plane Φ_u coincides with Θ_u in $0 \le \mathscr{I} w \le \frac{\pi}{2}$ and is completed by a circular arc Γ_u centred on $\mathscr{I} w = \frac{\pi}{2}$, pssing through $u + \frac{i\pi}{2}$, lying initially in $\mathscr{I} w > \frac{\pi}{2}$ and of length $\Gamma(u)$.

We define Φ_u analogously in $\mathscr{I}w \leq 0$ where the circular arcs, if necessary, are denoted by T'_u with length T'(u).

Suppose such circular arcs r_u can be found which are mutually disjoint and such that the values of u for which r_u is defined can be partitioned into disjoint intervals on which the r_u are concentric. Similarly for r'_u .

If $\int r(u)du + \int r'(u)du$ is finite, the integrals being taken over values of u in $[u_0, \infty)$ for which the integrand is defined, then we have broadened the class \mathcal{D}_2 . Taking this larger class as \mathcal{D}_2 does not affect the validity of Theorems 1 and 2 (below) and this observation may be useful if, say, $\Theta(u) = +\infty$ on an unbounded sequence of intervals that are quite short. We present the proofs however for the simpler case.

We shall prove

Theorem 1. A necessary and sufficient condition for $S \in \mathcal{D}$ to have a finite angular derivative at w_{∞} is that given $\varepsilon > 0$ we can find a non-negative function $\beta(u)$ (defined for $u \ge u'_0$, u'_0 independent of ε) such that

(i)
$$\left\{w\colon u=\Re w\geqq u_0';\; |\mathscr{J}w|<\frac{\pi}{2}-\beta(u)\right\}\subset S,$$

(ii)
$$\int_{u'}^{\infty} \beta(u) du < + \infty,$$

(iii)
$$|\beta(u_2) - \beta(u_1)| \le \varepsilon |u_2 - u_1|$$
 for all u_1 , u_2 greater than u_0' .

Theorem 1 shows that if $S \subset \left\{ |\mathscr{I}w| < \frac{\pi}{2} \right\}$ then a necessary and sufficient condition for S to have a finite angular derivative at w_{∞} is that a large subdomain of $\left\{ |\mathscr{I}w| < \frac{\pi}{2} \right\}$ having a *smooth* boundary is contained in S. This necessary and sufficient condition is of a different nature to that given in Theorem A.

Definition 4. \mathscr{D}' is the class of simply connected domains S with $w_{\infty} \in \partial S$ and such that

$$\int_{u_0}^{\infty} \max (\Theta(u) - \pi, 0) du < + \infty.$$

Theorem B. (Warschawski [5] pp. 96-7, 100). If $S \in \mathcal{D}'$, then a sufficient condition for S to have a finite angular derivative at w_{∞} is that there is a non-negative continuous function $\beta(u)$ ($u \ge u_0$) such that

(i)
$$\left\{w: u = \Re w \geq u_0; \mid \mathscr{I}w \mid < \frac{\pi}{2} - \beta(u)\right\} \subset S,$$

(ii)
$$\int_{u_0}^{\infty} \beta(u) du < + \infty,$$

(iii)
$$\int_{u-\beta(u)}^{u+\beta(u)} \beta(\tau)d\tau \ge c\beta^2(u) \text{ for some fixed } c>0, \text{ and all large } u.$$

Theorem 1 indicates that Warschawski's condition is necessary when $S \in \mathcal{D}$ since (iii) of Theorem 1 implies (iii) of Theorem B. The condition is not necessary however if $S \in \mathcal{D}'$. Consider the domain R which consists of a union of rectangles

$$R_{n} = \left\{ w = u + iv : \hat{u}_{n} < u < \hat{u}_{n+1}; -\frac{\pi}{2} + h_{n} < v < \frac{\pi}{2} + h_{n} \right\}$$

$$\left(n = 1, 2, \dots; 0 < |h_{n}| < \frac{\pi}{2} \right)$$

together with segments of $\Re w = \hat{u}_n(n=1,2,\cdots)$, where $\{\hat{u}_n\}_{n=1}^{\infty}$ is an unbounded increasing sequence. Then $R \in \mathscr{D}'$ but $R \notin \mathscr{D}$. If $\sum_{n=1}^{\infty} \nu_n^{3/2} < +\infty$, where $\nu_n = |h_{n+1} - h_n|$, then R has a finite angular derivative at w_{∞} . By taking e.g. $\hat{u}_{n+1} - \hat{u}_n = 1$, $\sum_{n=1}^{\infty} \nu_n = +\infty$, we see that R omits an infinite amount of area in $\{|\mathscr{I}w|\} \{ < \pi/2 \}$ and so Theorem B (ii) can never be satisfied for R.

Since $\mathcal{D} \subset \mathcal{D}'$, Theorem 1 (sufficiency) follows from Theorem B.

For the necessity (§ 4), we first establish (Theorem 2, § 2) another necessary condition. Theorem 2 shows, in particular, that for domains consisting of the strip $|\mathscr{I}w| < \frac{\pi}{2}$ slit along the segments $\{\Re w = u_n; |\mathscr{I}w| \ge \frac{\pi}{2} - \lambda_n\}$, $u_n \uparrow \infty (n \to \infty)$, and $u_{n+1} - u_n > c\lambda_n^a$ (all n, c > 0, $\alpha \ge 0$), a necessary condition for a finite angular derivative at w_∞ is the convergence of $\sum_{n=1}^{\infty} \lambda_n^r$ where

$$\gamma = \max(2.1 + \alpha).4)$$

Ahlfors ([1] p. 40) notes that $\sum \lambda_n^2 < +\infty$ is necessary if $\alpha = 0$, and Wolff [6] proves, independently of the spacing restriction on the slits, that this condition is also sufficient.

2. The condition C and Theorem 2. We assume $S \in \mathcal{D}$ and has a finite angular derivative at w_{∞} . Then given $\Psi(0 < \Psi < \frac{\pi}{2})$ we can find

³⁾ This follows for instance from [4], p. 194, (4). It is now known that the convergence of $\sum_{1}^{\infty} \nu_n^2 \log \nu_n^{-1}$ is necessary and sufficient for R to have an angular derivative at W_{∞} . (Comment. Math. Helv. to appear)

⁴⁾ For $0 \le \alpha \le 1$, this is an unpublished observation of Warschawski.

 $u(\Psi)$ such that $\{w: \Re w \ge u_0; |\mathscr{I}w| < \Psi\} \subset S$. Let Γ_1, Γ_2 denote the part of ∂S in $\{w: \Re w \ge u\left(\frac{\pi}{4}\right); \mathscr{I}w > 0\}$, $\{w: \Re w \le u\left(\frac{\pi}{4}\right); \mathscr{I}w < 0\}$ respectively. Γ_1 , Γ_2 are not necessarily connected.

Let $\{w_n = u_n + iv_n\}_1^{\infty}$ be any sequence of points on Γ_1 for which $u_n \uparrow \infty$ $\left(n \to \infty; u_1 \ge u\left(\frac{\pi}{4}\right)\right)$ and which satisfies the following conditions to be denoted by C:

$$C$$
 (i) $v_n = -\frac{\pi}{2} - \lambda_n < -\frac{\pi}{2}$, all n ,

$$C$$
 (ii) $u_{n+1} - u_n \ge c \lambda_n^{\alpha_n}$, $(\alpha_n \ge 1 \text{ all } n; \text{ some fixed } c > 0)$,

C (iii)
$$\min_{\substack{u+iv\in \Gamma_1\\u\in I_n}}v=\frac{\pi}{2}-\lambda_n, \text{ where }I_n\text{ is a closed interval of length}\\c\lambda_n^{\alpha_n},$$

containing u_n (possibly as an endpoint) and the intervals $\{I_n\}_1^\infty$ have disjoint interiors.

Such sequences $\{w_n\}_1^\infty$, $\{I_n\}_1^\infty$ can always be found except when all points of Γ_1 with sufficiently large real part lie in $v \ge \frac{\pi}{2}$. As Theorem 2 (below) does not concern such S we suppose this not to be the case. To produce examples of $\{w_n\}_1^\infty$, $\{I_n\}_1^\infty$ we may take u_n to be the largest value of u for which $u+i\left(\frac{\pi}{2}-\lambda_n\right)\in\Gamma_1$ and $I_n=[u_n,u_n+c\lambda_n^{a_n}]$, λ_n being given small enough. The largest value of u exists since S has a finite angular derivative at w_n . The $\{\alpha_n\}_1^\infty$ are introduced in C (ii) to allow us to take the w_n close together and we note that 1 is the smallest value of α_n which it is necessary to permit.

Theorem 2. Suppose that $S \in \mathcal{D}$ has a finite angular derivative at w_{∞} and $\{w_n\}_1^{\infty}$ is a sequence of points on ∂S satisfying condition C, then $\sum_{n=1}^{\infty} \lambda_n^{1+\alpha_n} < +\infty$.

3. **Proof of Theorem** 2. If condition C is satisfied for some c > 0 it is satisfied for any smaller c, and we assume that $0 < c < \frac{2}{3\pi}$. We work with the crosscuts θ_u defined as follows. If $u \in \bigcup_{n=1}^{\infty} I_n$, we take $\theta_u \equiv \Theta_u$.

If $u \in I_n$, θ_u consists of a straight line segment from $u + iv_n$ to u - it(u) where t(u) is the smallest positive number such that $u - it(u) \in \partial S$, together with the arc of a circle centred on $u_n + iv_n$, of radius $|u - u_n|$, which

begins at $u_n + iv_n$, lies initially in $\mathscr{I}w \geq v_n$ and terminates at the first point of intersection with ∂S .

Then θ_{u_1} , θ_{u_2} are disjoint in S if $u_1 \neq u_2$ (the simple proof being analogous to [3], §2).

Suppose $x_1(u)$, $x_2(u)$ are respectively the infimum, supremum of $\Re z$ for $z \in \mathbb{Z}$ $\{\theta_u\}$. By Ahlfors' well known application of the length-area principle ([1], pp. 8-10), we obtain, for $u\left(\frac{\pi}{4}\right) < u_1 < u_2$,

$$\begin{split} x_2(u_2) - x_1(u_1) & \geqq \pi \int_{u_1}^{u_2} \frac{du}{\theta(u)} \,, \\ x_1(u_2) - u_2 & \geqq x_1(u_1) - (x_2(u_2) - x_1(u_2)) \, + \int_{u_1}^{u_2} \frac{\pi - \theta(u)}{\theta(u)} \, du - u_1. \end{split}$$

Since S has a finite angular derivative at w_{∞} , it follows, in particular, that:

$$x(u_2) - u_2$$
 tends to a finite limit as $u_2 \to +\infty$;

S is semi-conformal at w_{∞} and therefore $x_2(u_2) - x_1(u_2) \to 0$ as $u_2 \to \infty$, (for a proof, see e.g. [3] §5 or [5], p. 92).

Then we have

$$\overline{\lim}_{u_2 \to +\infty} \int_{u_1}^{u_2} \frac{\pi - \theta(u)}{\theta(u)} du < + \infty.5$$
 (2)

Let

$$E_{-}(u_1, u_2) = [u_1, u_2] \setminus (\bigcup_{n=1}^{\infty} I_n \cap [u_1, u_2]),$$

so that

$$\int\limits_{E_{-}(u_1,u_2)} \frac{\pi - \theta(u) du}{\theta(u)} > \frac{-2}{\pi} \int\limits_{E_{-}(u_1,u_2)} (\theta(u) - \pi) du \geqq - \frac{2}{\pi} \int\limits_{E_{-}(u_1,u_2)} \max{(\theta(u) - \pi, 0)} du,$$

and this remains bounded below as $u_2 \to +\infty$. Thus (2) implies

$$\overline{\lim}_{N\to\infty} \sum_{n=1}^{N} \int_{I_n} (\pi - \theta(u)) \, du < + \infty.$$

Next, $\sum_{n=1}^{\infty} \int_{I_n} \max(t(u) - \frac{\pi}{2}, 0) du$ is finite if $S \in \mathcal{D}$ and, using the estimate,

⁵⁾ Using the ideas of [2], we may replace $\overline{\lim}$ by \lim , but we do not need this fact here.

$$\pi - \theta(u) \ge \lambda_n - \frac{3\pi}{2} |u - u_n| + \left(\frac{\pi}{2} - t(u)\right), \quad u \in I_n,$$

we find

$$\sum_{n=1}^{\infty} \int_{I_n} \left(\lambda_n - \frac{3\pi}{2} |u - u_n| \right) du < + \infty$$

whence Theorem 2 since

$$\begin{split} \int_{I_n} \left(\lambda_n - \frac{3\pi}{2} |u - u_n| \right) du & \ge \lambda_n |I_n| - \frac{3\pi}{4} |I_n|^2 \ge \\ & \ge \frac{1}{4} (4 - 3\pi c) c \lambda_n^{1 + \alpha_n} > 0. \end{split}$$

Remark. Taking $\alpha_n = \max(1, \alpha)$, $w_n = u_n + i\left(\frac{\pi}{2} - \lambda_n\right)$ for the domain $|v| < \frac{\pi}{2}$ slit along $\left\{w \colon \Re w = u_n; |\mathscr{I}w| \ge \frac{\pi}{2} - \lambda_n; n = 1, 2, \cdots\right\}$, we find that Theorem 2 gives the observation at the end of §1.

4. **Proof of Theorem 1** (necessity). The idea of the construction of $\beta(u)$ is to apply Theorem 2 ($\alpha_n = 1$, all n) to a sequence of boundary points satisfying condition C. Each point of ∂S in $\left\{w: \Re w > u\left(\frac{\pi}{4}\right); 0 < \Im w < \frac{\pi}{2}\right\}$ will be "close to" a boundary point which belongs to the sequence. Theorem 2 will show that the subdomain of S, lying in $\left\{w: \Re w > u\left(\frac{\pi}{4}\right); 0 < \Im w < \frac{\pi}{2}\right\}$, whose boundary has sides parallel to the coordinate axes and which is naturally associated with condition C, omits only a finite amount of area in $\left\{w: \Re w > u\left(\frac{\pi}{4}\right); 0 < \Im w < \frac{\pi}{2}\right\}$. After applying similar considerations to produce a subdomain of S in $0 > \Im w > -\frac{\pi}{2}$ we obtain a boundary of the required smoothness by omitting a further finite amount of area.

All points $w \in \partial S$ with $\Re w \ge u_0' \ge u\left(\frac{\pi}{4}\right)$ have $|\mathscr{I}w| \ge \frac{\pi}{2} - 1$. We consider first those points of ∂S in $\left\{w : \Re w \ge u_0' ; \mathscr{I}w \ge \frac{\pi}{2} - 1\right\}$. Let $E_1 = \left\{u : \text{there is a point } w \in \partial S \text{ with } \Re w = u \ge u_0' \text{ and } 2^{-1} < \frac{\pi}{2} - \mathscr{I}w \le 2^0\right\}$, and set, if $E_1 \ne \phi$,

$$u_{11} = \inf_{u \in E_1} u,$$

 $i_{11} = [u_{11}, u_{11} + 1],$

$$\lambda_{11} = \sup_{\substack{w = u + iv \in \partial S \\ u \in i_{11}, v > 0}} \left(\frac{\pi}{2} - v\right).$$

Then $2^{-1} < \lambda_{11} \le 1$. Since the distance from $w = \hat{u}$ to the nearest point $\hat{u} + iv \in \Gamma_1$ is a lower semi-continuous function of \hat{u} , there is a smallest number \mathring{u}_{11} , say, in the closed interval i_{11} such that $\mathring{u}_{11} + i\left(\frac{\pi}{2} - \lambda_{11}\right) \in \Gamma_1$. Now define

$$u_{12} = \inf u \text{ for } u \in E_1 \cap [u_{11} + 2, \infty),$$
 $i_{12} = [u_{12}, u_{12} + 1],$
 $\lambda_{12} = \sup_{\substack{u = u_1 + i_2 v \in \partial S \ u \in i_1, v > 0}} \left(\frac{\pi}{2} - v\right),$

 λ_{12} being attained at $u = \mathring{u}_{12} \in i_{12}$, \mathring{u}_{12} minimal. Proceeding in this way, we construct a finite number (zero, if E_1 is empty) of intervals i_{1j} $(1 \le j \le n_1)$ such that

- (i) $E_1 \cap [u_n, +2, \infty) = \phi$,
- (ii) the intervals $i_{1j}^* \equiv [u_{1j}, u_{1j} + 2] (1 \leq j \leq n_1)$ have disjoint interiors and cover E_1 ,
 - (iii) $\mathring{u}_{1j} + i\left(\frac{\pi}{2} \lambda_{1j}\right) \in \partial S \ (1 \leq j \leq n_1),$
- (iv) we can find a closed subinterval I_{1j} of i_{1j} of length λ_{1j} such that $u = \mathring{u}_{1j} \in I_{1j}$ $(1 \le j \le n_1)$. Then $\{I_{1j}\}_{j=1}^{n_1}$ satisfy C (iii) with c = 1, $\alpha_j = 1$ $(1 \le j \le n_1)$,
 - (v) $\mathring{u}_{1,j+1} \mathring{u}_{1,j} \ge 1 \ge \lambda_{1j} \ (1 \le j \le n_1 1)$.

Next we introduce

 $E_2 = \left\{ u \colon \text{ there is a } w \in \partial S \text{ with } \Re w = u \ge u_0' \text{ and } 2^{-2} < \frac{\pi}{2} - \mathscr{I} w \le 2^{-1}; \right\}$

$$|u-\mu| \geq 2^{\circ} \text{ if } \mu \in \bigcup_{j=1}^{n_1} i_{1j}^*$$
.

As above, we find intervals i_{2j} $(1 \le j \le n_2 < +\infty)$ of length 2^{-1} ; points $\mathring{u}_{2j} \in i_{2j}$ for which $\mathring{u}_{2j} + i\left(\frac{\pi}{2} - \lambda_{2j}\right) \in \partial S$, and such that $u \in i_{2j}, u + iv \in \partial S$ imply $v \ge \frac{\pi}{2} - \lambda_{2j}$. The subinterval I_{2j} of length λ_{2j} is determined as in (iv) above. The closed intervals i_{2j}^* $(1 \le j \le n_2)$ formed by extending

 i_{2j} to the right a distance 2^{-1} do not necessarily cover the set of u outside $\bigcup_{j=1}^{n_1} i_{1j}^*$ for which a v can be found with $u+iv\in \partial S$ and $2^{-2}<\frac{\pi}{2}-v\leqq 2^{-1}$. The intervals i_{1j}^* $(1\leqq j\leqq n_1)$ are now extended to both right and left by the largest amount possible not in excess of 2^0 so that the new closed intervals J_{1j} $(1\leqq j\leqq n_1)$ have disjoint interiors, and $2\leqq |J_{1j}|\leqq 4$ $(1\leqq j\leqq n_1)$.

Then, for $u \ge u_0'$ and outside the set $\bigcup_{j=1}^{n_1} J_{1j} \cup \bigcup_{j=1}^{n_2} i_{2j}^*$, any point $u+iv \in \hat{o}S$ (v>0) has $v \ge \frac{\pi}{2} - 2^{-2}$.

Taking

$$E_3 = \left\{ u: \text{ there is a } w \in \partial S \text{ with } \Re w = u \ge u_0' \text{ and } 2^{-3} < \frac{\pi}{2} - \Im w \le 2^{-2}; \right\}$$

$$|u - \mu| \ge 2^{-1} \text{ if } \mu \in \bigcup_{j=1}^{n_1} J_{1j} \cup \bigcup_{j=1}^{n_2} i_{2j}^*$$

we follow the process outlined above and define intervals I_{mj} , J_{mj} $(1 \le j \le n_m < +\infty; m = 1, 2, \cdots)$ inductively so that, for each j $(1 \le j \le n_m)$ we have

(a)
$$2 \cdot 2^{1-m} \leq |J_{mj}| \leq 4 \cdot 2^{1-m}, |I_{mj}| = \lambda_{mj},$$

(b)
$$\mathring{u}_{mj} \in I_{mj} \subseteq i_{mj} \subset i_{mj}^* \subseteq J_{mj} \text{ and } \mathring{u}_{mj} + i \left(\frac{\pi}{2} - \lambda_{mj}\right) \in \partial S$$
,

(c) if
$$u \in I_{mj}$$
, $u + iv \in \partial S$, then $v \ge \frac{\pi}{2} - \lambda_{mj}$,

(d)
$$2^{-m} < \lambda_{mj} \leq 2^{1-m}$$
 so that $2\lambda_{mj} \leq |J_{mj}| < 8\lambda_{mj}$,

(e)
$$\bigcup_{m=1}^{M} \bigcup_{j=1}^{n_m} J_{mj} \cup \bigcup_{j=1}^{n_{M+1}} i_{m+1,j}^*$$
 covers the set of $u(\geq u_0')$ for which a $v(>0)$ can be found so that $u+iv\in\partial S$ and $v<\frac{\pi}{2}-2^{-M-1}$.

Then each value $u(\geqq u'_0)$ for which a $v\left(0 < v < \frac{\pi}{2}\right)$ can be found such that $u + iv \in \partial S$ lies in some J_{mj} . Suppose $J_{mj} = [u'_{mj}, u''_{mj}]$ and denote by A the set of accumulation points of $\{u'_{mj}\}$ $(1 \leqq j \leqq n_m; m = 1, 2, \cdots)$. Define inductively

$$\sigma_1 = \inf_{u \in A} u, \qquad \sigma_2 = \inf_{u \in A \cap [\sigma_1 + 1, \infty)} u,$$

$$\sigma_3 = \inf_{u \in A \cap [\sigma_2 + 2^{-1}, \infty)} u, \cdots, \qquad \sigma_{n+1} = \inf_{u \in A \cap [\sigma_n + n^{-1}, \infty)} u, \cdots.$$

If $A \cap [\sigma_{n_0} + n_0^{-1}, \infty) = \phi$ for some n_0 , then there will be a finite number of values σ_n . Otherwise $\{\sigma_n\}_1^{\infty}$ is a monotonically increasing sequence with

 $\sigma_n \to +\infty$ as $n \to +\infty$. We set $K_1^* = [\sigma_1 - 1, \ \sigma_1 + 1] \cap [u_0', \infty),$ $K_2^* = [\sigma_2 - 2^{-1}, \ \sigma_2 + 2^{-1}] \cap [\sigma_1 + 1, \infty), \cdots$

$$K_n^* = [\sigma_n - n^{-1}, \ \sigma_n + n^{-1}] \cap [\sigma_{n-1} + (n-1)^{-1}, \infty), \cdots;$$

a finite or countable number of intervals having disjoint interiors, and ordered so that $\mu_1 \in K_n^*$ separates $\mu_2 \in K_n^*$ from $+\infty$ in $[u_0', \infty)$ if m > n and K_n^* , K_n^* are not empty. If $u \in K_n^*$ and $u + iv \in \partial S$, v > 0, it follows from (c) and (d) that $v \ge \frac{\pi}{2} - \frac{1}{2n}$. Thus the area of

$$\bigcup_{n} \left\{ w \colon \Re w \in K_{n}^{*}; \, \frac{\pi}{2} - \frac{1}{2n} \leq \mathscr{I} w \leq \frac{\pi}{2} \right\}$$

is finite, and we also have

$$\bigcup_{n} \left\{ w \colon \Re w \in K_n^*; \ 0 \leqq \mathscr{J}w < \frac{\pi}{2} - \frac{1}{2n} \right\} \subset S.$$

There are no members of A in $[u'_0,\infty)\setminus UK_n^*$ and so we can define a reordering

$$K_n = [\tau_n, \tau'_n] \ (\tau'_n \le \tau_{n+1}, \ n = 1, 2, \cdots; \ \tau_n \to \infty \ \text{as} \ n \to \infty)$$

of those intervals J_{mj} which are outside, or have a subinterval outside, $\bigcup_{n} K_n^*$. The subinterval of K_n arising from the I_{mj} is denoted by I_n , and we also set

$$\lambda_{mj} = \lambda_n$$
, $\mathring{u}_{mj} = u_n \in I_n$ when $J_{mj} = K_n$.

By construction, condition C (with c=1, $\alpha_n=1$ all n) is satisfied by the sequence of boundary points $w_n=u_n+i\left(\frac{\pi}{2}-\lambda_n\right)$ and the intervals I_n . Theorem 2 indicates that

$$\sum_{n=1}^{\infty} \lambda_n^2 < + \infty.$$

Put

$$\min_{\substack{u+iv\in\partial S,\,v>0\\u\in K_n}}v=\nu_n,$$

so that

$$\lambda_n \leq \frac{\pi}{2} - \nu_n \leq 2\lambda_n.$$

We define a subdomain S_1 of $S \cap \{\mathscr{I}w > 0\} \cap \{\Re w > u_0'\}$. For $u \in K_n$ $(n = 1, 2, \cdots)$, the points $u + iv \in S_1$ if $0 < v < \nu_n$; if $u \notin \bigcup_{n=1}^{\infty} K_n$, but $u \in K_n^*$ for some m, then $u + iv \in S_1$ if $0 < v < \frac{\pi}{2} - \frac{1}{2m}$; for other values of $u (\geqq u_0')$, $u + iv \in S_1$ if $0 < v < \frac{\pi}{2}$. Then ∂S_1 consists of $[u_0', \infty)$ together with straight line segments parallel to the coordinate axes. Further the area of $\{w \colon \Re w \geqq u_0'; \ 0 < \mathscr{I}w < \frac{\pi}{2}\} \setminus S_1$ is finite.

Given $\varepsilon > 0$, we draw straight line segments in S_1 , making angles ε or $\pi - \varepsilon$ with the real axis, from the vertices of the polygonal line ∂S_1 with positive imaginary part. This removes from S_1 a finite area of magnitude $O(\varepsilon^{-1} \sum \lambda_n^2)$, and the boundary of the new subdomain, S_2 , consists of $\{w: \Re w > u_0'; \mathscr{I}w = 0\}$, a segment of $\Re w = u_0'$, and a polygonal line none of whose sides makes an angle greater than ε with both directions of the real axis.

Using a sequence of boundary points on Γ_2 and the method described above we construct $S_2 \subset S \cap \left\{ w : \Re w > u_0'; -\frac{\pi}{2} < \mathscr{I}w < 0 \right\}$ such that the area of $\left\{ w : \Re w > u_0'; -\frac{\pi}{2} < \mathscr{I}w < 0 \right\} \setminus S_2'$ is finite.

The boundary of the largest subdomain of $\{w: \Re w > u_0'; \Im w = 0\} \cup S_2 \cup S_2'$ which is symmetric about $\Im w = 0$ will be described by a function $v = \beta(u)$ having the desired properties. This completes the proof of Theorem 1 (necessity).

REFERENCES

- [1] L.V. Ahlfors, Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen, Acta Soc. Sci. Fenn. N.S. (A), No. 9, (1930), 40 pp.
- [2] B.G. Eke, On the angular derivative of regular functions, Math. Scand. 21, (1967), 122–127.
- [3] B.G. Eke and S.E. Warschawski, On the distortion of conformal maps at the boundary, J. London Math. Soc. 44, (1969), 625–630.
- [4] J. Lelong-Ferrand, Représentation conforme et transformations à intégrale de Dirichlet bornée, Gauthier-Villars, Paris, 1955.
- [5] S.E. Warschawski, On the boundary behaviour of conformal maps, Nagoya Math. J. 30 (1967), 83–101.
- [6] J. Wolff, Sur la représentation d'un demi-plan sur un demi-plan a une infinité d'incisions circulaires, C.R. Acad. Sci. 200, (1935), 630-632.

Queen's University, Belfast, Northern Ireland.