THE TIME TO ABSORPTION IN A-COALESCENTS
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Abstract

We present a law of large numbers and a central limit theorem for the time to absorption
of A-coalescents with dust started from n blocks, as n — o0o. The proofs rely on an
approximation of the logarithm of the block-counting process by means of a drifted
subordinator.
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1. Introduction and main results

Given a large sample of individuals with a common ancestor, how long are the ancestral
lineages back to that ancestor? For a population of constant size, this question concerns the
absorption time of a coalescent which describes the genealogical tree of n individuals by
means of merging partitions. Here we consider coalescents with multiple mergers, also known
as A-coalescents, as introduced in 1999 by Pitman [6] and Sagitov [7]. If A is a finite, nonzero
measure on [0, 1], then the A-coalescent started with n blocks is a continuous-time Markov
chain (IT, (), t > 0) taking its values in the set of partitions of {1, ..., n}. It has the property
that whenever there are b blocks, each possible transition that involves merging k > 2 of the
blocks into a single block happens at rate

A@p)
msz PR L
[0,1] P

and these are the only possible transitions. Let N, (¢) be the number of blocks in the partition
IT,,(¢), t > 0. Then

T, ;= inf{t > 0: N,,(¢t) = 1}
is the time of the last merger, also called the absorption time of the coalescent started in n

blocks. In this paper we study the asymptotic distribution of t, as n — oo.
Our first result is a law of large numbers for the times t,,. Let

A(dp)
pim [ ftogd = p)
1]
in particular, © = oo when A({0}) > 0 or A({1}) > 0.
Theorem 1. For any A-coalescent, as n — oo,
T, 1
" — — inprobability. (1)
logn 7
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This theorem says that in a A-coalescent the number of blocks decays at least at an
exponential rate. If 4 = oo then the right-hand limit is 0, and the coalescent decreases
even super-exponentially fast. The < oo case is equivalently captured by the simultaneous
validity of the two conditions

A(d
/ €@r) _ o and / log(1 — p)|A(dp) < oco.
[0,1] P [0,1]

The first condition is a requirement on A in the neighbourhood of 0: it prohibits a swarm of
small mergers (these can occur in coalescents coming down from oo, meaning that the t, are
bounded in probability uniformly in n). The second is a condition on A in the vicinity of 1: it
rules out the possibility of mergers which, although appearing only occasionally, are so vast that
they make the coalescent collapse. Herriger and Mahle [3] obtained a counterpart to Theorem 1
in which 7, in (1) is replaced by its expectation.

Our second result is a central limit theorem. Here we confine ourselves to coalescents with
i < o0. Then the function

1—(1—p)° A
f(y>:=f d=—p)” Adp) g, @)
[0,1]

ey p?

is everywhere finite. Also, f is a positive, monotone decreasing, continuous function with the
property f(y) — Ofory — oo. Let

logn d
b, :=/ 9 )
kM= fO)

where we choose k¥ > 0 such that

fO) < iu forally >«

Theorem 2. Assume that 1 < oo and, moreover,

A(dp)
o’ :=/ (log(1 — p))2 2p < 0
[0,1] p
Then, as n — o0,
T, — b, » 2
N0, — 3
Jogn < M3> ©

Under the additional condition

A(dp)
/ | log p| < 09, (4)
[0,1] p

Gnedin et al. [1] obtained the CLT (3) with b, replaced by (logn)/u (condition (9) in [1] is
equivalent to the condition at (4); see [4, Remark 13]). Thus, the question arises, whether the
simplified centering by (logn)/u is always feasible. The next proposition shows that this can
be done under a condition that is weaker than (4), but not in every case.
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Proposition 1. Let 0 < ¢ < oo. Then

1 2
by = 2% 4 22 Jlogn + o(y/logn) asn — oo ®)
wop

if and only if

A
,/|logr|/ ( p)—>c asr — 0. (6)
[0,r]

p

Example. Consider for y € R the finite measures

1 -V
A(dp) = <1+log—) dp, O0<p<l
p

For y = 0, this gives the Bolthausen—Sznitman coalescent. For y > 1, it yields coalescents
with , 0 < oco. Note that (4) is satisfied if and only if y > 2, and (6) is fulfilled if and only
ify > % Thus, within the range 1 < y < 3, we have to come back to the constants b,, in the
central limit theorem.

The law of large numbers from Theorem 1 holds for all y > 1. For the regime y < 1,
Theorem 1 tells us only that 7, = 0, (logn). For y = 0, the Bolthausen—Sznitman coalescent,
itisknown that 7, is already down to the order log log n [2]. Fory < 0, applying Schweinsberg’s
criterion [8], it can be shown that the coalescents come down from oco. There remains the gap
0 < y < 1. Itis tempting to conjecture that 7, is of order (logn)” for0 < y < 1.

When equation (6) does not hold, then the approximation to b,, that follows may be practical.
Starting from the identity

2 k k+1
1 1. /e rfo o SO

w—fon @ w Uk T W T — ()

we obtain the expansion

logn 1 logn 1 logn logn
b= [yt f"(y)dy+0</ f"“(y)dy>-
TR TE pkrt Jo 0

We now explain the method of proving Theorems 1 and 2. We are dealing mainly with
A-coalescents that have a dust component. Briefly speaking, these are the coalescents for
which the rate at which a single lineage merges with some others from the sample remains
bounded as the sample size tends to co. It is well known (see, e.g. [6, Theorem 8]) that this
property is characterized by the condition

/ Adp) < Q. (7)
[0,1] p

An established tool for the analysis of a A-coalescent with dust is the subordinator S = (S;);>0;
this is used to approximate the logarithm of its block-counting process N, = (N, (¢))i>0
(see, e.g. [1], [5], and [6]). We recall this subordinator in Section 3. Indeed, analogues of
Theorems 1 and 2 are well known for first-passage times of subordinators with finite first and
second moments, respectively, but this approximation neglects the subtlety that a coalescent of
b lineages results in a downward jump of size b — 1 (and not b) for the process N,,. This effect
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becomes significant when many small jumps accumulate over time, as happens close to the
dustless case (this is readily seen in Proposition 1 and the above example). Then the appropriate
approximation is provided by a drifted subordinator Y,, = (Y, (¢));>0, given by the stochastic
differential equation

t
Yn(t)zlogn—St+/ f(Yn(s))ds, t >0,
0

with initial value Y;,(0) = logn. The drift compensates the difference between b and b — 1 just
mentioned. In Kersting et al. [4] it was shown that

sup |Y,(t) —log N, (t)| = Op(1) asn — oo,

1<ty

that is, these random variables are bounded in probability. In Section 3 we suitably strengthen
this result. In Section 2 we provide the required limit theorems for passage times for a more
general class of drifted subordinators. The above results are then proved in Section 4.

It turns out that the regime considered by Gnedin et al. [1] is one in which the random

variables for” f(Yn(s))ds are bounded in probability uniformly in n. This can be seen to be

equivalent to the requirement fooo f(y)dy < oo, which is likewise equivalent to (4) (see the
proof of [4, Corollary 12]). Under this assumption, Gnedin et al. [1] proved their central limit
theorem also with nonnormal (stable or Mittag-Leffler) limiting distributions for t,,. A similar
generalization of Theorem 2 is feasible in the general dust case, without requirement (4).

2. Limit theorems for a drifted subordinator

Let S = (S:):>0 be a pure-jump subordinator with Lévy measure A on (0, 0o). Recall that
this requires

/ (y A DA(dy) < oo.
0

More generally than the specific function in (2), let f: R — R be an arbitrary positive,
nonincreasing, continuous function with

lim f(y)=0.
y—00
Let the process Y* = (¥;*);>0 denote the unique solution of the stochastic differential equation
t
Yf:z—St—i—/ fxHds (8)
0

with initial value z > 0; we investigate the asymptotic behaviour in the limit z — oo of its
passage times across x € R, that is, of

T :=inf{t > 0: Y} < x}.

Our first result provides a law of large numbers. Denote

W= f yr(dy). ©)
(0.00)
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Proposition 2. Assume that i < oo. Then, for any x € R, as 7 — oo,

1 I . e
-T! — — in probability.
Z 1%
Proof. Let z > x. Then
N
(T >ty ={Y;>xforalls <t} = {SS < z—x+/ f¥Hduforalls < t}.
0

The positivity of f implies that P(T? > t) > P(S; < z — x), so, for any € > 0,

Z
IP’<T§ > (- 8);) > P(Sa-e)z/u <2 —x). (10)
Now p = E[S1], so, by the law of large numbers,
. t .
tl_l)rgo? =u as;

hence, the right-hand term in (10) converges to 1 as z — oo and also
Z
IP(TXZ > (1 —8)—) — 1.
"
On the other hand, {77 > ¢t} equals
t
{Y?>xforalls <t} = {YSZ >xforalls <t, $; < Z—x—i—/ f(YSZ)ds}.
0

Monotonicity of f implies that P(7¢ > t) < P(S; < z — x + tf(x)). Therefore, since
f(x) > 0asx — oo,

Z
p(T; > (1+ s)ﬁ) < P<S<1+e)z/u <z—x+( +8>;f<x)>
< P(St+ere/n < 2(1+ 36) = x)

provided only that x is sufficiently large. Now the right-hand term converges to 0, so it follows
that

P(T; > (1 +s)5> -0
7

Note that we proved this result only for sufficiently large x, depending on ¢. However, this
restriction can be omitted, since, for fixed x; < xp, the random variables szl — szz are bounded
in probability uniformly in z. Thus, altogether we have, for any x,

P((1—8)55T5<(1+8)3)—>1 as 7 — oo,
1 1"

which (since ¢ > 0 is arbitrary) is our assertion. 0
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We turn now to a central limit theorem for passage times of the processes Y*. Choose «
sufficiently large that sup ., f(y) < %M, and define the function 8;, z > «, by

Z dy
e et (11)
K M= f(y)
Proposition 3. Let
o’ ::/ yz)\(dy) < 00. (12)
(0,00)

Then, as 7 — oo,
Te—F N(O, f)
vz u3
Proof. (i) Note again that, for x; < x3, the random variables Tfl — T)fz are bounded in
probability uniformly in z. Thus, it suffices to prove our theorem for all x > xo for some
xo € R. Therefore, we may change f(x) for all x < xg; we do so in such a way that
fx) < % w for all x € R, without touching the other properties of f. Thus, we assume from

now that
f(y) < sp forally € R, (13)
and set « = 0 in (11). Consequently,
2
Lep <= >0 (14)
o 0

For any z > 0, define the function p*(¢) = pf, 0 <t < B, such that

Bo:ay = B —t for0 <t < B,

in particular, p*(0) = z and p*(8;) = 0. This means that p® arises by first inverting the function
B (restricted to the interval [0, z]), and then reversing the time parameter on its domain [0, §,].
Differentiation yields g7 = f(pf) — u, so p < —% wu and

t
or =z—ut+/0 f(p5)ds.

(i) Inspection of (8) suggests that p* may be a good approximation for the process Y<; we
estimate the difference by observing that

t
Yi—pf = —(S — put) +/0 (f(Y9) — f(p5))ds.
For given ¢t > 0, define

sup{s < t: Y7 < p¢} ontheevent Y7 > pf,
w = : :
' sup{s < t: Y > p¢} ontheevent ¥} < pf,

and u; := t on the event ¥ = p;. Then 0 < u, < ¢ since ¥j = z = p;. Because f isa
decreasing function, the event Y/ > pf implies that

A

t
Vi pi < ¥i—pi— / (FOF) = (o ds — (Y7 _ — pf, )

= —(S — put) + (Su,— — puy).
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On the event Y < pf, there is an analogous estimate from below, so taken all together,

Y[ — pf| <2M;, where M; :=sup|S, — pul.

u<t

Consequently, Y7 > pZ —2M; > p? — 2M; for s <t and from the monotonicity of f,

t t t t
/0 Froyds - fo F(p?)ds < /0 F(p7 —2My)ds — fo F(p?)ds < 2M, f (o7 — 2M)).

An analoguous estimate is valid from below; it yields

< 2M, f (0} —2M)). (15)

t t
‘/ f(Yf)ds—/ f(pd)ds
0 0

Recall here that, under our assumptions on the subordinator S, Donsker’s invariance principle

implies that
M, = OP(«/;) ast — 00.

(iii) Next we derive some upper estimates of probabilities. Given a, x € R, for any ¢ > 0,

P(T{ > B, + av/z)
=P} > xforallt < 8. +a/z)

B:+ayz
=P<Sﬁ7+aﬁ§z—x+/ fx¥Hds, Yzzxforalltfﬂz+aﬁ>
: 0

B:—c\/z
= P(Sﬂz+aﬁ Sz—x+ f(x)(c+ |a|)ﬁ+/ f(Yd) ds).
0

We now use (15). From the definition of p* and writing 8(y) = By, we have
B (B — cv/2)) = /2,

and then because of (14),

P (B, — c/2) = Czi
0

So on the event Mg < c/z/(81),

Cﬁ C«/E c\/Z
Y8, — \JT) —2M VI VE_VE
p*(B: — V/2) B.—cyz = 21 4 4

Consequently, appealing to (15) and since 8, < 2z/pu,
P(sz > B+ a\/z)

V2
= P(MW > m)

B: ez cﬁ))
Pl S - Hds+—f{—]). (16
+ ( Botayzi =2 x+f(x)(c+|a|)ﬁ+/0 f(pg)ds + 4 f( M (16)
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Furthermore, from the definition of p?,

B
o+ /0 £y ds = p*(B2) + b = 1.

Therefore, if we fix ¢ > 0, take c so large that the first right-hand probability in (16) is smaller
than ¢, and then choose z so large that (c¢/4u) f (c/z/411) < e and also choose x > 0 and so
large that cf (x)(c + |a|) < e, then

P(T? = B + ay7) < &+ P(Sp.ayz < 1Bz +264/2).
Also, by the law of large numbers
Sp.+ayz — Sp. ~ pay/z  in probability.

Therefore,
P(T{ = B+ a/2) <2e+P(Sp, < uB; + (—pa + 3)/2).

Also, up; ~ z, so, for large z,
P(T{ 2 B +ay/z) < 2 + P(Sp, < ufs + (—pa +4e)p' > /Bo).

It now follows from (12) and the central limit theorem that

Si—uto o

o2t
where L denotes a standard normal random variable. Thus,

limsup P(T? > B, + ay/z) < 2e + P(L < (—pa + 4e)u'?o™h.

77—

Note in our proof that the choice of x depends on ¢, but, since the differences szl — szz are
bounded in probability uniformly in z, this estimate generalizes to all x. Now letting ¢ — 0

gives
T — 3/2
limsupIE”( x P za)gP(Lg—“ “).
7—>00 \/E o

This is the first part of our claim.
(iv) For the lower estimates, we first introduce the random variable

R,y :=sup{t > 0: ¥/ > x} —inf{r > 0: ¥} < x};

this is the length of the time interval on which ¥/ — x changes from a positive sign to ultimately
a negative sign (note that the paths of Y are not monotone). We claim that these random
variables are bounded in probability, uniformly in z and x. Indeed, with

Nzx = inf{t > 0: Y7 < x},

we have, for ¢ > n = n; x, because of Y,? < x and (13),

!
1
Y? =Y,§—(St—sn)+/ fx¥Hds fx—(S,—Sn)+§l/«(l‘—77)~
1
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Thus, R; , is bounded from above by

R. == sup{u > 0: (Sp,.+u — Sp..) — %,uu <0}

Z,X

These random variables are a.s. finite. Moreover, they are identically distributed, since the n;
are stopping times. This proves that the R; . are uniformly bounded in probability.
For the lower bounds and a, b € R, we have

P(T? > B, +av/z) > P(Y} > xforallt < B, +av/z, R;x <b)
=P} >xforall B, +ay/z—b <t < B, +az, R, x <Db).

For these ¢,

t B+a/z—b
Y} :Z_S,+/ fxHds zz—Sﬂeraﬁ-i-/ fYS)ds;
0 0

therefore,
B:+a/z—b
(T > B, +ay) = P(Smm Si—xt f fE)ds, Rex < ”)
0

B:—c/z
>]P)<Sﬂ+uf Z—X+[) f(YSZ)dS)—]P)(RZ,x>b)

for sufficiently large c.
We now use (15) as in (iii). Proceeding analogously, instead of estimate (16) we obtain

P(T{ = B +ay/2) = =P(R; x > b) — P<M21//L > %)

s VE (e
Pl S <z-— ) ds —
+ (,gzﬂﬁ_z x+/0 fps)ds 15 (4M)>
Also, since ,0;7 =0and pf < ——,u,

ﬂz Cﬁ s
/ Flpd)ds < / f(7> ds = 0(J/2).
.3:_‘\/2 0

Hence, for given ¢ > 0 and sufficiently large z,

P(T; 2 B +av/2) = —P(Rex > b) — P<Mzz/” ] %>

+]P<Sﬁ+af<z—8\/_+/- f(p5)ds — f (J—))

4

Returning to the arguments of part (iii) we choose b, ¢ and then z so large that

P(T{ > B, +ay/o) = =26 + P(Sp_14yz < 1P — 263/2)

and

(na +3e)p'/?
- .

liminf P(T? > B, + ay/z) > =3¢ —HP’(L <
77—

The limit ¢ — 0 leads to the desired lower estimate. O
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3. Approximating the block-counting process

In this section we derive a strengthening of a result of Kersting e? al. [4] on the approximation
to the logarithm of the block-counting processes in the dust case. To this end, let us quickly
recall the Poisson point process construction of the A-coalescent given in [4]; this is a slight
variation of the construction provided by Pitman [6].

This construction requires A ({0}) = 0, a condition that is satisfied by coalescents with dust.
Consider a Poisson point process W on (0, co) x (0, 1] x [0, 1]* with intensity

dr x p_ZA(dp) x duj x -+ x duy,

and let I1,,(0) = {{1}, ..., {n}} be the partition of the set {1, ..., n} into singletons. Suppose
that (¢, p,u1,...,uy) is a point of W, and that IT,(r—) consists of the blocks By, ..., Bp,
ranked in order by their smallest element. Then IT,(¢) is obtained from IT,(#—) by merging
together all of the blocks B; for which #; < p into a single block. These are the only times that
mergers occur. This construction is well defined because, a.s. for any fixed ' < oo, there are

only finitely many points (¢, p, u1, ..., u,) of ¥ for whichr < ¢’ and atleast two of u1, ..., uy,
are less than or equal to p. The resulting process I, = (I1, (), t > 0) is the A-coalescent.
When (¢, p,u1, ..., u,) is a point of ¥, we say that a p-merger occurs at time ¢.

Condition (7) allows us to approximate the number of blocks in the A-coalescent by a
subordinator. Let ¢: (0, 00) x (0, 1] x [0, 1]* — (0, 00) x (0, co] be the function defined by

¢(tv p,uy, "'1”71) = (l9 _log(l _P))

Now ¢ (W) is a Poisson point process, and we can define a pure-jump subordinator (S(¢), t > 0)
with the property that S(0) = 0 and if (¢, x) is a point of ¢ (W) then S(¢) = S(¢—) + x. With
A the Lévy measure of S, (9) and (12) now read

A(dp)
p2

A(dp)
p2

w= / log(1 — p)| and o? = / (log(1 — p))?
[0,1] [0,1]

This subordinator first appeared in [6] and was used to approximate the block-counting process
by Gnedin et al. [1] and Mohle [5]; the benefits of a refined approximation by a drifted
subordinator were discovered in [4]. Recall that the drift appears because a merging of b
out of N, (¢) lines results in a decrease of b — 1 and not of b lines; see [4, Equation (23)] for an
explanation of the form of the drift. Our next result provides a refinement of [4, Theorem 10].

Proposition 4. Suppose that f[o 1 p~'AWdp) < co. Let f be as in (2), and let Y, be the
solution of (8) with z := logn. Then, for any ¢ > 0, there exists £ < oo such that

]P’(sup [1og Ny (1) — Yo()] < £, Yo(t) < z) >1—¢.

1<ty

Proof. From [4] we know that, for given ¢ > 0, there exists r < oo such that

1
P(sup |log Ny (1) — Y, (1) < r) =1-3e.

1<ty

Consider the size A, of the last jump. Letting (u;, p;), i > 1, be the points of the underlying
Poisson point process with intensity measure dz A (dp)/p?, the associated subordinator S has
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jumps of size v; =—log(1—p;) attimes¢;. So, forany ¢ > 0, theevent{A, <log N, (t,—)—c}
is the same as
{r, = t; and —log(1 — p;) <log N, (t;—) — c for some i > 1}

c

={rn=tiandpi§1 forsomeizl}.

Ny (ti _)
Given N, (t—), this event appears at time ¢ at rate

_yA(dp)
[0,1—e/Nyp(t—)] )4

Using the inequalities pb =(1-1- p))b <e (=P < 1/((1 — p)b), we obtain

2
Vit E[ e~ (I=PNat=)=2) A (4 p) 5/ e—A(dp)-
[0,1—e /Ny (t—)] [0,1—e¢/Nyt—)] (1 — P)Np (1)

It follows that

o0 00 e2
E/ v dt:|§IE|:/ / S S A th(dp)].
[0 n,t onrde = p)Na—) ez I/ =)

Lemma 14 of [4] yields the estimate

E / : 1 dr | < < 7 < 1=»
—)>T[e¢ — C C
o Na(t—) {Nn =)z [ec/(1=p)T} =€l 1 =€l eC

for some ¢; > 0; hence,

E[/ Vs dtj| < c1e27CA ([0, 17).
0

o
E|:/ Vn,t d[i| <
0

Therefore, for sufficiently large c,

g,

R —

implying that

€.

N =

o
P(A, <logN,(t,—) —c)=1— exp(—E[/ Vn.t dt]) <
0
Altogether we obtain

P(sup 1102 Ny (1) — Yo(£)] < 7, Ay > log Ny (tn—) — c) >1—¢.

7

The event in the last relation implies that
Yn(tn) = Yu(ta—) — Ay < log Ny(tp—) +r — (log Np(th—) —¢) =r + ¢,

and the claim of the proposition follows with £ = r + c. g
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4. Proof of the main results

Proof of Theorem 1. Assume first that © < oco. Then we have a coalescent with dust, and
we can apply Proposition 4. Fix n > 0. Note that, on the event that Y, (t,) < ¢, the event
7, < (1 —n)logn/u implies the inequality T;Ogn < (I —n)logn/w, where T¢ is defined
following (8). Thus, in view of Proposition 4, for any ¢ > 0, there exists £ such that

1—n)l 1—nl
P<rn _d=mn Ogn) §P<Tzlogn _=m 0gn> ‘e
0 0

Proposition 2 implies that the right-hand probability converges to 0 as n — oo. Lettinge — 0
we obtain | |
lim IP’(t,, - w> —
n—od M

Also, on the event sup, . |log Ny, (1) — Y, (1)| < ¢, the event 7, > (1 + n)logn/u implies
that ¥, (f) > —£ for all t < (1 + n)logn/u, and, consequently,

1 1 1 1
P<Tn - 1+n) ogn) S]P><Tloggn - 1+ 0gn> +e
1 1

Again, from Proposition 2, the right-hand probability converges to 0, and we obtain

141
lim P(tn - M) —0.

n—o00 M

Thus, our claim follows in the < oo case.

Now assume that & = oo. If A({0}) > 0 then the coalescent comes down from oo and 1,
remains bounded in probability. The same is true if A({1}) > 0; thus, we may assume that
A({0,1}) =0.

For given ¢ > 0, define the measure A¢ by A®(B) := A(B N[e, 1 — ¢]). Obviously,

Af(dp)
3 <
p

1
n o= / [log(1 — p)|
0
Thus, for the absorption times 7, of the A®-coalescent, we have

n

logn ue

Tt 1
— -

in probability as n — oco. Now we may couple the A®-coalescent in an obvious manner to the
A-coalescent in such a way that N, (t) < N/ (¢) a.s. forall t > 0, in particular 7, < 7°. Hence,
it follows that

Because A({0, 1}) = 0, u® — pu = oo as ¢ — 0, and, consequently,

IP( tn >r)>—>0
logn

for all » > 0. This is our claim. g
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Proof of Theorem 2. Because of the condition © < oo we may again apply Proposition 4;
we follow the same line as in the previous proof. For ¢ > 0, there exists £ such that, for all

a € R,
P(t, < b, + a/n) < ]P’(Telog” <by+ayn) +e¢
and
P(t, > b, + av/n) < IP(TiOKgn > by, +a/n) +¢.
Now apply Proposition 3 and let ¢ — 0. 0

Proof of Proposition 1. (i) Start by assuming that (6) holds. Because 1 — (1 — p)!/" <
min(p/r, 1) for 0 < r < 1, we have, for o > 0,

re 1 re 1
f(logl> 5/ Alp) —i—r/ A(dzp) 5/ Adp) +r‘*“/ 24D gy
r 0 r 0 0

p « P p p
Also, since 1 — (1 — p)//" > 1 —e=P/" > e=P/" p/r, it follows that, for g > 0,
B
1 - N (!
f<log—> > ’f €p), (18)
r 0 P

Together with (6), these two estimates imply that, fora < 1 < 8,

¢B~'/? < liminf f 1ogl 1ogl <limsup f 1og1 logl <ca™!?
= =0 r T 0 r r '

Letting o, B — 1 we arrive at f(y) = (c + o(1))/,/y as y — oo and, consequently,

logn
f : FfOdy = (c+o(1))2y/logn asn — oo.
0

Now, since

1 1 fo)

w—f T ulpw = f()
and f(y) =o(1) as y — o0,

/Zd—y:£+l+—02(1)/ f(dy+0(1) asz— oo; (19)
k k=) u 2 0

so, as claimed,

logn 2c+o(1
b, = £ + 2( ),/logn.
0 0
(i1) Suppose now that (5) is satisfied. Then, from (19) with z = log n, it follows that
logn
/ f(y)dy = 2c+o(l))y/logn asn — oo,
0

or, equivalently,
z
/ fdy=Qc+o()z asz— oco.
0

This implies that f(z) = (¢ + 0(1))/+/z as z = oo. For ¢ = 0, this claim follows because f
is decreasing; hence,

@) < /O Fdy = 0(y/2).
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For ¢ > 0, we use the estimate

1 (I+n)z q Y 1 z q
_ < P
nﬁfz FO)dy = VEF@) < /(l_n)zf(y) y

with > 0. Taking the limit z — oo and then n — 0 yields f(2) = (¢ + o(1))/+/z. Now,
similarly to part (i), from (17) and (18), we obtain

[ 1 A(d [ A
ca/a < liminf log—f M < lim sup log—/ M < c\/ﬁ.
r—0 rJos P r—0 rJios P

Letting a, B — 1 we arrive at (6). O
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