
1 Simple counting

It’s hard to begin a math book. A few chapters in, it gets easier: by then, writer and
reader have—or think they have—a common sense of the level of the book, its pace,
language, and goals; at that point, communication naturally flows more smoothly. But
getting started is awkward.

As a consequence, it’s standard practice in math textbooks to include a throwaway
chapter or two at the beginning. These function as a warmup before we get around
to the part of the workout that involves the heavy lifting. An introductory chapter
typically has little or no technical content, but rather is put there in the hope of estab-
lishing basic terminology and notation, and getting the reader used to the style of the
book, before launching into the actual material. Unfortunately, the effect may be the
opposite: a chapter full of seemingly obvious statements, expressed in vague language,
can have the effect of making the reader generally uneasy without actually conveying
any useful information.

Well, far be it from us to deviate from standard practice! The following is our intro-
ductory chapter. But here’s the deal: you can skip it if you find the material too easy
(unlike the case of power lifting, where a thorough warmup is absolutely necessary).
Really. Just go right ahead to Chapter 2 and start there.

1.1 COUNTING NUMBERS

To start things off, we’d like to talk about counting, because that’s how numbers first
entered our world. It was four or five thousand years ago that people first developed
the concept of numbers, probably in order to quantify their possessions and make
transactions—my three pigs for your two cows and the like. And the remarkable thing
that people discovered about numbers is that the same system of numbers—1, 2, 3, 4,
and so on—could be used to count anything: beads, bushels of grain, people living in
a village, forces in an opposing army. Numbers can count anything: numbers can even
count numbers.

And that’s where we’ll start. The first problem we’re going to pose is simply: how
many numbers are there between 1 and 10?

At this point you may be wondering if it’s too late to get your money back for this
book. Bear with us! We’ll get to stuff you don’t know soon enough. In the meantime,
write them out and count:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
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4 Chapter 1. Simple counting

there are 10. How about between 1 and 11? Well, that’s one more, so there are 11.
Between 1 and 12? 12, of course.

Well, that seems pretty clear, and if we now asked you, for example, how many
numbers there are between 1 and 57, you wouldn’t actually have to write them out
and count; you’d figure (correctly) that the answer would be 57.

OK, then, let’s ramp it up a notch. Suppose we ask now: how many numbers are
there between 28 and 83, inclusive? (“Inclusive” means that, as before, we include
both 28 and 83 in the count.) Well, you could do this by making a list of the numbers
between 28 and 83 and counting them, but you have to believe there’s a better way
than that.

Here’s one: suppose you did write out all the numbers between 28 and 83:

28, 29, 30, 31, 32, . . . . . . , 82, 83.

(Here the dots invite the reader to imagine that we’ve written all the numbers in
between in an unbroken sequence. We’ll use this convention when it’s not possible
or desirable to write out a sequence of numbers in full.) Now subtract the number 27
from each of them. The list now starts at 1, and continues up to 83 − 27 = 56:

1, 2, 3, 4, 5, . . . . . . , 55, 56.

From what we just saw we know there are 56 numbers on this list; so there were 56
numbers on our original list as well.

It’s pretty clear also that we could do this to count any string of numbers. For exam-
ple, if we asked how many numbers there are between 327 and 573, you could similarly
imagine the numbers all written out:

327, 328, 329, 330, 331, . . . . . . , 572, 573.

Next, subtract the number 326 from each of them; we get the list

1, 2, 3, 4, 5, . . . . . . , 246, 247,

and so we conclude that there were 573 − 326 = 247 numbers on our original list.
Now, there’s no need to go through this process every time. It makes more sense

to do it once with letters standing for arbitrary numbers, and in that way work out a
formula that we can use every time we have such a problem. So, imagine that we’re
given two whole numbers n and k, with n the larger of the two, and we’re asked: how
many numbers are there between k and n, inclusive?

We do this just the same way: imagine that we’ve written out the numbers from k to
n in a list

k, k + 1, k + 2, k + 3, . . . . . . , n − 1, n

and subtract the number k − 1 from each of them to arrive at the list

1, 2, 3, 4, . . . . . . , n − 1 − (k − 1), n − (k − 1).

Now we know how many numbers are on the list: it’s n − (k − 1) or, more simply,
n − k + 1.1 Our conclusion, then, is that:

1 Is it obvious that n − (k −1) is the same as n −k +1? If not, take a moment out to convince yourself:
subtracting k − 1 is the same as subtracting k and then adding 1 back. In this book we’ll usually
carry out operations like this without comment, but you should take the time to satisfy yourself
that they make sense.
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1.2. Counting divisible numbers 5

The number of whole numbers between k and n inclusive is n − k + 1.

So, for example, if someone asked “How many numbers are there between 342 and
576?” we wouldn’t have to think it through from scratch: the answer is 576 − 342 + 1,
or 235.

Since this is our first formula, it may be time to bring up the whole issue of the role
of formulas in math. As we said, the whole point of having a formula like this is that we
shouldn’t have to recreate the entire argument we used in the concrete examples above
every time we want to solve a similar problem. On the other hand, it’s also important to
keep some understanding of the process, and not to treat the formula as a “black box”
that spews out answers (regardless of the black box we drew to call attention to the
general formula). Knowing how the formula was arrived at helps us to know both when
it’s applicable, and how it can be modified to deal with other situations when it’s not.

Exercise 1.1.1. How many whole numbers are there between 242 and 783?

Exercise 1.1.2. The collection of whole numbers, together with their negatives and the
number zero, form a number system called the integers.

1. Suppose n and k are both negative numbers. How many negative numbers are there
between k and n inclusive?

2. Suppose n is positive and k is negative. How many integers are there between k and
n inclusive?

1.2 COUNTING DIVISIBLE NUMBERS

Now that we’ve done that, let’s try a slightly different problem: suppose we ask “How
many even numbers are there between 46 and 104?”

In fact, we can approach this the same way: imagine that we did make a list of all
even numbers, starting with 46 and ending with 104:

46, 48, 50, 52, . . . . . . , 102, 104.

Now, we’ve just learned how to count numbers in an unbroken sequence. And we can
convert this list to just such a sequence if we just divide all the numbers on the list by
2: doing that, we get the sequence

23, 24, 25, 26, . . . . . . , 51, 52

of all whole numbers between 46/2, or 23, and 104/2, or 52. Now, we know by the formula
we just worked out how many numbers there are on that list: there are

52 − 23 + 1 = 30

numbers between 23 and 52, so we conclude that there are 30 even numbers between
46 and 104.

One more example of this type: let’s ask the question, “How many numbers between
50 and 218 are divisible by 3?” Once more we use the same approach: imagine that we
made a list of all such numbers. But notice that 50 isn’t the first such number, since 3
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6 Chapter 1. Simple counting

doesn’t divide 50 evenly: in fact, the smallest number on our list that is divisible by 3 is
51 = 3 × 17. Likewise, the last number on our list is 218, which isn’t divisible by 3. The
largest number on our list which is divisible by 3 is 216, which is: 3 × 72 = 216. So the
list of numbers divisible by 3 would look like

51, 54, 57, 60, . . . . . . , 213, 216.

Now we can do as we did before, and divide each number on this list by 3. We arrive at
the list

17, 18, 19, 20, . . . . . . , 71, 72

of all whole numbers between 17 and 72, and there are

72 − 17 + 1 = 56

such numbers.
Now it’s time to stop reading for a moment and do some yourself:

Exercise 1.2.1.

1. How many numbers between 242 and 783 are divisible by 6?
2. How many numbers between 17 and 783 are divisible by 6?
3. How many numbers between 45 and 93 are divisible by 4?

Exercise 1.2.2.

1. In a sports stadium with numbered seats, every seat is occupied except seats 33
through 97. How many seats are still available?

2. Suppose the fans are superstitious and only want to sit in even-numbered seats
because otherwise they fear that their team will lose. How many even-numbered
seats are still available in the block of seats numbered 33 through 97?

Exercise 1.2.3. In a non-leap year of 365 days starting on Sunday, January 1st, how
many Sundays will there be? How many Mondays will there be?

1.3 “I’VE REDUCED IT TO A SOLVED PROBLEM.”

Note one thing about the sequence of problems we’ve just done. We started with
a pretty mindless one—the number of numbers between 1 and n—which we could
answer more or less by direct examination. The next problem we took up—the number
of numbers between k and n—we solved by shifting all the numbers down to whole
numbers between 1 and n − k + 1. In effect we reduced it to the first problem, whose
answer we knew. Finally, when we asked how many numbers between two numbers
were divisible by a third, we answered the question by dividing all the numbers, to
reduce the problem to counting numbers between k and n.

This approach—building up our capacity to solve problems by reducing new prob-
lems to ones we’ve already solved—is absolutely characteristic of mathematics. We
start out slowly, and gradually accumulate a body of knowledge and techniques; the
goal is not necessarily to solve each problem directly, but to reduce it to a previously
solved problem.

There’s even a standard joke about this:
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1.4. Really big numbers 7

A mathematician walks into a room. In one corner, she sees an empty bucket.
In a second corner, she sees a sink with a water faucet. And, in a third corner,
she sees a pile of papers on fire. She leaps into action: she picks up the bucket,
fills it up at the faucet, and promptly douses the fire.

The next day, the same mathematician returns to the room. Once more,
she sees a fire in the third corner, but this time sitting next to it there’s
a full bucket of water. Once more she leaps into action: she picks up the
bucket, drains it into the sink, places it empty in the first corner and leaves,
announcing: “I’ve reduced it to a previously solved problem!”

Well, maybe you had to be there. But there is a real point to be made here. It’s simply
this: the ideas and techniques developed in this book are cumulative, each one resting
on the foundation of the ones that have come before. We’ll occasionally go off on
tangents and pursue ideas that won’t be used in what follows, and we’ll try to tell you
when that occurs. But for the most part, you need to keep up: that is, you need to work
with the ideas and techniques in each section until you feel genuinely comfortable
with them, before you go on to the next.

It’s worth remarking also that the cumulative nature of mathematics in some ways
sets it apart from other fields of science. The theories of physics, chemistry, biology,
and medicine we subscribe to today flatly contradict those held in the seventeenth and
eighteenth centuries—it’s fair to say that medical texts dealing with the proper appli-
cation of leeches are of interest primarily to historians, and we’d bet your high school
chemistry course didn’t cover phlogiston.2 By contrast, the mathematics developed at
that time is the cornerstone of what we’re doing today.

Exercise 1.3.1. How many numbers between 242 and 783 are not divisible by 6?

Exercise 1.3.2. A radio station mistakenly promises to give away two concert tickets to
every thirteenth caller as opposed to offering two concert tickets only to the thirteenth
caller. They receive 428 calls before the station manager realizes the mistake. How
many concert tickets has the radio station promised to give away?

1.4 REALLY BIG NUMBERS

As long as we’re talking about the origins of numbers, let’s talk about another impor-
tant early development: the capacity to write down really big numbers. Think about it:
once you’ve developed the concept of numbers, the next step is to figure out a way to
write them down. Of course, you can just make up an arbitrary new symbol for each
new number, but this is inherently limited: you can’t express large numbers without a
cumbersome dictionary.

One of the first treatises ever written on the subject of numbers and counting was
by Archimedes, who lived in Syracuse (part of what was then the Greek empire) in
the third century BC. The paper, entitled The Sand Reckoner, was addressed to a local
monarch, and in it Archimedes claimed that he had developed a system of numbers

2 In case you’re curious, phlogiston was the hypothetical principle of fire, of which every combustible
substance was in part composed—at least until the whole theory was discredited by Antoine
Lavoisier between 1770 and 1790.
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8 Chapter 1. Simple counting

that would allow him to express as large a number as the number of grains of sand in
the universe—a revolutionary idea at the time.

What Archimedes had developed was similar to what we would call exponential
notation. We’ll try to illustrate this by expressing a really large number—say, the
approximate number of seconds in the lifetime of the universe.

The calculation is simple enough. There are 60 seconds in a minute, and 60 minutes
in an hour, so the number of seconds in an hour is

60 × 60 = 3,600.

There are in turn 24 hours in a day, so the number of seconds in a day is

3,600 × 24 = 86,400;

and since there are 365 days in a (non-leap) year, the number of seconds in a year is

86,400 × 365 = 31,536,000.

Now, in exponential notation, we would say this number is roughly 3 times 10 to the
7th power—that is, a three with seven zeros after it. Here 107 refers to the product 10 ×
10 × 10 × 10 × 10 × 10 × 10 of 10 with itself seven times. In standard decimal notation,
107 = 10,000,000, a one with seven zeros after it, and thus 3 × 107 = 30,000,000 is
a three with seven zeros after it. (A better approximation, of course, would be to say
the number is roughly 3.1 × 107, or 3.15 × 107, but we’re going to go with the simpler
estimate 3 × 107.)

Exponential notation is particularly convenient when it comes to multiplying large
numbers. Suppose, for example, that we have to multiply 106 × 107. Well, 106 is just
10 × 10 × 10 × 10 × 10 × 10, and 107 is just 10 × 10 × 10 × 10 × 10 × 10 × 10, so when
we multiply them we just get the product of 10 with itself 13 times: that is,

106 × 107 = 1013.

In other words, we simply add the exponents. So it’s easy to take products of quantities
that you’ve expressed in exponential notation.

For example, to take the next step in our problem, we have to say how old the
universe is. Now, this quantity very much depends on your model of the universe. Most
astrophysicists estimate that the universe is approximately 13.7 billion years old, with
a possible error on the order of 1%. We’ll write the age of the universe, accordingly, as

13,700,000,000 = 1.37 × 1010

years. So the number of seconds in the lifetime of the universe would be approximately

(1.37 × 1010) × (3 × 107) = 4.11 × 1017;

or, rounding it off, the universe is roughly 4 × 1017 seconds old.
You see how we can use this notation to express arbitrarily large numbers. For exam-

ple, computers currently can carry out on the order of 1012 operations a second (a
teraflop, as it’s known in the trade). We could ask: if such a computer were running
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from the dawn of time to the present, how many operations could it have performed?
The answer is, approximately,

1012 × (4 × 1017) = 4 × 1029.

Now, for almost all of this book, we’ll be dealing with much much smaller num-
bers than these, and we’ll be doing exact calculations rather than approximations.
But occasionally we will want to express and estimate larger numbers like these. (The
last number above—the number of operations a computer running for the lifetime of
the universe could perform—will actually arise later on in this book: we’ll encounter
mathematical processes that require more than this number of operations to carry
out.) But even if there aren’t enough seconds since the dawn of time to carry out such
a calculation, it’s nice to know that we have a notation that can accommodate it.

Exercise 1.4.1. We computed the approximate age of the universe—roughly 4 × 1017

seconds old—back in 2002, so our calculation is several years old. Update our work to
compute the approximate age of the universe in seconds as of today.

Exercise 1.4.2. The Library of Alexandria is estimated to have held as many as 400,000
books (really papyrus scrolls), while the US Library of Congress currently holds about
2.8 × 106 books. How many volumes is this in total?

1.5 IT COULD BE WORSE

Look: this is a math book. We’re trying to pretend it isn’t, but it is. That means that it’ll
have jargon—we’ll try to keep it to a minimum, but we can’t altogether avoid using
technical terms. That means that you’ll encounter the odd mathematical formula here
and there. That means it’ll have long discussions aimed at solving artificially posed
problems, subject to seemingly arbitrary hypotheses. Mathematics texts have a pretty
bad reputation, and we’re sorry to say it’s largely deserved.

Just remember: it could be worse. You could, for example, be reading a book on
Kant. Now, Immanuel Kant is a towering figure in Western philosophy, a pioneering
genius who shaped much of modern thought. “The foremost thinker of the Enlight-
enment and one of the greatest philosophers of all time,” the Encyclopedia Britannica
calls him. But just read a sentence of his writing:

If we wish to discern whether anything is beautiful or not, we do not refer
the representation of it to the Object by means of understanding with a view
to cognition, but by means of the imagination (acting perhaps in conjunction
with understanding) we refer the representation to the Subject and its feeling
of pleasure or displeasure.

What’s more, this is not a nugget unearthed from deep within one of Kant’s books. It
is, in fact, the first sentence of the first Part of the first Moment of the first Book of the
first Section of Part I of Kant’s The Critique of Judgement.

Now, we’re not trying to be anti-intellectual here, or to take cheap shots at other dis-
ciplines. Just the opposite, in fact: what we’re trying to say is that any body of thought,
once it progresses past the level of bumper-sticker catchphrases, requires a language
and a set of conventions of its own. These provide the precision and universality that
are essential if people are to communicate and develop the ideas further, and shape
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10 Chapter 1. Simple counting

them into a coherent whole. But they also can have the unfortunate effect of making
much of the material inaccessible to a casual reader. Mathematics suffers from this—
as do most serious academic disciplines.

The point, in other words, is not that the passage from Kant we just quoted is babble;
it’s not. (Lord knows we could have dug up enough specimens of academic writing
that are, if that was our intention.) In fact, it’s the beginning of a serious and extremely
influential attempt to establish a philosophical theory of aesthetics. As such, it may be
difficult to understand without some mental effort. It’s important to bear in mind that
the apparent obscurity of the language is a reflection of this difficulty, not necessarily
the cause of it.

So, the next time you’re reading this book and you encounter a term that turns out
to have been defined—contrary to its apparent meaning—some 30 pages earlier, or a
formula that seems to come out of nowhere and that you’re apparently expected to
find self-explanatory, just remember: it could be worse.
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