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MORE ON CONVERGENCE OF CONTINUOUS FUNCTIONS 
AND TOPOLOGICAL CONVERGENCE OF SETS 

BY 

GERALD BEER 

ABSTRACT. Let C{X, Y) denote the set of continuous functions from a 
metric space X to a metric space Y. Viewing elements of C(X, Y) as closed 
subsets of X x Y, we say {/„} converges topologically to / if Li /;, = 
Ls/„ = / . If X is connected, then topological convergence in C(X,R) does 
not imply pointwise convergence, but if X is locally connected and Y is 
locally compact, then topological convergence in C(X, Y) is equivalent to 
uniform convergence on compact subsets of X. Pathological aspects of 
topological convergence for seemingly nice spaces are also presented, 
along with a positive Baire category result. 

1. Introduction. Let (X,dx) be a metric space and let {Cn} be a sequence of 
nonempty subsets of X. The lower and upper closed limits of {C„} are defined as follows 
[3]: Li C„ (resp. Ls C„) is the set of all points x each neighborhood of which meets all 
but finitely (resp. infinitely) many sets C„. We say {C„} converges topological ly to a 
(possibly empty) set C if Li C„ = Ls Cn = C. If (Y, dY) is another metric space, then 
we can regard members of C(X, K), the continuous functions from X to Y, as closed 
subsets of X x Y. What does convergence of sequences in C(X, Y) in the above sense 
mean? The relationship between topological convergence in C(X, Y) and uniform 
convergence is explored in [2]. Here we consider in detail topological convergence 
versus pointwise convergence. In general both pointwise convergence and topological 
convergence in C(X, Y) are weaker than Hausdorff metric convergence of graphs 
(induced by a metric compatible with the product uniformity) which is, in turn, weaker 
than uniform convergence. However, if {/„} converges to a uniformly continuous 
function / in the Hausdorff metric, then {/,} actually converges uniformly t o / . In 
particular, if X is compact, then the Hausdorff metric on C(X, Y) is topologically 
equivalent to the usual metric of uniform convergence [4]; this equivalence has been 
the basis for a number of papers in constructive approximation theory by B. Sendov, 
V. Popov, and their associates in Sofia (see, e.g., [5], [7] or [8]). 

The relationship between topological convergence and pointwise convergence for 
general X and F is a tenuous one. However, if X is locally connected and Y is locally 
compact, the situation can be described precisely: topological convergence in C(X, Y) 
means uniform convergence on compact subsets of X. 
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In the sequel (1) Se[x] will denote the open ball of radius e about a point x in a metric 
space, (2) diam(A) will denote the diameter of a set A, (3) A will denote the complement 
of A. 

2. Results. We first resolve a simple question. Under what conditions on X and/or 
Y will pointwise convergence in C(X, Y) force topological convergence? Essentially, 
X must be discrete. 

THEOREM 1. Let (X, dx) and(Y, dY) be metric spaces. IfX is discrete then pointwise 
convergence in C(X, Y) implies topological convergence. Conversely, ifC([0, 1], Y) is 
nontrivial and pointwise convergence in C(X, Y) implies topological convergence, the 
X is discrete. 

PROOF: Let X be a metric space without limit points. Suppose {/„} C C(X,Y) 
converges to a continuous function /pointwise. Immediately, we have /C Li/ , . To 
show Ls/„ C / , choose (x,y) off/, and let 8 = \ min {dx{x,X - {x}), dY{yJ(x))}. 
Since lim/,(x) = / ( * ) , eventually dY(y,fn(x)) > 8. Thus S§[x] x Sb[y] is a neigh-
borhood of (x, y) that meets at most finitely many members of {/,}. We conclude (x, y) 
£ Ls/7 , whence Li/ ? = Ls/„ = / 

Conversely supposeX is not discrete and C([0, 1]), Y) is nontrivial, i.e., there exists 
<p G C([0, \],Y) such that <p(0) i= (p(l). We construct a sequence {/,} in C(X, Y) 
convergent pointwise to the function identically equal to cp(0) on X that fails to converge 
topologically to/. Let x0 be a limit point of X and let {xn} be a sequence in X convergent 
to x0 such that for each n, dx(x0,xn+l) < dx(x0,xn). Set an = dx(jc0,jcw) and define/, 
G C(X, y) by 

<p( — dx(x9x0)) if 0 < dxU,Jc0) - «„ 

cp(2 dx(x9x0)) if a/7 < 4U,^o) ^ 2a„ 

9(0) if </*(*, *o) > 2a„ 

Notice for each x in X eventually f„(x) = 9(0); so, {/„} converges to / pointwise. 
However, {(xn,fn(xn))} converges to (x0,cp(l)), whence {/,} fails to converge topo
logically to / 

For general X and Y we can identify well-behaved sequences in C(X, Y) for which 
pointwise convergence ensures topological convergence. 

DEFINITION, ft C C(X, Y) is called pointwise equicontinuous if for each x G X and 
each e > 0 there exists 8 > 0, perhaps dependent on x, such that whenever/G il and 
dx(x,w) < 8 then dY(f(x)J(w)) < e. 

THEOREM 2. Let {fn} be a pointwise equicontinuous sequence in C(X, Y) pointwise 
convergent to a continuous function f. Then {/,} converges topologically to f. 

PROOF: Since/C Li/,, if topological convergence does not occur, then we must have 
Ls/„ Çt / Pick (x,y) G Ls/ , - / and choose e < dY(y,f(x)). By pointwise equi-

Mx)=< 
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continuity there exists ô > 0 such that for each n7 dx(w,x) < 8 implies 
dY(f,Aw),fn(x)) < e/3. Choose N E Z+ so large that dY(ftl(x),f(x)) < e/3 whenever 
n> N. Since (x,y) E Ls/, , there exists n > N and w E Sè[x] such that dY(fn(w), y) 
< e/3. Together these facts yield dY(f(x),y) < e, a contradiction. 

If X is locally connected and Y is locally compact, then the converse of Theorem 2 
holds. 

THEOREM 3. Let X be a locally connected metric space and Y a locally compact 
metric space. If {/,} C C(X, Y) converges topologically to a continuous function/, then 
{/,} converges pointwise to/and {/,} is pointwise equicontinuous. 

PROOF: Suppose for some x, {f„(x)} fails to converge to/(jc). Then there exists e > 
0 and a subsequence {f„k} of {/,} such that for each k, dY(f„k(x),f(x)) > e. Also, since 
Li/, =/there exists a sequence {(wk,f„k(wk)} convergent to (JC,/(*)). Since X is locally 
connected, by passing to a subsequence we can assume that x and wk lie in a common 
connected subset Ck of X where lim diam(Q) = 0. Choose e* < e such that E — {y: 
dY(y,f(x)) — e*} is compact. For a\\ksufficiently large, dY(f„k(wk),f(x)) < e* so that 
f„k(Ck) meets both {y: dY(y,f(x)) < e*} and {y: dY{y,f(x)) > e*}. Since each set 
f„k(Ck) is connected, all but finitely many sets f„k(Ck) meet E. Since E is compact, 
Ls(f„k(Ck) fl £) is nonempty. Choosing a point y0 in this set, the condition lim 
diam(Cjt) = 0 yields (x,y0) E Lsf„ — / , a contradiction. 

Suppose now that {/,} is not equicontinuous at some x in X. Then there exists e > 
0, a subsequence {/,J of {/,} and a sequence {zk} convergent to x such that for each 
k, dY(f„k(zk),f„k(x)) ^ e. However, we know that \imf„k(x) = / ( J C ) ; so, without loss 
of generality we can assume that for all k, dY(f„k(zk)9f(x)) > e. Arguing as in the first 
part of the proof with (zk,f„k(zk)) replacing (x,f„k(x)) for each k, we reach a con
tradiction in exactly the same manner. 

Example 3 of [2] shows that the local compactness assumption for Y cannot be 
dropped, even if X is compact. Example 2 of [2] shows that the local connectedness 
assumption for X cannot be dropped, again, even if X is compact. However, this last 
example is not completely satisfying in that X is not connected. Now the main result 
of [2] says that if X is compact and connected and Y is locally compact, then topological 
convergence in C(X, Y) ensures not only pointwise convergence but also uniform 
convergence. If X is merely connected and Y is locally compact, we cannot expect 
topological convergence to force uniform convergence (see Example 1 of [1]). But does 
it force pointwise convergence or pointwise equicontinuity? The answer is negative, 
even if Y = R. 

EXAMPLE 1. In the plane for each n E Z+ let E„ 
\/n}\ also define A and B as follows: 

A = {(0,30: y > 0} 

B = | (JC, y): for some n E Z+ , x 

{(x,n + 1): \/{n + 1) < x 

1 
and y > 0 
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Clearly X = A U B U UJ=, £„ is a closed connected subset of the plane that fails to 

be locally connected. We define/,: X —» /? by 

!

0 if x > - or y > « 

« if x < - and y < n — \ 
— ny + n2 if x < - and « — 1 < y < « 

Notice that the graph of/, restricted to each of the rays x — 0, x = \/n, x = 
l/(w + 1), JC = l/(/i + 2), . . . consists of a horizontal segment at heights, a horizontal 
ray at height zero, and a segment joining them. The rest of the graph lies in the xy plane. 
It is easy to check that each such/, is continuous. Now suppose/denotes the zero 
function. Since/,(0,0) = n7 the sequence {/,} does not converge pointwise to/. Also 
{/,} is not pointwise equicontinuous at the origin. However, we claim {/,} does 
converge topologically to/. First, it is obvious that /C Li/, and that whenever x > 0 
and (x, y,z) E Ls/, , then z = 0. No problems can occur on the y-axis, either: if y0 > 
0 and n - 2 > y0, then whenever \y - y0\ < 1 for all JC we have either fn(x, y) = n 
or/(;c, y) — 0. Thus, (0, y0, z) E Ls/, implies z = 0. We have shown L s / C / C Li 

For arbitrary metric spaces X and Y if {/,} is a sequence in C(X, Y) convergent 
pointwise to a continuous function/, then {/,} converges uniformly on compact subsets 
of X if and only if {/,} is pointwise equicontinuous. This observation, in conjunction 
with a standard diagonalization argument [6], is all there is to the following version of 
the Ascoli Theorem: Let X be a separable metric space, let Y be an arbitrary metric 
space, and let (1 C C(X, Y). Then each sequence {/} in d has a subsequence con
vergent uniformly on compact subsets of X to some continuous function if and only if 
(i) for each x, ilx = {g(x): x E ft} has compact closure in Y, (ii) Ù is pointwise 
equicontinuous. Theorems 2 and 3 now say that for arbitrary X and Y uniform con
vergence on compact subsets implies topological convergence, whereas if X is locally 
connected and Y is locally compact, then these notions of convergence in C(X, Y) 
agree. The Ascoli Theorem translates as follows. 

THEOREM 4. Suppose X is a separable metric space and Y is an arbitrary metric 
space. Let fl C C(X, Y), and consider the following statements. 

(1) Each sequence in fl has a subsequence convergent topologically to a continuous 
function. 

(2) (1 is pointwise equicontinuous and for each x, (lx — {g(x): g E ft} has compact 
closure. 
Condition (2) always implies condition (1), and if X is locally connected and Y is locally 
compact, then condition (1) implies condition (2). 

Previous examples show that condition (1) need not imply either subcondition of (2) 
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if X is connected and Y = 7?, or X = [0, 1] and Y is a Hilbert space. However, 
separability of X is required to obtain condition (1) from condition (2). 

EXAMPLE 2. If X is an arbitrary metric space, then by Zorn's Lemma there exists for 
each e > 0 a maximal subset Ae of X such that whenever {w, z} C Ae then dx(w, z) > 
e. It follows that X C U{Se[x]: x E A j , so that if X is nonseparable some Ae must be 
uncountable. Suppose such an Ae has cardinal number at least c (which would be 
guaranteed for nonseparable X by the continuum hypothesis). Let K = {g: g: Z + —» 
{0, 1} and g(n) = 1 infinitely often}, and let cp: 7£ —» Ae be an injection. For each g in 
AT set E(g) = {n: g(n) = 1}. For each « G Z + let Wn C X be described as follows: 
x E W„ if there exists gx in AT such that dx(x, cp(g.r)) < e/3 and n has an odd number 
of predecessors in E(gx). By the construction of Ae the assignment*-^ gx on Wn is well 
defined. We now define/,: X —» [0, 1] by the formula 

_ ^ [ -</*(*, <p(&)) i f ^ e W„ 
/ ,U) = j e 

1 if JC £ W„ 

Note that each/, is actually Lipschitz with Lipschitz constant 3/e; so, condition (2) of 
Theorem 4 is satisfied. However, no subsequence of {/,} can converge topologically, 
because each subsequence is of the form {/,(„>} where h is an order isomorphism from 
Z+ onto E(g) for some g E K, and by construction 

Li/,(w) H ({<p(g)} x [0,1]} - 0 

3. Points of convergence of a topologically convergent sequence. We first exhibit 
a sequence in C(X,R) for a certain compact metric space X that is topologically 
convergent to a continuous function but which converges nowhere pointwise. 

EXAMPLE 3. Let X denote the usual Cantor set in [0, 1] and let/: X —» R denote the 
zero function. Since X is a nowhere dense subset of [0, 1] for each j E Z+ we can select 
j points {cij], ai2, • • • , %} in [0, 1] — X satisfying 

(1) ajX < aj2 < . . . < an 
j 

(2) U SuM D [0, 1] 
z ' = l 

Set 70, 1) = [0,a;,], 7(7,2) - [aj]9aj2l . . . , 7(7,7 + 1) = [%, 1] and let 

( p : Z + ^ {(J,k)\j E Z+ , ATE Z+ and*: < 7 + 1} 

lexicographically order the codomain. Denote cp(n) by (7,,, kn) and define/,: X—» 7? by 

f 7„ if x E I(j„,k„) 
Mx) = 

[ 0 otherwise 

Since the endpoints of each interval I(j„,kn) lie in {0, 1} U ([0, 1] - X), each/, is 
continuous. Since at each x E X, {/„(*)} exceeds one frequently, {/} converges 
nowhere pointwise t o / We claim, however, that Li/, = Ls/„ = / . First, since lim diam 

https://doi.org/10.4153/CMB-1985-004-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-004-9


1985] CONVERGENCE OF FUNCTIONS 57 

1/2 

1/2 

({JC: fn(x) =£ 0}) = 0, we have/ C Lifn. Also, for each a > 0 the graphs of {/„} 
eventually all fail to meetX x (0, a), and it follows that Ls/W Cf. This establishes the 
topological convergence of {/„} to/ . 

We can also exhibit an example of nowhere pointwise convergence in the context of 
Example 3 of [2], i.e.,X = [0, l]andK = Hilbert space of square summable sequences. 
Heeding the advice of Professor G. Piranian that "one filthy picture is worth a thousand 
dirty words", in lieu of an analytic argument, we sketch the graphs of the first nine 
terms of a sequence {/,} convergent topologically to the zero function but convergent 
nowhere pointwise (see Figure 1). As in Example 3 of [2], {e-,: i E Z+} denotes the 
standard orthonormal basis in the Hilbert space. 

We next present a Baire category result that says that if X is complete and Y is 

https://doi.org/10.4153/CMB-1985-004-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-004-9


58 G. BEER [March 

arbitrary and {/,} converges topologically to / , thtnf(x) is a subsequential limit of 
{fn(x)} at most points. 

THEOREM 5. Let X be a complete metric space and let Y be any metric space. Let {/,} 
be a sequence in C(X, Y) topologically convergent to fin C(X,Y). Then there is a dense 
Gb subset E ofX such that for each x in E, f(x) is a subsequential limit of{fn(x)}-

PROOF: For each n E Z+ and e > 0 we form the closed set 
00 

A(n,e)= f l {x: dr(fj(x),nx)) ^ (.}. 
j = " 

We claim that each such set is nowhere dense. Let x0 E A(n, e) and X > 0 be arbitrary. 
Choose X* < X for which dx(x,x0) < X* implies dY(f(x),f(x0)) < e/2. Since Ls 
/„ D / we can find j > n and x E X such that both dx(x,x0) < X* and 
dY(f(x0),fj(x)) < e/2. It follows that dY(f(x),fj(x)) < e, establishing the claim. Next 
for each pair of positive integers n and k let B(n, k) = the complement of A(n, \/k), 
a dense open set. By the Baire Category Theorem 

00 00 

£ = n n B{n,k) 
k=\ n=\ 

is a dense G8 set. If x E E then for each n and k let j(n,k) be the smallest integer 
exceeding n for which fn„,k)(x) has distance less than \/k from/(x). If we set nx = 
7(1, 1) and for each k > 1 we let nk = j{nk-x,k), we have lim//Jjt(jc) — f(x). 

A second look at the proof of Theorem 5 reveals that we really did not need the full 
strength of Lifn = Lsfn = / , but only/C Ls/,. With this weaker assumption, our result 
has a rather nice interpretation: if we can approach each (x,y) in/along some trajectory 
of the form {(xk,f„k(xk))}, then we can approach most points along a vertical trajectory. 
Under the stronger assumption Li/, = Ls/, = / , must there actually exist a subsequence 
of {/,} convergent to/on some dense G8 subset of XI The answer is negative, even if 
X is compact. 

EXAMPLE 4. Let |x denote Lebesgue measure on the line, and let X be a Cantor set 
of positive measure in [0, 1] as constructed in [6]. Note that for each x0 in X and each 
e > 0, JUL({JC: x E X and |JC - JC0| < e}) > 0. For each n E Z+ let Vn be the union of 
a finite collection of disjoint open intervals {Wni: i = 1, 2, 3, . . . , kn) in (0, 1) such 
that 

(1) For each n and / < k„ the endpoints of Wni lie in [0, 1] — X. 
(2) For each n and / < kn9 Wni fl X ± 0. 
(3) For each JC E X and n E. Z+ there exists y E V„ such that |JC — y\ < l/n. 
(4) For each n, |JL(V„) < l/n. 

By condition (1) each set V„ Pi X is clopen in X. Define for each n,f„: X -> R by 

n if x ^ V„ 

0 if x E Vn 

fn(x) 
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Since Vn C\ X is clopen in X, each/, is continuous, and conditions (2), (3) and (4) imply 
that {/„} converges topologically to the zero function. Let {f„k} be an arbitrary sub
sequence of {fn}. For each k write Ak for V„k fl X, denote the closed set D^=kA„ by Bk. 
Clearly, 

{x: lim fHk(x) = 0} = U ft. 

Now whenever n > /: we have ft C A„; so, condition (4) implies that for all k, 
jx(ft) = 0. Since intx(ft) =£ 0 would imply |x(ft) > 0, we conclude that each ft is 
nowhere dense in X. Thus {x: lim f„k(x) = 0} is a set of first category in X, and since 

X is complete {x: lim /„..(*) = 0} contains no dense G§ set. 

We remark in closing that a somewhat simpler counterexample can be constructed 
forX = [0, 1] and Y = the Hilbert space of square summable sequences. We leave this 
to the imagination of the reader. 
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