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SOME RESULTS ON SYMMETRICALLY-PRESENTED GROUPS
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Necessary and sufficient conditions are found on an ideal aoZ[;c] for the additive group [a]+ of Z[.x]/a to be
finite and cyclic. As a consequence, the abelianizations of certain cyclically-presented groups are computed
explicitly.
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0. Introduction

Let neN and let Fn be the free group on n symbols xu...,xn. Let Sn be the
symmetric group on {1,...,«} and, for aeSn, consider the automorphism of Fn given by
x,i-»xff(1), l ^ i ^ n , which we again denote by a. Now for any word weFn and any
subgroup F ̂  Sn, we define a group Gn(w, T) by the presentation

GJLw,r) = <xl,...,xH\c{w),cer> = FJN, (0.1)

where N is the normal closure of {a(w):aer} in Fn, and call groups of this type
symmetrically presented.

The chief aims of this paper are to provide criteria for the abelianization Gn(w, r)ab of
Gn(w,F) to be finite and finite cyclic, respectively. We remark that special cases of
Gn(w,F) have been discussed by numerous authors, and cite as examples (all with
r = <(12...n)»:

(i) the 3-manifold groups [9]

Kn, w = xtx3X2l, (0.2)

(ii) the Fibonacci groups of Conway [3, 4, 8]

F(r,n), w = XiX2...xrx~+\, (0.3)

(iii) and their generalizations

F(r,s,c,n), w = xlx2...xrx~^u (0.4)
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where all subscripts are reduced modulo n to lie in the set {l,2,...,n}. (For the
special case c = 1 see [2]).

For u £ Fn, let u denote the image of u in F°b, so that F°* is the free abelian group on
xu...,xn. Denoting the binary operation in Fab by +, we have that F°*sZ" as a
Z-module. Moreover, F°b has an obvious (left) ZF-module structure induced by the
permutation action of F on x1,...,xn, and then

Gary's ff/zr-w. (0.5)
z

We give in Section 1 some general criteria for the finiteness of Gn(w, F)a* based on the
isomorphism (0.5). Roughly speaking, there is a sharp dichotomy between the cases F
transitive and F intransitive. Specifically, we show that when F is intransitive Gn(w, F)"*
is infinite for every w e Fn, while in the transitive case Gn(w, F)°* is finite for "almost all"
weFn. In Section 2, we consider the case where F is transitive abelian, and show that
the structure of Gn(w,F)afc is that of the additive group [a] + of l\tl,...,tl^\la for some
ideal a in the polynomial ring Z[tl,...,tk] in k (commuting) independent variables
t1,...,tk over Z. In Section 3 we give a simple necessary and sufficient condition for
[a] + to be finite cyclic, while in Section 4 we illustrate our results in the case where F is
cyclic with specific calculations for examples (0.2) and (0.4) above.

We are indebted to several people for useful discussions and criticisms during the
course of writing this paper. In particular, we acknowledge the contributions of K. A.
Brown, M. W. Bunder, A.-C. Kim, S. J. Pride, G. C. Smith and M. J. Tomkinson.

1. Finiteness criteria

Throughout this section, "i?-module" will mean "left R-module". Various standard
results from representation theory will be quoted; for these [5] is a convenient reference.

We start from the isomorphism (0.5), and for convenience identify x, with the row
vector (0,...,0,1,0,...,0), having 1 in the ith column, in Z". Let £=£?= 1Zxf , and for
subrings R of C let R- E = £?= x Rxf, this has a natural RF-module structure induced by
the action of F on {x1;..., xn}.

Lemma 1.1. (i) Gn(w, F)a* is finite if and only if Q • E = QF • w.
(ii) Q • E = QF • vv implies that C • E = CF • w.

Proof. Of these, only (i) requires proof. Suppose first that Gn(w, F)"6 is finite, of order
k say. Then kxteZr-w for i^n, so that xu...,xneQFw, whence Q £ = QFw. For
the converse, if Q £ = QFvv, then x, = AIw with A.eQF, l g i g n . Choosing deN such
that dXu..., dkn e IT, we see that Gn(w, F)°* is finite, of order dividing d". •

Lemma. 1.2. 7/F is intransitive, then Gn(w, F)"6 is infinite for all weFn.
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Proof. In view of Lemma 1.1, it is enough to show that C-E is not a cyclic CF-
module, that is, not of the form CF • £ for ^ e C • E.

Suppose for a contradiction that F is intransitive but C • E is cyclic, so that there is a
CF-epimorphism 7t:CF->C£. It follows that

where xr,%e,Xi are the characters of C F , C £ , and the trivial CF-module, respectively.
But (xi,Xe) is just the number of orbits of F on {1,2,.. .,n}, and this is greater than 1 by
hypothesis. •

We assume henceforth that F is transitive and fix the following notation:

// = stab(x1), F = 0

hell

Lemma 1.3. For transitive F, Q - £ s Q F e H and so Q-E is a cyclic QF-module.

Lemma 1.4. Let F be transitive and put M = QF-eH. Then (i) the elements u, =
form a Q-basis for M, and (ii) there is a non-zero homogeneous polynomial Pr =

Pr(tt,...,tn) e Q[f i , . . . , t n ] of degree n in n commuting indeterminates such that, for <j,eQ,
1 ̂ i ^ n , QF• £"-!qtv , = M whenever Pr(qlt...,qn)*0.

Proof. Part (i) is clear. For (ii), let L(/x): M-»M be the Q-linear map sending y, to
v^, 1 g i ^ « , neM. For qx,...,qneQ, we have

Now define

Then

detf f g,L(i,^ = det^z/_t «.»«)) = M«i,• • •,9.)

whenever qu...,qne<Q. Clearly det(L(eH)) = 1, so that P r # 0 in Q[ t l 5 . . . , t B ] . Let
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«i 9.6Q with Pr(qu...,qn)*0 and set fi=^UiQiVt. Then det(L(/i))#O so that L(n)
is surjective and M = M/i. Hence

that is, M = QF-// as required. That PT is homogeneous of degree n is clear from the
definition. •

Corollary 1.5. For transitive F, there is a non-zero homogeneous polynomial P* of
degree n in n variables such that Gn{w,T)ab is finite whenever Pf(r,,..., rn)#0, where

We remark that, in any given case of interest, there is in principle no difficulty in
calculating the polynomial Pf. Indeed, taking x, as y&H in QF-eH, where ylxl=xi, P* is
just the Pr of Lemma 1.4.

2. Transitive abelian F

The results of the previous section can be greatly refined and simplified in the
favourable special case when F is transitive and abelian, and we make this assumption
now.

In this case, it is clear that H = {1}, |F| = n, and the action of F on {xu...,xn} is
equivalent to the (left) regular representation of F on itself. We can thus index the x's by
the elements of F, so that

yxt = xyi, for all

and E s ZF as ZF-modules. Now write

and associate with w the element

As £ = IT, our isomorphism (0.5) can in this case be expressed as

Ga(w, F)°*s ZF/ZF- w*. (2.1)
z

In the first place, (2.1) yields a simple formula for the order of Gn(w, F)"*- For
let La be the Q-linear map from QF to itself sending y e F to ay, and let N(a) be the
determinant of La. It is clear that TV (a) e Q and is non-zero if and only if a is a unit in
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. We can evaluate N{a) using the characters of F, as follows. Let F* = Hom(F,C*)
be the character group of F. For #eF*, we extend x t o a Q-algebra homomorphism
from QF to C by defining

( E a ^ ) = Z avX(7). all ay e Q.
\y er / y6r

Then it is easily checked that

n *(«)• (2.2)

Now consider (2.1). If N(w*)=0, then Q F w * # Q F = £, and so Gn(w,F)°* is infinite;
otherwise, N(w*) is a non-zero integer (since it is an algebraic integer in Q), and |iV(w*)|
is the order of the (finite) group Gn(w, F)flh, which can thus be evaluated using (2.2).

These calculations do not, of course, say anything about the structure of Gn(w, F)"*.
For this purpose, it is generally more convenient to present ZF as a quotient of a
polynomial ring over Z. To do this, suppose that F is the direct product of k finite
cyclic groups of orders nlt...,nk, so that « = n*=in>- ^e t ti»---»t* ^e independent
(commuting) variables over Z. Then we clearly have a ring epimorphism

jnZ[ t 1 , . . . , t J -~Zr

with Ker7t = (t"1
1-l , . . , tkk-l)- Choosing feZ[t1,...,tk'] such that n(f) = w*, it follows

from (2.1) that

. . . , t j /a , (2.3)
z

where

a = W - l , - , « ? - ! , / ) • (2-4)

This leads to the following general problem: if JR = Z[t1,...,tJk] and o<a R, then what is
the structure of [Q] + , the additive group of R/al In the next section, we find simple
necessary and sufficient conditions for [a] + to be finite cyclic.

3. Cyclic quotients of Z[tu...,tk~\

This section will be devoted to proving the following theorem, which is the main
result of this paper.

Theorem 3.1. Let keM, K = Z[t, , . . . , tk] , and o<i R. Then the additive group [Q]+ of
R/a is finite and cyclic if and only if the following two conditions hold.
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(i) a n Z / 0 , and
(ii) for all primes peN, either a + pR=R or a + pR = {p,tl — au...,tk — ak) for some

(a ! , . . . , ak) e Z
k depending on p.

Proof. We first prove necessity. Suppose that [ Q ] + is cyclic of order veN. Then
vR£o, so that O ^ c Z g o n Z and (i) holds. Now let peN be prime. Then [a + pR] + is a
quotient of [a] + and is thus finite and cyclic. Suppose that a=(/ i , . . . , / s ) and let f{ be
the mod p-reduction of /,, 1 ^ i ̂  s. There is a ring isomorphism

*/a + p*sF,K| / (J i , . - . / . ) , (3-1)

where Fp is the field Z/pZ and t = (tl,...,tk), induced by reduction modulo p. Since the
right-hand side of (3.1) is an Fp-algebra, its additive group has exponent p or 1. Thus,
R/a + pR is either 0 or Fp, that is, a + pR is equal either to R or to (p,t1—a1,...,tk — ak)
for some (au...,ak)el.k. Thus, (ii) holds.

The proof of sufficiency is rather harder. We assume that (i) and (ii) both hold, with
o n Z = mZ say, meN, so that mR^a. We factorise w = n./P;y w ' ^ distinct primes

, and all e}eN, and put bj=a + pjJR. Then bt + bj = R for i^j, while

j j

Hence, a = rii^j- Tne Chinese remainder theorem now gives

R/a^l\R/bj, (3.2)
j

and thus

[a]+ = ©[*>,] + . (3.3)
i

Since pj'Rsbj, [bj]+ is a Pj-torsion group (possibly trivial), so that [a]+ is finite cyclic
if and only if each [b,] + is. We now show that condition (ii) guarantees the latter.

Let p be any one of the pj; and let e = e^l and b = a + pei? = b,. First of all we must
have a+pR^=R. For otherwise we can solve l=a+pr , as a, reR, and then p~lm =
p~lma + mrea since me a, which contradicts a n Z = wiZ. We thus have

for some a = (a1 , . . . ,a i )eZ\ We now approach the core of the proof, which is embodied
in the following assertion.

(*) For each neN, there is a corresponding b = b(n)sa (mod p) in Z* such that
(pn,t1-b1,...,tk-bk)^
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Let us first see how this yields the result. Letting c=(pn,t1 — b1,...,tk—bk), we see that
[a+p"R~\ + is a quotient of [c] + , and since R/c^Z/p"Z, it follows that [c]+ is cyclic of
order p". Taking n = e = ejt p = Pj, we deduce that [bj]+ is cyclic of order dividing p*',
and then the result follows from (3.3).

It remains to prove assertion (*). This is done by induction on n, taking b(l) = aeZ*
when n = l. Now let «^1 and suppose we have some b = a (modp) in Z* such that
{pn,t1 — bl,...,tk — bk)^a+pnR. By applying a suitable Z-automorphism of R, we see
that without loss of generality we may take b=0=a (modp), in which case,

Now let a=(fu...,fs), fteR, and let b be the ideal (tu...,tk) in R. Then there exist
hhgtJeR such that

Y, (3.4)

In particular,

(3.5)

where <j>i = YjzkSij{fytj\ here 0(0)eZ means the evaluation of OeR at t = 0. Clearly,

2 (3.6)

A simple calculation involving the comparison of polynomials of given total degree now
shows that

tq=ie^,(modp), l^q^k, (3.7)

for some eqieZ. Let E be the kxs matrix (eqi) and G the sx k matrix (gy(0)). Then (3.7)
implies that

EG = I + pV, (3.8)

where I is the k x k identity matrix and V is some kxk matrix over Z, since the tq are
(algebraically) independent modulo p.

Now define, for l^q^k, ij/q = Y?i=ieqifiea- ^ follows from (3.4) that
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where p,eb2. Now, by hypothesis, b^a + p"R, so that o, pb,b2£a + pn+1i?. These facts,
together with (3.8) and (3.9), imply that

We now take b'q= — p£* = 1 e,,H,(0) e pZ, l^q^k, and deduce that p"+1, tl—b\,...,tk —
b'kea + p"+1R, where b' = a = O (modp) in Z*. This completes the proof of assertion (*).

•

4. Cyclic F: two examples

In the special case of cyclic F, which is the most frequently encountered in practice, it
seems natural to call Gn(w, F) cyclically presented. For the examples mentioned in the
introduction, we shall find necessary and sufficient conditions on the parameters for
F(r, s, c, ri)ab to be finite, and describe the structure of Kab precisely. The F(r, ri) have been
extensively studied, and their abelianizations form the subject of [6], [1], [7]; indeed the
first of these contains a proof of part (i) of the following result for these groups.

Proposition 4.1. Let F = <(1 2...n)>, weFn, and f(t) the exponent-sum polynomial of
(2.4). Then

(i) Gn{w,r)ab is finite if and only if the resultant p = f*g¥:0, where g(t) = t"—l, and
then its order is \p\, and

(ii) Gn(w, r)ab is finite cyclic if and only if in addition the highest common factor (J,g) in
Fp[f] is linear for every prime p dividing \p\.

Proof, (i) A relation matrix for GJw, T)ab is the circulant matrix C whose first row
consists of the exponent sums e, of x{ in w, l ^ i ^ n . Then the determinant of C is just
the product of the values of f(x) on all nth roots of unity, that is, ± p. Thus, the group
is infinite if and only if p = 0 and otherwise has order \p\.

(ii) We assume that p # 0 and refer to the conditions of Theorem 3.1 with a=(/,#).
Since p#0 , (i) is automatic and (ii) splits into two cases.

(a) p\\p\o(Zg)=lin¥poa + pR = R, where R =

(b) p\\p\o(J,g) = (t-a)oa + pR=(p,t-a). •

For our first example, consider the group F(r,s,c,n) given by (0.4) with associated
polynomial

where r,s,ceZ, r^2 . We seek necessary and sufficient conditions on the parameters for
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this to vanish on an nth root of unity and consider first four cases depending on the
value of c.

Case (i): c = r. Then /(I)=0.
Case (ii): c = 0 and (r,n) = h> 1. Then / vanishes on a primitive nth root of unity.
Case (iii): c = ± l , 3m \n, m > 1, with r=\ (mod m) and either s = 0 (mod m) and c = 1,

or ssm/2 (modm) and c= —1, with m even in the second case. Then /
vanishes on a primitive mth root of unity.

Case (iv): c=( —1)"2, s=l+3w, r = 7> (mod6) and n=0 (mod6). If k is a primitive
sixth root on unity, then

Proposition 4.2. The group F(r, s, c, ri)ab is infinite in the above four cases and finite
otherwise.

Proof. Only the second assertion requires proof, so we assume that c^r (case (i)). If
c=0 and r,n are coprime, then g # / # 0 and the group is finite. Thus, we may also
assume that c#0 (case (ii)). Now let A be a primitive mth root of unity with m\n and
/(A) = 0. Then we claim that the parameters satisfy the conditions in case (iii) or case
(iv). From /(A) = 0 we obtain

Ar-l=cAs(A-l), (4.1)

whence,

cAs-l = Ar(cA*~r+1-l). (4.2)

Since |A| = 1, |cAs-1| = \ck°-'+1 -1|, and since c#0 we have

If k'-'+1 =k\ then A'"1 = 1 and it follows from (4.2) that

B u t / ( l ) # 0 s o A # l andcAJ=l. This implies that c = ± 1 = Xs, which gives case (iii).
There remains the possibility that A5"r+1 = A~I, which we have to reduce to case (iv)

under the assumption that c # + 1. Thus, k'~l = k2s and

using (4.1), with c£{0, ±l , r} and m = ordA>l. Let ordA2s+1 = d\m. Taking norms from
Q(A) to Q in (4.3) we have
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* fn(l), (4.4)

where Om is the mth cyclotomic polynomial and <$> is the Euler totient function.
Now let p be a prime dividing c, p'\\c say. Then p | Od(l) by (4.4) which implies that

d = p*, k^.1, and 0^1)=p . Comparing powers of p in both sides of (4.4), we have

This forces t=\ and </>(d) = l. Since d=pk, this means that p = 2 and fc=l. Hence,
c= +2 and A2s+1 = - 1 . Substitutimg into (4.3), we obtain

2=±2AS(1-A). . (4.5)

Squaring this gives 4= -Ak~\\-k)2, that is, A2-A + l=0, so that m = ordA = 6. It
now follows from (4.5) that s= 1 (mod 3), s= 1 + 3u say, and that

sgn c = A1 + 3u( 1 - A) = A( 1 - A)( -1)",

that is, A(A-l)=(- l)u + 1sgnc. Thus ( - l ) u = sgnc. Finally, ku = kr~1, whence r-\ =
2s = 2 (mod 6). This completes the verification of the conditions of case (iv). •

For our second example, we take the group Kn given by (0.2), with associated
polynomial

/(t) = t 2 - t+ l=O 6 ( t ) ,

the sixth cyclotomic polynomial; it is interesting to note that this same / is also
associated with F(3,1,2, ri) in the previous example. As above, let g(t) = t" — \ and
consider four cases.

Case (i): n = 0 (mod 6). Here <t>61 g, p=0 and Kf is infinite.
Case (ii): n=±\ (mod6). Here, K°b is trivial, and Kn is perfect.
Case (iii): n = 3 (mod 6). Here p = 4 and / is irreducible over F2. Its zeros thus

belong to F4\F2
 a°d so have order 3. Thus they are both zeros of t" — 1 in

this case. Hence, the highest common factor of / and g has degree 2 and
K"n

b is non-cyclic, namely C2@C2.
Case (iv): n = + 2 (mod 6). Here p = 3 and, modulo p = 3, / = ( t + l)2. Since — 1 is a

simple zero of g in this case, it follows that (f,g) = t+ 1, proving that Kf
is cyclic, namely C3.
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