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Self-similar fractal tree models are numerically investigated to elucidate the drag
coefficient, non-equilibrium dissipation behaviour and various turbulence statistics of
fractal trees. For the simulation, a technique based on the lattice Boltzmann method
with a cumulant collision term is used. Self-similar fractal tree models for aerodynamic
computations are constructed using parametric L-system rules. Computations across a
range of tree-height-based Reynolds numbers ReH , from 2500 to 120 000, are performed
using multiple tree models. As per the findings, the drag coefficients (CD) of these
models match closely with those of the previous literature at high Reynolds numbers
(ReH � 60 000). A normalization process that collapses the turbulence intensity across
various tree models is formulated. For a single tree model, a consistent centreline
turbulence intensity trend is maintained in the wake region beyond a Reynolds number
of 60 000. The global and local isotropy analysis of the turbulence generated by fractal
trees indicates that, at high Reynolds numbers (ReH � 60 000), the distant wake can be
considered nearly locally isotropic. The numerical results confirm the non-equilibrium
dissipation behaviour demonstrated in previous studies involving space-filling fractal
square grids. The non-dimensional dissipation rate Cε does not remain constant; instead,
it becomes approximately inversely proportional to the local Taylor-microscale-based
Reynolds number, Cε ∝ 1/Reλ. We find significant one-point inhomogeneity, production
and transverse transport of turbulent kinetic energy within the non-equilibrium dissipation
near wake region.
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1. Introduction
The fluid mechanics characteristics of trees have gained considerable attention owing to
their crucial role in urban micrometeorology simulation (Takahashi et al. 2013; Kamiya
et al. 2019), particularly for the open vegetation environments in urban streets (Gromke &
Blocken 2015a,b; Oshio, Kiyono & Asawa 2021). Most studies conducted on trees have
focused on calculating the drag coefficient and aerodynamic porosity, both experimentally
(Hagen & Skidmore 1971; Grant & Nickling 1998; Gillies, Nickling & King 2002; Guan,
Zhang & Zhu 2003; Dong et al. 2008; Bitog et al. 2011; Manickathan et al. 2018) and
numerically (Wilson 1985). This is because trees are considered to have a good blocking
effect on airflow due to their large size and complex three-dimensional (3-D) geometry.
However, few studies have focused on wake turbulence, such as dissipation characteristics.
Obtaining a better understanding of the turbulent characteristics of the wake region of
trees can help us perform an accurate simulation of the influence of trees on the flow field
in the urban environment and in micrometeorological prediction. Therefore, it is essential
to comprehensively analyse the turbulent characteristics of the wake region of trees.

Owing to the complex 3-D structure of trees, it can be expected that the wake turbulence
is complex and the wake region near the tree (near wake region) is highly inhomogeneous.
Turbulence generated by fractal square grids, which are representative of complex-shaped
objects, has been reported to exhibit non-equilibrium dissipation properties. This non-
equilibrium dissipation anomaly, which contradicts the classical dissipation theory, has
been widely studied in the case of planar grid turbulence, which provides a valuable
reference for our study of the wake turbulence of trees; therefore, it must be reviewed. In
2007, Hurst & Vassilicos (2007) conducted the first experiments on turbulence generated
by planar fractal grids. Seoud & Vassilicos (2007) investigated this turbulence in a
wind tunnel and discovered unusual properties, including a non-equilibrium dissipation
anomaly that contradicts the classical dissipation theory. This discovery sparked ongoing
interest in fractal multiscale grid turbulence, leading to extensive experimental studies
(Seoud & Vassilicos 2007; Mazellier & Vassilicos 2010; Suzuki et al. 2010b; Valente
& Vassilicos 2011a,b; Krogstad & Davidson 2011; Discetti et al. 2011; Valente &
Vassilicos 2012a,b; Krogstad & Davidson 2012; Gomes-Fernandes, Ganapathisubramani
& Vassilicos 2012; Discetti et al. 2013; Hearst & Lavoie 2014b; Valente & Vassilicos 2014;
Hearst & Lavoie 2014a,2015; Gomes-Fernandes, Ganapathisubramani & Vassilicos 2015;
Laizet, Nedić & Vassilicos 2015; Nagata et al. 2017) and numerical studies (Nagata et al.
2008a,b; Laizet & Vassilicos 2009; Laizet, Lamballais & Vassilicos 2010; Suzuki et al.
2010a; Laizet & Vassilicos 2011; Laizet et al. 2012; Laizet & Vassilicos 2012; Zhou et al.
2014). One of the aims of the studies of fractal-generated turbulence (Seoud & Vassilicos
2007; Nagata et al. 2008a,b; Mazellier & Vassilicos 2010; Valente & Vassilicos 2011a,b)
was to generate unexplored turbulent flow conditions at high Reynolds numbers that differ
from the conventional energy dissipation mode ε ∼ k3/2/ l. Here, ε represents the energy
dissipation rate, k denotes the turbulent kinetic energy (TKE) and l denotes some local
correlation length scale. This equation has been deemed ‘a cornerstone assumption of
turbulence theory’ (Tennekes & Lumley 1972).

According to Kolmogorov’s similarity hypotheses (universal equilibrium hypotheses)
(Kolmogorov 1941), the small-scale turbulent motions are universally similar if they are
sufficiently isolated from the influence of boundaries and the energy input scale. These
small scales are where the turbulence is isotropic and homogeneous. That is, in all
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turbulent motions, including boundary layer flows, turbulent wake, pipe flows, etc., the
small-scale motions have the same statistical properties at sufficiently high Reynolds num-
bers. In particular, the relation ε ∼ k3/2/ l has been widely used in the modelling of various
turbulent flows, such as decaying homogeneous turbulence (Batchelor 1953), shear layers,
jet flow, wakes (Townsend 1956) and some Reynolds-averaged Navier–Stokes (RANS)
models. Specifically, one-equation RANS models which directly use the ε ∼ k3/2/ l
relationship to calculate the energy dissipation, such as Prandtl’s one-equation model,
may produce significant errors when calculating non-equilibrium dissipation turbulence.
Conversely, some two-equation RANS models can provide better accuracy; for instance,
the well-known k − ε model (Launder & Spalding 1974). In a recent study conducted on
grid turbulence by Bos (2020), the two-equation RANS simulation yielded good results
for kinetic energy and successfully fit the curve by the x position where the energy peaks
and the peak value. This study also elucidated the influence of the initial conditions.

Seoud & Vassilicos (2007) first discovered a long wake region of fractal square grids
where the turbulence is approximately isotropic but the Cε = constant does not hold,
i.e. the dissipation behaviour is not in a state of equilibrium. Here, Cε denotes a non-
dimensional dissipation rate. According to Taylor (1935), if the turbulence is isotropic,
the energy dissipation rate can be expressed by ε = 15νu′2/λ2. Here, ν is the kinematic
viscosity, λ is the Taylor microscale, u is the velocity fluctuation in the x-direction
and ′ represents the root-mean-square. In the case of isotropic turbulence, ε ∼ k3/2/ l
becomes ε = Cεu′3/L , because in isotropic turbulence u′ = v′ = w′ (where v and w are
the velocity fluctuations in the y- and z-directions, respectively). Here, L denotes the
integral length scale. Applying the relation derived by Taylor, ε = Cεu′3/L is equivalent
to 15L/λ= Cε Reλ, where Reλ denotes the Taylor-microscale-based Reynolds number.

Gomes-Fernandes, Ganapathisubramani & Vassilicos (2012) performed flume
experiments of fractal square grids using particle image velocimetry measurement, and
introduced a method to estimate the location of x peak along the centreline. Here, x peak
represents the x-coordinate where the turbulence intensity reaches its maximum, and it
marks the boundary between the turbulence-developing and turbulence-decaying regions
in the wake of the fractal square grid. In their study, x peak was used to normalize centreline
statistics, and they found that the decay of statistical metrics such as turbulence intensity
and Reλ occurs beyond x peak , the relationship L/λ≈ constant and Cε ∝ 1/Reλ also occurs
beyond x peak .

Valente & Vassilicos (2012a) investigated turbulence generated by regular grids and
identified a transition from non-equilibrium dissipation to Cε = constant. They discovered
a long Cε ∼ 1/Reλ non-equilibrium dissipation region, extending up to x ≈ 5x peak in
the wake region. Simultaneously, they observed that at a location that was sufficiently
downstream (when x � 5x peak), the flow field returned to a state where Cε remained
approximately constant. This indicates that within the turbulence-decaying region, there
are also two regions with significantly different properties: a non-equilibrium dissipation
region near the upstream and a Cε = constant region farther downstream.

Hearst & Lavoie (2014a) confirmed the existence of these two regions in turbulence
generated by grids made of many repetitions of a fractal square grid and observed
significant inhomogeneity in one-point statistics within the near wake region. Specifically,
they reported that the boundary between these two regions was approximately
x/L0 ≈ 22 (where L0 denotes the size of each square fractal element). Furthermore,
they observed that in the non-equilibrium dissipation region, the flow field was highly
inhomogeneous, while after entering the Cε = constant region, the flow field became
approximately homogeneous. There is reportedly an approximate correlation between
inhomogeneity in one-point statistics and non-equilibrium dissipation in turbulence
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generated by fractal square grids. It is important to note that this correlation is not
universal. Non-equilibrium dissipation scaling has also been found in direct numerical
simulation (DNS) of periodic/homogeneous forced turbulence (Goto & Vassilicos 2015)
and periodic/homogeneous freely decaying turbulence (Goto & Vassilicos 2016b).
Additionally, DNS of periodic/homogeneous freely decaying turbulence shows a non-
equilibrium dissipation region in time followed by a region where Cε is constant
(Goto & Vassilicos 2016b; Valente, Onishi & da Silva 2014).

An inhomogeneous flow field typically leads to significant production and transverse
transport of TKE, as observed in the production and triple-correlation transport terms
in the TKE equation. There is an approximate correlation between the non-zero
production and triple-correlation transport terms and non-equilibrium dissipation (Valente
& Vassilicos 2011b; Nagata et al. 2013; Hearst & Lavoie 2016). Specifically, Valente &
Vassilicos (2011b) analysed the TKE budget in the non-equilibrium dissipation region
behind a fractal square grid and reported significant transverse transport of the TKE.
Similarly, Hearst & Lavoie (2016) analysed the TKE budget in the non-equilibrium
dissipation region behind grids made of many repetitions of a fractal square grid (the
same as used by Hearst & Lavoie (2014a)). They observed that, in the flow field closer
to the upstream, the relevant production term and the triple-correlation transport term are
non-negligible compared with the dissipation term. It should be noted that these results
are based on one-point statistical analysis and cannot be directly used to explain the non-
equilibrium and equilibrium dissipation since one-point inhomogeneities do not affect
the two-point energy equation on the scales for which the inertial energy cascade occurs
(Valente & Vassilicos 2015). Nagata et al. (2017) pointed out that the cascade mechanism
of turbulence dissipation is not affected by one-point inhomogeneities.

Non-equilibrium dissipation has been observed across various turbulence. For instance,
Valente & Vassilicos (2011b) and Hearst & Lavoie (2016) found significant TKE
production and transverse transport in the non-equilibrium near wake region of fractal
square grids. The transition from non-equilibrium dissipation to Cε = constant in the
wake region has been observed with regular grids (Valente & Vassilicos 2012a; Nagata
et al. 2017). Additionally, the non-classical scaling has been observed with normal grids
(Krogstad & Davidson 2011), bluff bodies (Obligado, Dairay & Vassilicos 2016) and the
instantaneous fluctuations in DNS (Goto & Vassilicos 2015). Fractal grids are considered
to amplify the perturbations around the equilibrium, since the largest structures of a fractal
grid enable the perturbations to be observed better than a classical grid with the same
solidity. However, the non-classical effects (non-equilibrium dissipation) are not due to
the fractal nature of the turbulence generator (Horiuti & Tamaki 2013; Bos & Rubinstein
2017), and are probably a common phenomenon in turbulence. Based on these insights
obtained from previous studies, an important question arises: Do trees with more complex
fractal structures induce highly inhomogeneous, non-equilibrium wake turbulence? How
extensive is such a non-equilibrium dissipation region?

Another valuable perspective is from Yoshizawa (1994), the concept of a non-
equilibrium spectrum. Bos & Rubinstein (2017) applied this concept to present a
framework which allows one to interpret the non-equilibrium scaling. For the ideal
case of perfectly isotropic turbulence, the scaling can be related to subdominant
corrections to Kolmogorov’s equilibrium spectrum, as predicted by Yoshizawa (1994)
and assessed in closure and DNS (Horiuti & Tamaki 2013; Fang & Bos 2023). It is
worth noting that in another related study, Goto & Vassilicos (2016a) used Yoshizawa’s
spectrum incorporating non-equilibrium effect but derived a Cε expression different from
that of Bos & Rubinstein (2017). This might suggest that Yoshizawa’s concept of a
non-equilibrium spectrum in itself is not sufficient to derive the non-equilibrium
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dissipation scaling. Further data are required to validate these theoretical perspectives,
especially in the context of tree-generated turbulence, for which experimental and
numerical data remain scarce.

Due to the large size of trees, conducting high-Reynolds-number wind tunnel
experiments is challenging. While scale models, such as Bonsai trees, can be used to obtain
drag coefficients, investigating non-equilibrium turbulence may not be straightforward
because the Kolmogorov scale also decreases correspondingly, requiring very fine
spatiotemporal resolution to capture it accurately. Furthermore, the complex physical
shape of tree also incurs a high cost of performing high-Reynolds-number simulations
of large-eddy simulations or DNS, especially with conventional numerical computation
methods based on multi-central-processing-unit (multi-CPU) parallelization. Therefore, in
research fields such as environmental engineering, 3-D fractal trees are typically simulated
using the two-equation RANS models (Gromke & Blocken 2015a,b; Oshio et al. 2021).
Although some two-equation RANS models present better accuracy than one-equation
models, without DNS or quasi-DNS data for reference, it is difficult to determine the
accuracy of the tree calculations, such as the energy dissipation ε. Reliable DNS results
can serve as a valuable database for RANS simulations of trees, aiding in validating ε and
providing useful references.

In this study, we investigated the turbulence generated by fractal trees under high-
Reynolds-number conditions using quasi-DNS simulations (the mesh size in the wake
region is �x/η ≈ 2.0, where η denotes Kolmogorov scale) based on a cumulant lattice
Boltzmann method (LBM) (Geier et al. 2015) on multi-graphics-processing-unit (multi-
GPU) parallelization. Since it is an entirely explicit solver, it is suitable for large-scale
computations that require supercomputers. The adaptive mesh refinement (AMR) method
was also introduced. The highest-resolution mesh was applied near the boundary layer of
tree branches, a higher-resolution mesh in the wake region and a lower-resolution mesh in
the remaining unimportant flow field areas. To render the analysis more reproducible and
reducible, the tree models generated by the parametric L-system, as employed in Segrovets,
Onishi & Kolomenskiy (2022), were utilized in this investigation. To our knowledge, there
has been only one DNS study on 3-D fractal-tree-generated flow to date. Segrovets et al.
(2022) used DNS to study the effect of tree shape on the drag coefficient at ReH = 2500.
More DNS or quasi-DNS studies of 3-D fractal tree flows under high Reynolds number
conditions are still required.

The rest of this paper is divided into four sections. Section 2 describes the numerical
method, the parametric L-system and the mesh configuration of the boundary layer and
wake region. Section 3 presents the results of the simulation validation, confirming the
mesh convergence of the drag coefficient and detailing the procedure for determining
the energy dissipation rate. Section 4 details the results, comparing the calculated drag
coefficients CD with those measured in previous studies, collapsing statistics from
different tree models, providing global and local isotropy parameters at various Reynolds
numbers and confirming the non-equilibrium dissipation behaviour of fractal trees at high
Reynolds numbers. Finally, § 5 concludes the study.

2. Numerical method

2.1. Lattice Boltzmann method
A code based on the LBM with a cumulant collision term was employed for the numerical
computations. This code has been successfully utilized for calculating turbulence around
objects with complex geometries (Hasegawa et al. 2019; Ohashi et al. 2021; Watanabe,
Hu & Aoki 2023). The LBM is a weakly compressible approximate solution method

1007 A45-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

82
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.82


Y. Yin, R. Onishi, S. Watanabe, I. Segrovets, K. Nagata and T. Aoki

for incompressible fluids and is widely used for large-scale calculations of isothermal,
single-phase incompressible fluids. It treats the fluid as a collection of virtual particles
and computes the temporal evolution of their velocity distribution function. To accurately
simulate flows at high Reynolds numbers, the D3Q27 cumulant collision model (Geier
et al. 2015) was utilized. This model has high numerical stability and computational
accuracy. It ensures minimal numerical viscosity when the mesh resolution is sufficiently
high, enhancing the simulations’ accuracy. The LBM is fully explicit and does not involve
iterative calculations such as Poisson’s equation for pressure in the conventional difference
method, thus achieving high computational performance in large-scale calculations.

2.2. Adaptive mesh refinement
A high-resolution grid is necessary to accurately resolve a fractal tree’s boundary
layer and wake region. However, employing a uniform high-resolution mesh throughout
the entire computational domain would lead to numerous grid points, which would
require impractical amounts of computational resources. To maintain accuracy and reduce
computational costs, an AMR method was utilized. The AMR method utilizes the octree
data structure. In other words, with this structure, high-resolution grids can be allocated to
arbitrary regions by recursively subdividing the computational grids (Wahib, Maruyama
& Aoki 2016). The finest grid was allocated to the region near the tree surface, and a
marginally finer grid was allocated to the wake region. A coarse grid was applied to other
distant areas. In the simulation program, most computational subroutines were executed
on the GPU, while the CPU handled mesh generation and data output. The LBM fluid
calculations were executed at the terminal leaf of the octree. To ensure continuity of
memory access for GPU-based calculations, an 8 × 8 × 8 cell was placed at each leaf. In
addition, to perform computations with multiple GPUs, the region was partitioned using a
space-filling curve to balance the computational load and memory. More details about the
AMR–LBM can be found in a previous paper (Watanabe & Aoki 2021).

2.3. Interpolated bounce-back method
The LBM utilizes orthogonal grids for computation. For object shapes that do not conform
to grid directions, like the surface of a fractal tree, we avoided the traditional stair-stepped
representation of object shapes. Instead, a second-order accurate interpolated bounce-back
method (Bouzidi, Firdaouss & Lallemand 2001) was introduced to establish the boundary
conditions. By employing the D3Q27 type of LBM, we could precisely represent the
object’s surface in 26 directions. This capability substantially enhanced the accuracy of
the fractal tree model. The fluid forces acting on the object surface were calculated based
on the momentum exchange (Wen et al. 2014) between the velocity distribution function
and the object at the object boundary. At each grid point, the momentum change of the
velocity distribution function that bounced back at the object boundary was calculated and
then integrated over the object surface to obtain the forces acting on the object.

2.4. Fractal tree model
In this study, a unique algorithm called the L-system (Prusinkiewicz et al. 1996) was
chosen to produce fractal tree representations. The L-system is a graphically interpreted
parametric algorithm for representing fractal forms from a small set of parameters.

2.4.1. Parametric L-system
Using the parametric L-system, some important parameters, such as the number of branch-
generating generations, length, diameter and angle of branches, can be determined. The
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Figure 1. Axis conventions (+, −, &,∧ , \, /) for L-system.

algorithm of the parametric L-system is as follows:

ω : A(100, w0),

p1 : A(s, w) : s � min → !(w)F(s)
[ + (α1)/(ϕ1)A(s ∗ r1, w ∗ qe)]
[ + (α2)/(ϕ2)A(s ∗ r2, w ∗ (1 − q)e)].

(2.1)

Here, the first line of (2.1) represents the parameters of the trunk of a tree. The letter
A indicates the apex, i.e. a state of not-yet-produced branch (cylinder) with a non-
dimensional length of 100 and a diameter of w0. The second and subsequent lines
represent branch-generation rules. The letter p1 signifies replacement of apex A with an
internode F (branch) and two new apices A. If the length s of an apex is larger than
or equal to the limit minimum value, it generates a branch according to the parameters
(s, w) contained in that apex. It also generates two new apices with parameters augmented
by s ∗ r1, s ∗ r2, w ∗ qe and w ∗ (1 − q)e for the consecutive branch to be generated.
Orientation of the new branch’s apices with respect to the previous branch is determined
by rotations + and /. The axis conventions are defined in figure 1, where H represents
the direction of the last branch; in other words, it is a vector that passes in the longitudinal
direction of the cylinder. Here L and U represent the direction to the left and up. These
vectors are perpendicular to each other and H × L = U .

The replacement rule p1 was iterated n times for the specified number of branches
generated, and then the 3-D geometric data of the fractal tree can be generated. Specific
definitions of each sign used in (2.1) are: A, apex, state of not-yet-produced branch,
possesses the parameters (s, w) and implicit vector parameter P ; P i

j , vector ∈ A, specifies
origin and orientation via unit vectors U, L, H ; ∗, multiplication; index i distinguishes
between different branch generations; index j distinguishes between branches of the same
branch generation; F , branch, if the condition of p1 is met branch and two new apices
A become produced; min, threshold limit of branch length; ω, axiom, used to seed the
string rewriting algorithm; s, branch length; w, branch diameter; α, ϕ, rotation angles; +,
clock wise rotation about U ; −, anticlockwise rotation aboutU ; \, clockwise rotation about
H ; /, anticlockwise rotation about H ; &, clockwise rotation about L; ∧, anticlockwise
rotation about L; !(w), set the width of the branch to w; [, each [produces a new P i+1

j , all
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Model name r1 r2 α1 α2 ϕ1 ϕ2 w0 q e min n

Basic n = 4, 6, 8 0.8 0.8 30 −30 137 137 30 0.5 0.5 0.02 4, 6, 8

Table 1. Parameters for fractal trees shown in figures 2 and 3 using (2.1) (Prusinkiewicz et al. 1996). A
minimum value is set to avoid unresolvable branches.

(a) (b) (c)

H H H

L0

D0

L0

D0

L0

D0

z

y

Figure 2. Side view of the fractal tree geometry for (a) Basic n = 4, (b) Basic n = 6 and (c) Basic n = 8. The
fractal iteration parameter n is the number of branch shapes repeated with different scales. Axis conventions
are the same as those used in the simulation.

(b) (c)(a)

x

y

Figure 3. Upside view of the fractal tree geometry for (a) Basic n = 4, (b) Basic n = 6 and (c) Basic n = 8.

actions after [ are performed with respect to the P i state; ], signifies completion of
operations on P i+1

j .

2.4.2. Fractal tree geometry and fractal dimension
In this study, using the parameters stated in table 1, three configurations of the same type
of fractal tree geometry were generated using the parametric L-system. Then, all three
configurations of trees heights (H ) were normalized to a length of 1 m while keeping the
horizontal and vertical scales the same (figures 2 and 3). The fractal iteration numbers
are n = 4, 6 and 8. The values of L0 and D0, which are the length and diameter of the
thickest branch, respectively, change after normalization. Table 2 summarizes the various
tree geometries used in this study. As r1 = r2 = 0.8, the lengths L1, L2 and L3, etc. shorter
than L0 are Lk = r1Lk−1 = 0.8Lk−1. Moreover, as q = 1 − q = 0.5, diameters D1, D2
and D3 etc. are Dk = qe Dk−1 = 0.50.5 Dk−1. Here, k refers to the current branching
generation and k − 1 refers to the branching generation one branch earlier.
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Model Basic n = 4 Basic n = 6 Basic n = 8

n 4 6 8
D0/H 0.107 0.087 0.077
L0/H 0.357 0.289 0.257

Table 2. Fractal trees’ geometry details.

1.0 × 107

1.0 × 106

1.0 × 105

1.0 × 104

1.0 × 103

1.0 × 1041.0 × 103

1.0 × 102

1.0 × 102

1.0 × 101

1.0 × 101
1.0 × 100

1.0 × 100

1.77 slope

Basic n = 4

Basic n = 6

Basic n = 8

H/δ

N

Figure 4. Numerical box counting dimension for Basic n = 4, 6 and 8.

A numerical box-counting method (Da Silva et al. 2006) was utilized to estimate the
fractal dimension of the fractal tree models. The tree geometry was first discretized from
polygons to points along the tree surface; for the whole tree, there are points of the order
of 2.5 × 106. The domain was subdivided into boxes with a side length δ and the number
of boxes which include at least one point was counted. The relationship between H/δ

and count number N is illustrated in figure 4. In the range before the boxes became
proportional to the smaller branch dimension, all three configurations of tree models
exhibited a slope of approximately 1.77. Therefore, the fractal dimension of the tree
models was considered to be 1.77. When the side length of boxes became of the order
of the smallest branches, the method might be used to estimate the fractal dimension of
the surface (leaf, branch, etc.) but not the whole tree (Da Silva et al. 2006). Therefore,
approximately when H/δ � 1.0 × 103, the counts increase at a lower rate and exhibit
a gentler slope. In this study, we name the present type of fractal tree, with a fractal
dimension of 1.77, the ‘Basic’ tree. We employ this Basic tree with different iteration
numbers for all the numerical simulations.

2.5. Simulation set-up
The computational domain is 32H × 16H × 16H . We defined the coordinate system for
the numerical simulation as X, Y and Z and the coordinate system for the wake analysis
as x, y and z, as shown in figure 5. The origin of the coordinate system, x, y, z, was
set as (X, Y, Z) = (8H, 8H, 7.5H). The tree’s centre of mass was calculated and placed
at (X, Y, Z) = (8H, 8H, 8H). We defined the centreline as a line through the tree’s
centre of mass (y/H = 0, z/H = 0.5) and parallel to the x-axis. Uniform flow (U∞)
in the x-direction was set as the inflow condition. Trees were treated as rigid bodies, and
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32H

H

16H

16H

8H

8H8H

Uniform

flow (U∞)

Origin of x, y, z 
coordinates:

(8H, 8H, 7.5H ) 

X, Y, Z: (0, 0, 0)
X

Y

Z

Figure 5. Computational domain and arrangement of trees. Here U∞ represents the uniform flow velocity in
the x-direction of the inflow condition. The X, Y, Z coordinate system is used for numerical simulation and
the x, y, z coordinate system is used for wake analysis.

∆x /H = 1/1024

∆x /H = 1/2048
∆x /H = 1/512

Wake region

Figure 6. Computational mesh subdivided hierarchically around Basic n = 8 tree.

deformation due to fluids is not considered. We use the physical properties of air at room
temperature, density ρ = 1.205 kg m−3 and kinematic viscosity ν = 1.512 × 10−5 m2 s−1.

After evaluating the resolution dependency of the drag coefficient (CD , also see § 3.1),
for Basic n = 4, 6 and 8, the finest grid �x/H = 1/1024, 1/1024 and �x/H = 1/2048
is placed near the surface of the tree (approximately 40 meshes from the surface),
respectively. For all three tree models, the �x/H = 1/512 grid was set in the wake region
with a length of approximately 8.0H . Figure 6 represents an example of AMR grids in
the case of Basic n = 8. The total grid numbers were 1 682 158 592, 1 711 257 088 and
2 363 039 744 in the cases of Basic n = 4, n = 6 and n = 8, respectively. An outflow
boundary condition was imposed at the computational boundary behind the tree, and
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Case U∞(m/s) ReH

A 0.0378 2500
B 0.1512 10 000
C 0.9072 60 000
D 1.8144 120,000

Table 3. Uniform flow velocity and ReH for the four simulation cases. Here ReH is the Reynolds number
based on the tree height, i.e. ReH = U∞ H/ν.

inflow boundary conditions were imposed at other computational boundaries. The uniform
flow condition was imposed at the inflow boundary. The computational boundaries in the
y- and z-directions are sufficiently distant from the trees by approximately 8H , so they
hardly affect the flow field around the trees. An interpolated bounce-back condition (non-
slip condition) was imposed on the tree surface. The calculations were performed on the
TSUBAME 4.0 supercomputer at Tokyo Institute of Technology. For Basic n = 4 and
n = 6, 12 NVIDIA H100 GPUs were utilized. Calculation of a non-dimensional time of
60 for n = 4 and n = 6 took approximately 48 and 54 hr, respectively. In the case of Basic
n = 8, 16 NVIDIA H100 GPUs were utilized, which completed the computations within 72
hr to calculate a non-dimensional time of 60. Here, the non-dimensional time was defined
as U∞t/H where t represents the physical time. As indicated in table 3, calculations were
carried out for four cases with different tree-height-based Reynolds numbers ReH .

3. Verification calculation
To verify the computation results, the drag coefficient (CD) was calculated to validate
the resolution dependency around the boundary layer. The Taylor microscale λ and
Kolmogorov scale η were calculated to confirm that the simulation was executed on
quasi-DNS.

3.1. Resolution dependency of drag coefficient
For Basic n = 4, 6 and 8, drag coefficients were calculated using several finest mesh
sizes (the mesh size near the boundary layer) at ReH = 120 000 to assess the resolution
dependency of the drag coefficient. The drag coefficient is calculated as follows:

CD = 2F

ρU 2∞ A
. (3.1)

Here, F is the drag force in the x-direction acting on the tree and A is the projected
area of the tree in the x-direction. The fluid force acting on the tree’s surface is calculated
based on the momentum exchange (Wen et al. 2014) between the velocity distribution
function and the object at the object boundary, as described in § 2.3. At each grid point,
the momentum change of the velocity distribution function that bounced back at the
object boundary was calculated and then integrated over the object surface to obtain the
forces acting on the object. The x-component of this force is extracted to obtain the drag
force, F , in the x-direction. The temporal variation of the drag coefficient is illustrated
in figure 7. In the resolution dependency study, only the finest mesh size differed when
investigating resolution dependence. Note also that since changing the wake mesh size
had little effect on the drag coefficient results, the wake mesh size of �x/H = 1/256
was used instead of �x/H = 1/512 for this section only. The error between these two
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Figure 7. Temporal variation of the drag coefficient of trees at various finest mesh sizes for flows with
ReH = 120 000 for (a) Basic n = 4, (b) Basic n = 6 and (c) Basic n = 8.

types of wake mesh sizes in the CD values was found to be less than 0.5 %. We did not
investigate the resolution dependence of meshes in the wake region because the mesh size
of �x/H = 1/512 was the highest resolution we could achieve and improving the wake
region mesh size to �x/H = 1/1024, i.e. almost comparable to that of the Kolmogorov
scale, would have resulted in the total number of meshes approaching 10 × 109, which
would incur unrealistic computational costs.

As observed in figure 7, in the flow-developing interval (non-dimensional time
U∞t/H < 7.5), the flow was affected by the initial conditions and the drag coefficients
were not stable. When U∞t/H � 7.5, the drag coefficients remained approximately
constant, indicating that the flow around the tree was fully developed. Therefore, the
time average of the drag coefficient was calculated from U∞t/H = 7.5 to the end of
the simulation. Notably, the calculation utilized the finest mesh size of �x/H = 1/4096
for n = 8, which was only calculated up to approximately U∞t/H = 9.0 due to the
considerable computational cost.

Table 4 summarized the resolution dependence of the drag coefficients for Basic n = 4,
6 and 8. As observed in the case of n = 4, when the finest mesh size was increased
from �x/H = 1/1024 to �x/H = 1/2048, the drag coefficient CD changes from 0.682
to 0.704, a change of 3.23 %. Similarly, for n = 6, the finest mesh size increases from
�x/H = 1/1024 to �x/H = 1/2048, which is a change of 1.06 % and for n = 8, the
finest mesh size increases from �x/H = 1/2048 to �x/H = 1/4096, which is a change
of 1.06 %. The variations were all approximately 1 %–3 %, indicating that the CD values
converge at the finest mesh sizes of �x/H = 1/1024, �x/H = 1/1024 and �x/H =
1/2048 for n = 4, 6 and 8, respectively. Therefore, all simulations for n = 4, 6 and 8
were executed with the mesh sizes described above. In the above cases, the ratios of the
finest branch diameters to the finest mesh size, Dmin/�x , were 38.81, 15.69 and 13.97 for
n = 4, 6 and 8, respectively.
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Model Basic n = 4 Basic n = 6 Basic n = 8

Time averaged CD at �x/H = 1/256 0.742 0.934 N/A
Time averaged CD at �x/H = 1/512 0.713 0.810 0.934
Time averaged CD at �x/H = 1/1024 0.682 0.755 0.810
Time averaged CD at �x/H = 1/2048 0.704 0.747 0.755
Time averaged CD at �x/H = 1/4096 N/A N/A 0.747

Table 4. Time average drag coefficients (CD) at various finest mesh sizes for Basic n = 4, 6 and 8.

Additionally, to confirm the boundary layer of the tree can be accurately resolved, the
non-dimensional distance y+ at a distance of 1 mesh from the tree surface was calculated
using

y+ = u∗y

ν

=
√

μ∂u
∂y

∣∣y=0

ρ

y

ν
. (3.2)

Here, u∗ is the friction velocity, y represents the distance from the tree surface (in this
paragraph only), μ is the viscosity coefficient and ∂u/∂y denotes the velocity gradient
perpendicular to the tree surface (in this paragraph only). In this study, u∗ was calculated
using the tangential velocity and velocity gradient at a distance of 1 mesh from the tree
surface. Near the central trunk part of a tree, before the boundary layer separation occurred,
the y+ is approximately 2.0–6.0, 4.5–7.2 and 1.8–4.9, respectively, for Basic n = 4, 6
and 8. Near the thinnest tip branches, before the boundary layer separation occurred, the
y+ is approximately 1.5–6.3, 4.2–8.2 and 1.6–6.3, respectively, for Basic n = 4, 6 and 8
at the finest mesh sizes of �x/H = 1/1024, �x/H = 1/1024 and �x/H = 1/2048.

3.2. Energy dissipation estimation
Calculation of the gradient of velocity fluctuations and their mean-squared values is
necessary to estimate important parameters such as energy dissipation, Taylor microscale,
Kolmogorov scale and integral length scale.

For energy dissipation, in previous experimental studies of grid turbulence, most of
the flow field was measured with particle image velocimetr or hot-wire anemometers,
which provided only one- or two-dimensional velocity information. In this study, energy
dissipation is calculated using the nine components of the gradient of velocity fluctuations
using the following equation:

ε = 2ν
(

s2
11 + s2

22 + s2
33 + 2s2

12 + 2s2
13 + 2s2

23

)
, (3.3)

where, si j = ((∂ui/∂x j ) + (∂u j/∂xi ))/2 is the strain rate of velocity fluctuations and ui
is the velocity fluctuation. The overbar represents the time average. We confirmed that the
time-averaged values of TKE (TKE ≡ 1

2q2, where q2 ≡ u2 + v2 + w2), averaged over a
non-dimensional time length of 1, converge to a certain value around the non-dimensional
time U∞t/H = 10 at several centreline wake locations (x/H = 2.6, 4.6 and 6.6). To be
on the safe side, the energy dissipation was calculated from non-dimensional time 20–110,
747 instantaneous velocity fields.

Knowing the energy dissipation, the Kolmogorov scale η = (ν3/ε)1/4 can be computed.
Figure 8 illustrates the ratio of mesh size in the wake region to the Kolmogorov
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Figure 8. Ratio of mesh size in wake region to Kolmogorov scale in the case of Basic n = 8 at ReH = 120 000.

scale along the centreline in the case of Basic n = 8 at ReH = 120 000. The mesh
size in the wake region was �x/H = 1/512, and the average value of η/�x from
x/H = 0.34 to 8.0 is approximately 0.498. Where the wake was well developed, the
mesh size was approximately twice that of the Kolmogorov scale. The Taylor microscale

λ=
√

u2/(∂u/∂x)2 was also calculated. Here u is the velocity fluctuation in the
streamwise direction (x-direction). The average value of λ/�x from x/H = 0.34−8.0
was approximately 10.317. The wake mesh size was significantly smaller than the Taylor
microscale and approximately twice that of the Kolmogorov scale when x/H � 3.0; the
simulation can be considered a quasi-DNS. This was also the highest resolution we could
achieve, and in any case, it is very difficult to achieve calculations with a wake mesh size
fully comparable to the Kolmogorov scale.

The characteristic time such as the Kolmogorov time scale τη = √
ν/ε and Taylor time

scale τλ = λ/u′ are also considered. Using the average value of η and λ mentioned above,
τλ/T0 and τη/T0 were calculated to be approximately 0.477 and 0.122 at ReH = 120 000,
respectively. Here, the representative time T0 = H/U∞. In our simulation, at ReH =
120 000, �twake/T0 was approximately 0.00187 for Basic n = 4 and 6 and 0.000938
for Basic n = 8, where �twake represents the time step of the mesh in the wake region.
They are considerably smaller than τλ/T0 and τη/T0 and reasonably tracked the velocity
fluctuations.

4. Results

4.1. Comparison of drag coefficient with the literature
Figure 9 illustrates the relationship between ReH and CD . Grant & Nickling (1998)
designed a direct field measurement and demonstrated a decrease in the CD values with
increasing the Reynolds number at ReH = 15 000 and 25 000. These are medium Reynolds
numbers, and the simulations in this study qualitatively reproduced the observed decrease
in CD values with increasing ReH . Manickathan et al. (2018) demonstrated that the CD
values remain almost constant when ReH � 60 000 for both model and natural trees using
wind tunnel measurements. The large spread of points in the graph obtained from previous
studies can be attributed to the fidelity of the tree models. For example, the older field
measurement study by Grant & Nickling (1998) used artificial Scots pine Christmas trees;
Manickathan et al. (2018) used both model trees and natural hardwood and coniferous
trees; and Gillies et al. (2002) used real trees with branch trimming. In the case of Gillies
et al. (2002), the overall small CD values they obtained can be considered due to their use
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Figure 9. Relationship between CD and ReH obtained in this study, and comparison with previous studies.

of more flexible specimens and the contribution of wall turbulence from the wind tunnel
experiments, which contributed to the lower drag estimates in their study. Specifically,
wall turbulence may mix with the tree wake, enhancing wake recovery and reducing drag.
Gillies et al. (2002) placed the tree on the ground, we speculate that their CD results were
smaller than the present ones due to the influence of the ground. For trees with branches,
such as Burning Bush and Colorado Spruce, the CD values remain approximately constant
when ReH � 200 000. Fountain Grass does not exhibit this tendency, likely due to a strong
sway in the wind, as it lacks rigid bodies such as trunks and branches.

In this study, all three tree models showed a tendency for CD to decrease with increasing
Reynolds number at low and medium Reynolds numbers (ReH = 2500−10 000).
However, after ReH exceeded 60 000, CD remained almost constant. These are in qualita-
tive agreement with the study by Grant & Nickling (1998) and Manickathan et al. (2018),
despite our tree model not including leaves. Meanwhile, the comparison of CD between
different tree models at the same ReH revealed that, at low and medium Reynolds
numbers (ReH = 2500−10 000), CD increases with fractal iteration number (n), with
a more pronounced difference observed. At high Reynolds numbers (ReH � 60 000),
although n = 4 and n = 6 still exhibited some CD differences, the difference between
n = 6 and n = 8 is minimal. We speculate that, under high Reynolds number conditions
(e.g. ReH = 120 000), if the fractal iteration number (n) reaches a certain threshold
(e.g. n = 6), then CD will be independent of ReH and the tree shape and it can be
considered a constant value.

Figure 10 depicts the isosurfaces of the second invariant of the velocity gradient tensor
(Q value) of the flow around Basic n = 8 at ReH = 2500 and 120 000. The Q value was
calculated using the following equation with Einstein’s summation notation:

Q = 1
2
(Wi j Wi j − Si j Si j ). (4.1)

Here, Wi j represents an asymmetric component of the velocity gradient tensor and Si j
represents a symmetric component of the velocity gradient tensor. To clearly visualize
the vortex structures and fairly compare the Q isosurfaces for n = 8 between different
ReH , we set the threshold (Qthreshold ) to 0.01% of the maximum Q in the region
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Figure 10. Isosurfaces of the second invariant of the velocity gradient tensor of the flow around Basic n = 8 at
ReH = 2500 and ReH = 120 000. The wake region’s opacity is adjusted to improve the visibility of the tree’s
branching part.
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Figure 11. Comparison of streamwise evolution of centreline turbulence intensity normalized by its maximum
value is given as a function of x scaled by x peak at (a) ReH = 2500, (b) ReH = 10 000, (c) ReH = 60 000 and
(d) ReH = 120 000.

0 < x/H < 1.5, −0.5 < y/H < 0.5, −0.062 < z/H < 1.156. This region was selected
because it exhibits significantly higher centreline turbulence intensity than that in others,
as shown in § 4.2.1. It can be speculated that Q in this region is also significantly larger
than in others.

Specifically, Qthreshold T 2
0 was set to 37.4 for ReH = 2500 and 111.8 for ReH =

120 000. Note that the representative time T0 varies with ReH . Only the grid points
with Q values equal to Qthreshold were used to generate the isosurface. As shown in
figure 10, for ReH = 2500, elongated streak structures were concentrated in the wake
region behind the centre and lower parts of the tree, with almost no vortices appearing
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behind the canopy. It can be inferred that the local Reynolds number near the canopy
was too low for the eddies generated behind it to exceed the threshold. Additionally, the
wake length for ReH = 2500 is shorter compared with that of ReH = 120 000, primarily
because ReH = 2500 is too small for its wake to be considered turbulent (discussed in
§ 4.3.1). Meanwhile, for ReH = 120 000, numerous small eddies appeared in the wake
region, indicating a highly turbulent field. This confirms the validity of the analysis using
the fractal tree model generated by the L-system in this study.

Although we have only computed up to ReH = 120 000 with a maximum iteration
number of n = 8, we can give a conjecture about what might occur as ReH and n increase
further. If n remains constant, the turbulent scales in the wake region, such as η, may
decrease as ReH further increases. However, if both n and ReH increase, each scenario
must be analysed individually as they are not interchangeable. This is because an increase
in ReH increases the local Reynolds numbers, while an increase in n decreases them,
causing the opposite effect.

4.2. Turbulence intensity

4.2.1. Centreline turbulence intensity
The centreline turbulence intensities for different tree models at the same Reynolds
number as well as different Reynolds numbers for the same tree model were compared.
The turbulence intensity was defined as follows:

u′
avg

U∞
=
√

1
3 u2

i

U∞
, (4.2)

where u′
avg is calculated based on u2

i and ui denotes the velocity fluctuation in
the i direction.

In a study on fractal-grid-generated turbulence, Gomes-Fernandes, Ganapathisubramani
& Vassilicos (2012) used a method to normalize the centreline turbulence intensity. This
method has also been used in the present study, where normalization is performed by
dividing the turbulence intensity by its peak value and then dividing x by the x-coordinate
where the magnitude of turbulence intensity is maximum (x peak). Figure 11 illustrates
the results using this normalization. As observed in the figure, the turbulence intensity
collapses more effectively when the Reynolds number is high. At low Reynolds numbers
(figure 11a), it does not collapse if x/x peak > 1.0. The role of viscosity was considered
strong, and the flow field was not yet sufficiently developed for turbulence. Hence, this
normalization method is unsuitable for cases with low Reynolds numbers. At intermediate
Reynolds numbers (figure 11b), the collapse improves. A more complete collapse appeared
at higher Reynolds numbers (figure 11c,d). As observed in the figure, except for the case
of Basic n = 4, the turbulence intensities for n = 6 and n = 8 collapsed effectively.
However, this collapse has only been confirmed for the centreline turbulence intensity
of n = 6 and 8. Further research must be conducted to determine whether it applies to
n = 9, 10 or higher.

Figure 12 illustrates the dependence of turbulence intensity on the Reynolds number
for the same tree model. In all three models, x peak moves upstream as the Reynolds
number increases. This trend converges at ReH = 10 000 when n = 4 and 8, as there
is virtually no difference in the turbulence intensity beyond ReH = 10 000. For n = 6,
it converges at ReH = 60 000. For n = 4 and 8, the peak turbulence intensity increases
with an increasing Reynolds number; however, it stagnates at ReH = 10 000. This suggests
that the centreline turbulence intensity hardly changes after a critical Reynolds number
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Figure 12. Comparison of streamwise evolution of centreline turbulence intensity at various ReH in the case
of (a) Basic n = 4, (b) Basic n = 6 and (c) Basic n = 8.

(e.g. ReH = 10 000). Similarly, for n = 6, the peak turbulence intensity also grows with
increasing Reynolds number and stagnates at ReH = 60 000. At ReH = 60 000 and
120 000, the peak turbulence intensity is significantly greater at n = 6 than at n = 4 and
8. This discrepancy can be attributed to the fact that the peak turbulence intensity does not
always occur at y/H = 0 and z/H = 0.5 (the centreline) when viewed along the y- and
z-axes. For instance, as shown in figure 13, the peak value of turbulence intensity does not
always occur at y/H = 0, and similarly, the peak value of spatially averaged turbulence
intensity does not always occur at z/H = 0.5, as shown in figure 14 (discussed later).

In the study by Gomes-Fernandes, Ganapathisubramani & Vassilicos (2012), they
defined an equation that predicts the peak centreline turbulence intensity and x peak
position in the case of grid turbulence. For fractal tree turbulence, an equation for
predicting the peak turbulence intensity and location of x peak may exist, which needs
to be further investigated.

4.2.2. Height dependency of turbulence intensity
The height dependency of turbulence intensity for different tree models is presented. As
discussed in § 4.2.1, in the case of the same tree model, the turbulence intensity exhibits
almost the same behaviour beyond ReH = 60 000. Hence, only the case of ReH = 120 000
is explored in this subsection.

Figure 13 illustrates an example of the turbulence intensity distribution in the spanwise
direction for Basic n = 8 for z/H = 0.5 at various downstream distances. As observed in
the figure, the peak value of turbulence intensity does not appear on the centreline (y = 0).
The asymmetric profiles can be attributed to the asymmetric tree shape, as shown in
figure 3. The tree branches are located closer to the inflow direction (smaller x coordinate)
on the −y side than on the +y side. Simultaneously, the centreline turbulence intensity
first grows rapidly to a peak value and then decays gradually along the x-direction, as
shown in § 4.2.1. It is reasonable to assume that this is also applicable for the y 
= 0 cases.
Thus, it can be surmised that the turbulence intensity on the −y side reaches a peak
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Figure 13. Turbulence intensity distribution in the spanwise direction for Basic n = 8 at
z/H = 0.5, ReH = 120 000 at various downstream distances.

value and starts to decay at a more forward position than that on the +y side, resulting
in asymmetric profiles depicted in figure 13. We also considered that the evaluation of
turbulence intensity in the canopy part is insufficient only for the centreline, as the thin
branches also spread in the spanwise direction. For a given height (e.g. z/H = 0.5, as
shown in figure 13), we plotted the transverse profiles of turbulence intensity at various
x coordinates. At each x coordinate, we identified the peak turbulence intensity on the
line along the y direction. We defined the half-width of turbulence intensity as the range
where the turbulence intensity exceeds half of this peak on that line. At each x coordinate,
turbulence statistics, including turbulence intensity, the Taylor-microscale-based Reynolds
number and isotropy parameters, were averaged over y within the half-width of turbulence
intensity. We repeated these steps for different heights to obtain the height dependency of
various turbulence statistics.

Figure 14 illustrates the height dependency of turbulence intensity. Similar to the
centreline’s results, it is shown to decrease gradually in the downstream direction in all
three models. Near the wake locations behind the fractal tree (x/H = 0.6), turbulence
intensity is markedly more potent at z/H = 0.4 − 0.65 for n = 4, z/H = 0.3 − 0.55
for n = 6 and z/H = 0.3 − 0.5 for n = 8, compared with other heights. This suggests
that the turbulence intensity is stronger near the tree trunk and second branch height
than at other altitudes. We considered that the large-scale turbulence generated by the
trunk is dominant in near-wake locations. This trend is maintained after x/H = 0.6,
although the overall turbulence intensity gradually decreases. Generally, at sufficiently
distant downstream locations (x/H � 2.2), the height at which turbulence intensity is
the strongest is approximately z/H = 0.35−0.5. The difference in turbulence intensity
between the central part of the trunk and the canopy part also becomes smaller. This may
be due to the fractal nature of the tree geometry, which promoted vertical mixing within
the wake, as reported in a previous study (Schröttle & Dörnbrack 2013).

4.2.3. Transverse plane average of turbulence intensity
Although we have analysed the centreline turbulence intensity and its height dependency,
the complex geometry of the tree presents a highly 3-D flow field. Similar to the method
employed by Laizet & Vassilicos (2015), we considered the average turbulence intensity
within the y–z plane for further analysis. The y–z plane was selected as a rectangular area
that closely follows the tree’s outer boundary, capturing its x-direction projection while
minimizing the rectangle’s area, as shown in figure 15(a). This selection ensures that the
plane captures the tree’s influence on the flow field with the smallest cross-sectional area.
The turbulence intensity is averaged over y and z within this plane. Figure 15(b) shows
the streamwise evolution of spatially averaged turbulence intensity.
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Figure 14. Turbulence intensity as a function of height (z/H ) at ReH = 120 000: (a) Basic n = 4; (b) Basic
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Figure 15. (a) The y–z plane used to obtain the spatial average. (b) Streamwise evolution of turbulence
intensity (with angle brackets 〈·〉yz denoting averaging over y and z) for Basic n = 4, 6 and 8 at
ReH = 120 000.

The average turbulence intensity for n = 4, 6 and 8 exhibits both a region of rapid
growth and a region of decay, with the peak marking the boundary between these
regions, as shown in figure 15(b). The peaks are located at approximately x/H = 0.4,
similar to the results from the centreline analysis (figure 12). Regarding the peak values,
n = 4 exhibits a higher peak value of 10.2 % when compared with 7.0 % and 6.9 % for
n = 6 and n = 8, respectively. This difference might be attributed to the dominance of
the large-scale turbulence in the wake region of n = 4, which tends to exhibit higher
turbulence intensity than the small-scale turbulence. For n = 6 and 8, the higher fractal
iteration number create thinner and denser branches than n = 4, which might lead to
the dominance of small-scale turbulence in their wake regions. Furthermore, figure 14
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Figure 16. Comparison of streamwise evolution of centreline Taylor-microscale-based Reynolds number as a
function of x/x peak at (a) ReH = 2500, (b) ReH = 10 000, (c) ReH = 60 000 and (d) ReH = 120 000.

shows that the turbulence intensity in the canopy region of n = 4 (z/H = 0.75 − 0.95) is
significantly higher, approximately 10%–13 %, when compared with 8 %–11 % for n = 6
(z/H = 0.65 − 0.95) and 6 %–10 % for n = 8 (z/H = 0.6 − 0.95). Additionally, since
all the tree heights were scaled to 1 m, the trunks of n = 6 and n = 8 are thinner than
those of n = 4. The turbulence intensity near the trunks of n = 4 (z/H = 0.35 − 0.65)
is approximately 18 %–20 %, while it is approximately 16 %–17 % for n = 6 (z/H =
0.3 − 0.55) and 13 %–16 % for n = 8 (z/H = 0.3−0.5). These factors might contribute
to the higher peak value observed in n = 4.

In terms of the decay rate, n = 8 exhibits a noticeably faster decay in the near wake
region (approximately x/H � 2.0). For example, at x/H = 1.0, the turbulence intensity
for n = 8 drops to 3.8 %, which is 54.8 % of its peak value, while for n = 4 and n = 6,
the values are 7.3 % and 4.7 %, corresponding to 71.5 % and 66.4 % of their respective
peak values. As mentioned earlier, in the wake region of n = 8, small-scale turbulence
might be dominate. The small-scale turbulence tends to dissipate faster than the large-
scale one, which might contribute to the rapid decay of the average turbulence intensity in
the near-wake region (approximately x/H � 2.0) of n = 8.

4.3. Turbulent Reynolds number

4.3.1. Centreline turbulent Reynolds number
Figure 11(c,d) illustrate an effective collapse in the turbulence intensity between Basic
n = 6 and n = 8. Therefore, we employed x peak to normalize streamwise distances
in all subsequent centreline comparisons between tree models. Figure 16 depicts the
centreline Taylor-microscale-based Reynolds number, Reλ = u′λ/ν. At low Reynolds
number (figure 16a), in all three models, the Reλ are all small, with peak values below 30
and cannot be considered as even turbulent flow. At medium Reynolds number (figure 16b),
Reλ becomes larger overall.

At high Reynolds number (figure 16c,d), Reλ increases further, with n = 6 showing
the largest Reλ in most decaying regions. The data do not collapse properly, so it can
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Figure 17. Comparison of streamwise evolution of centreline Taylor-microscale-based Reynolds number as a
function of x/H at various ReH in the case of (a) Basic n = 4, (b) Basic n = 6 and (c) Basic n = 8.

be considered that x peak is not suitable for collapsing centreline Reλ. At ReH = 60 000
and 120 000, the peak Reλ is significantly greater at n = 6 than at n = 4 and 8. This
discrepancy likely arises because the peak Reλ does not always occur at y/H = 0 and
z/H = 0.5 (the centreline) when viewed along the y- and z-axes.

As shown in figure 16, Reλ remains approximately constant following a certain
downstream location, except for the case of n = 6 at ReH = 2500. Specifically, in
figure 16(a,b), Reλ remains approximately constant at approximately x � 3 x peak and
6x peak for n = 4 and 8 at ReH = 2500 and at approximately x � 6 x peak for n = 4, 6
and 8 at ReH = 10 000. Similarly, in figure 16(c,d), Reλ remains approximately constant at
approximately x � 6x peak , 12x peak and 10x peak for n = 4, 6 and 8 at ReH = 60 000 and
at approximately x � 7x peak , 12x peak and 12x peak for n = 4, 6 and 8 at ReH = 120 000.
This phenomenon may be attributed to the gradual decrease in u′ and the gradual increase
in λ in the downstream direction, causing Reλ to remain approximately constant.

Figure 17 depicts the dependence of Reλ on the Reynolds number for the same tree
model. In all three models, Reλ increases overall with increasing Reynolds number, similar
with the turbulence intensity trend illustrated in figure 12. Notably, in figure 12, u′

avg
is normalized by uniform flow velocity U∞, so u′

avg or u′ will increase with increasing
Reynolds number. The position at which Reλ is maximum always appears at approximately
x/H = 0.4−0.5, independent of the Reynolds number.

4.3.2. Height dependency of turbulent Reynolds number
Similar to the height dependency of turbulence intensity depicted in § 4.2.2, the height
dependency of Reλ is also given in figure 18. The spatial average, 〈Reλ〉half-width, was
taken over y within the half-width of turbulence intensity, which is defined in § 4.2.2.

Here Reλ decreased gradually in the downstream direction in all three models. In near-
wake locations behind the fractal tree (x/H = 0.6), Reλ is considerably more potent
at z/H = 0.4−0.65 for n = 4, z/H = 0.3−0.55 for n = 6 and z/H = 0.3−0.5 for
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Figure 18. Taylor-microscale-based Reynolds number as a function of height (z/H ) at ReH = 120 000:
(a) Basic n = 4; (b) Basic n = 6; (c) Basic n = 8. The angle bracket, 〈·〉half-width, represents the spatial
average over y within the half-width of turbulence intensity, which defined in § 4.2.2.

n = 8, compared with other altitudes. This is because the turbulence intensity is stronger
near the tree trunk than at the tree crown, as mentioned before. Generally, at sufficiently
distant downstream locations (z/H � 2.2), similar with the turbulence intensity, the height
at which Reλ is most vigorous is approximately z/H = 0.35−0.5 in all three models.

4.4. Global and local isotropy

4.4.1. Centreline global and local isotropy parameters
In this section, the isotropy of the wake region of fractal trees is assessed. First, the global
isotropy associated with the large scales is assessed, followed by the local isotropy related
to the small scales. For clarity, we only present Basic n = 8 data. Notably, all the other
models also exhibited very similar values and the same trend.

Figure 19 compares the centreline global isotropy parameters u′/v′, u′/w′ and v′/w′
at various Reynolds numbers for Basic n = 8. At low Reynolds numbers (figure 19a),
except for x/x peak = 4.0−6.0, u′/v′, u′/w′ and v′/w′ are significantly away from 1.0,
indicating that the wake region is not globally isotropic overall. At intermediate Reynolds
numbers (figure 19b), an improvement in global isotropy is observed, with most parameters
lying between 0.9 and 1.2. At high Reynolds numbers (figure 19c,d), except for the region
x/x peak < 1.0, all three global isotropy parameters generally hover around 1.0 and are
marginally less than 1.2. This result is close to that of grid turbulence (Gomes-Fernandes,
Ganapathisubramani & Vassilicos 2012) with u′/v′ around 1.2 when x/x peak > 1.0. For
Reynolds numbers that are medium and high, the flow is globally anisotropic if x/x peak <

1.0, while it is almost globally isotropic if x/x peak > 1.0. This concurs with the grid
turbulence case.

In the study of grid turbulence, local isotropy was assessed using two relations (K1, K3)
derived by Taylor (1935). Namely, small-scale turbulence is locally isotropic if the
Reynolds number is sufficiently high and K1, K3 should equal to 1. We also evaluated K1
and K3, and additionally, we defined K2 and K4, as follows, to assess the local isotropy of

1007 A45-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

82
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.82


Y. Yin, R. Onishi, S. Watanabe, I. Segrovets, K. Nagata and T. Aoki

(a) (b)

(c) (d)

0.8

1.6

2.0

0.4

1.2

0 21 3 4 5 6 7 8 9 10 11 12 13 14 0 21 3 4 5 6 7 8 9 10 11 12 13 14

0.8

1.6

2.0

0.4

1.2

0.8

1.6

2.0

0.4

1.2

0.8

1.6

2.0

0.4

1.2

0 2 4 6 8 10 16 18 1812 14

x/xpeak x/xpeak

x/xpeak x/xpeak

0 2 4 6 8 10 16 2012 14

u′ /
v
′ a

n
d
 u
′ /w

′
an

d
 v
′ /w

′  
u′ /

v
′ a

n
d
 u
′ /w

′
an

d
 v
′ /w

′  

u′ /
v
′ a

n
d
 u
′ /w

′
an

d
 v
′ /w

′  
u′ /

v
′ a

n
d
 u
′ /w

′
an

d
 v
′ /w

′  

u′/v′ u′/w′ v′/w′

u′/v′ u′/w′ v′/w′ u′/v′ u′/w′ v′/w′

u′/v′ u′/w′ v′/w′
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the fractal tree wake region:
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Figures 20 and 21 compare the centreline local isotropy parameters K1, K3 and K2, K4
at various Reynolds numbers for Basic n = 8.

Similar with global isotropy parameters, at low Reynolds numbers (figures 20a and 21a),
K1, K2, K3 and K4 are significantly away from 1.0, indicating that the wake region is not
locally isotropic. At medium Reynolds numbers (figures 20 band 21b), an improvement
in the local isotropy is observed, but K1, K2 and K4 are still considerably away from 1.0,
which does not fit the definition of a locally isotropic fluid. At high Reynolds numbers
(figures 20c,d and 21c, d), all four parameters generally hover around 1.0, which is close
to the value in a previous grid turbulence study (Gomes-Fernandes, Ganapathisubramani
& Vassilicos 2012). Generally, the wake region for x/x peak > 1.0 can be regarded as
essentially isotropic at high Reynolds numbers (ReH � 60 000).

4.4.2. Height dependency of isotropy
The global isotropy parameters at ReH = 120 000 for Basic n = 8 as a function of
height (z/H ) are illustrated in figure 22. The spatial average was taken over y within the
half-width of turbulence intensity, which defined in § 4.2.2. As observed in the figure,
the distributions of u′/v′ and v′/w′ ranged from approximately 0.8–1.2 and 1.0–1.2,
respectively. After x/H = 2.2, no obvious change with altitude could be observed. Here
u′/w′ does not exhibit a clear tendency to change with height in the near wake region.
After x/H = 2.2, it showed a tendency to decrease from large to small from the crown to
the trunk. We confirmed that this trend is also broadly consistent, but not as pronounced,
for n = 6 and almost absent for n = 4. Overall, the distribution of all three parameters
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ranged from approximately 0.8–1.2, suggesting that the wake region was essentially global
isotropic at all different heights. We also confirmed this trend for Basic n = 4 and 6.

The local isotropy parameters at ReH = 120 000 for Basic n = 8 as a function of height
(z/H ) are shown in figures 23 and 24. In these figures, K1 and K2 exhibit approximately
the same values at different heights. However, K3 and K4 tended to increase from the
crown to the trunk. This trend is also confirmed for n = 6 but almost absent for n = 4.
This suggests that the shear deformation of streamwise velocity fluctuations (∂u/∂y,
∂u/∂z) is stronger near the canopy than the spatial gradient of streamwise velocity
fluctuations (∂u/∂x). Overall, the four parameters ranged from around 0.8–1.2, suggesting
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(b) K3. The angle bracket, 〈·〉half-width, represents the spatial average over y within the half-width of turbulence
intensity, which defined in § 4.2.2.

that the wake region was essentially local isotropic at all different heights. We also
confirmed this for Basic n = 4 and 6.

4.5. Dissipation and non-equilibrium nature
This section examines dissipation and non-equilibrium characteristics in the decay region.
Specifically, the integral length scale L and non-dimensional dissipation rate Cε are
investigated. The ‘cornerstone dissipation scaling of turbulence theory’, ε = Cεu′3/L can
be derived to L/λ∝ Reλ if the flow field is essentially isotropic and Cε is a constant, as
explained in the introduction. The integral length scale must be estimated to verify if this
study follows the relation L/λ∝ Reλ.

4.5.1. Integral length scale
The integral length scale in the x-direction, Lu , was calculated by integrating the
longitudinal correlation function f (r, x) from r = 0 to the first zero-crossing point of r .
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Figure 25. Integral length scale to Taylor microscale ratio Lu/λ on the centreline for different tree models in
relation to x/x peak at (a) ReH = 60 000 and (b) ReH = 120 000.

Here, f (r, x) = u(x)u(x + r)/u(x)2, where u(x) represents the velocity fluctuation in
streamwise direction at x .

As mentioned in § 4.4, when the tree-height-based Reynolds number ReH � 10 000, the
wake region was not isotropic, and L/λ∝ Reλ was not applicable. Hence, this discussion
does not include cases with low Reynolds numbers. On the other hand, the wake region can
be considered essentially isotropic if ReH � 60 000. In this case, L/λ∝ Reλ is applicable
and can be verified by plotting the dependency of Lu/λ on Reλ. If Lu/λ∝ Reλ holds true,
then ε = Cεu′3/L also holds true with a constant Cε . Conversely, Cε is not a constant
value but varies with position in the wake region.

Figure 25 shows the variation of Lu/λ in the streamwise distance as a function of
x/x peak . As observed in the figure, in the decaying region of x � x peak where Reλ
decreases, Lu/λ does not significantly decrease for any of the three models. At ReH =
60 000, it is approximately 3.5 for all three models. This trend is sustained at ReH =
120 000. For n = 4, Lu/λ remains approximately 4.0 until x/x peak = 5.0. Then, for an
unknown reason, it marginally increases, and Lu/λ is approximately 6.0. For n = 6, it
increases gradually within the 2.5–4.5 range and then becomes approximately 4.5. For
n = 8, it approximately fluctuates in the 3.0–4.5 range.

If Reλ and Cε are constant, it would not be important that Lu/λ remains approximately
the same value. However, as illustrated in figure 16, at high Reynolds numbers (ReH �
60 000), Reλ continues to decrease over a long region beyond x peak . In particular, Reλ
keeps decreasing approximately until x ≈ 6x peak , 12x peak and 10x peak for n = 4, 6
and 8 at ReH = 60 000 and until x ≈ 7x peak , 12x peak , 12x peak for n = 4, 6 and 8 at
ReH = 120 000. In the above decay regions of Reλ, we plot the variation of Lu/λ as a
function of Reλ, as shown in figure 26. Here Lu/λ remains approximately constant and
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Figure 27. Non-dimensional energy dissipation parameter Cε on the centreline in relation to Reλ in the decay
region of Reλ for the fractal trees studied at (a)ReH = 60 000 and (b)ReH = 120 000.

does not increase as Reλ increases. This result qualitatively concurs with the findings
of fractal-grid-generated turbulence (Seoud & Vassilicos 2007; Mazellier & Vassilicos
2010; Valente & Vassilicos 2011b; Gomes-Fernandes, Ganapathisubramani & Vassilicos
2012). Therefore, ε = Cεu′3/L does not hold, primarily because Cε is not a constant in the
decaying region of the fractal-tree-generated turbulent flows studied here.

4.5.2. Non-dimensional energy dissipation parameter
Figure 27 shows the variation of the non-dimensional energy dissipation parameter Cε

as a function of Reλ in the Reλ decay region. It is observed that Cε decreases with the
increase in Reλ. For n = 4, 6 and 8 at ReH = 60 000, part of the decaying region occurs
at Reλ � 100, where the low-Reynolds number effect (viscosity effect) may also influence
Cε (Sreenivasan 1984, 1998; Bos, Shao & Bertoglio 2007; Kitamura et al. 2014; Vassilicos
2015; Kitamura et al. 2014). For Reλ > 100, we applied the least-squares fit method to
evaluate the relationship, Cε ∝ Re−1

λ . We confirmed that for n = 4, 6 and 8 at ReH =
60 000, the exponents are approximately −1.28, −1.33 and −1.01, respectively. Similarly,
for n = 4, 6 and 8 at ReH = 120 000, the exponents are approximately −0.96, −1.17 and
−0.96, respectively. Notably, for ReH = 60 000, limited data points used for the fit may
affect the representatives of the results. For n = 4 at ReH = 120 000, we excluded four
data points where Cε > 0.4. Overall, for ReH = 120 000, Reλ > 100, Cε is approximately
proportional to Re−1

λ , which qualitatively agrees with the previous studies conducted on
fractal-grid-generated turbulence (Seoud & Vassilicos 2007; Mazellier & Vassilicos 2010;
Valente & Vassilicos 2011b; Gomes-Fernandes et al. 2012).

Figure 28 shows the variation of Cε as a function of x/H . Each fractal tree exhibits a
near wake region where Cε increases rapidly, followed by a downstream region where
Cε remains approximately constant. The boundary between these two regions occurs
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Figure 28. Non-dimensional energy dissipation parameter Cε on the centreline in relation to x/H for the
fractal trees studied at (a)ReH = 60 000 and (b)ReH = 120 000.

at approximately x = 4.0 H for n = 4, 6 and 8 at ReH = 60 000 and approximately
x = 4.0 − 5.0 H for n = 4, 6 and 8 at ReH = 120 000.

4.5.3. The TKE production and transverse transport
This section presents additional analysis of the transverse scans behind all three fractal
trees to obtain a full picture of the evolution of wake turbulence. It is worth investigating
whether the non-equilibrium dissipation scaling observed here is accompanied by non-
zero turbulence production and/or triple correlation transport as in Valente & Vassilicos
(2011b), Nagata et al. (2013) and Hearst & Lavoie (2016). These two parameters are
evaluated in the context of the following TKE equation:

Uk

2
∂q2

∂xk
= −ui u j

∂Ui

∂x j
− ∂

∂xk

(
ukq2

2

)
− ∂

∂xk

(
uk p

ρ

)
+ ν

2
∂2q2

∂xk∂xk
− ε. (4.5)

The left-hand side term represents the advection term (TKE decay). The right-hand
side terms represent production, triple-correlation transport, pressure transport, viscous
diffusion and dissipation. Here, U1 = U , U2 = V and U3 = W denote the mean velocities,
while u1 = u, u2 = v and u3 = w and p represent the fluctuating velocities and
pressure.

Referring to the analysis methods of Valente & Vassilicos (2011b) and Hearst &
Lavoie (2016), figure 29 shows the centreline TKE production P and triple-correlation
transport T , both of which are normalized by the energy dissipation ε. As seen in
figure 29(a), near the upstream region (around x/H = 1.0), the TKE production is strong,
reaching approximately −150% of the dissipation for n = 4, 6 and 8, before gradually
decreasing. In the range of approximately x/H = 2.0 − 4.5, the production term is at
most approximately −70%, −50% and −15% of the dissipation term for n = 4, 6 and 8,
respectively. For x/H > 4.5, the production-to-dissipation ratio gradually increases again
in absolute value. As shown in figure 29(b), the TKE transverse transport remains strong
in both the upstream and downstream regions.

Figure 30(a, b) shows the transverse profiles of P and T for n = 6 at ReH = 120 000,
normalized by the spanwise mean dissipation 〈ε〉y . For clarity, in figure 30, we only show
the results for n = 6. Note that we also confirmed similar behaviour for n = 4 and 8.
From x/H = 3.0 − 7.0, the profiles of P along the y-direction remain inhomogeneous,
indicating that the flow field is also inhomogeneous, with the transverse profiles of P/〈ε〉y
showing an overall increase in absolute value. The T -to-dissipation ratio remains at a non-
negligible level. The absolute values of these two ratios can reach approximately 150%
and 200% of 〈ε〉y , respectively, which is significantly higher than those observed in the
near wake region of the fractal grids (Hearst & Lavoie 2016). Figure 30(c, d) show the
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Figure 29. (a) Centreline TKE production P and (b) centreline triple-correlation transport T in relation to
x/H for Basic n = 4, 6 and 8 at ReH = 120 000.

0.25

0.150.100.050

0
−0.25
−0.50

−0.10 −0.05

0.50

−0.50

−0.75

0.75

−1.00

1.00

−0.15

−1.25

1.25

−1.50

1.50

−1.75

1.75

−2.00

2.00

0.150.100.050−0.10 −0.05−0.15

5
4
3
2
1
0

−1
−2
−3
−4
−5

0.150.100.050−0.10 −0.05−0.15

y/H
0.150.100.050−0.10 −0.05−0.15

y/H

y/Hy/H

x/H = 3.0

x/H = 5.0

x/H =7.0

x/H = 3.0
x/H = 5.0
x/H =7.0

x/H = 3.0
x/H = 5.0
x/H =7.0

x/H = 3.0
x/H = 5.0
x/H =7.0

0.25

−0.25
0

0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.25

−0.25
0

P /
�ε
� y

uv
 (∂

U
/∂

y)
/�
ε�

y

uw
 (∂

U
/∂

z)
/�
ε�

y

(a) (b)

(c) (d)

T /
�ε
� y

Figure 30. Transverse profiles of (a) TKE production P , (b) triple-correlation transport T , (c) uv(∂U/∂y)

and (d) uw(∂U/∂z) at various downstream positions for Basic n = 6 at z/H = 0.5, ReH = 120 000.

transverse profiles of uv(∂U/∂y) and uw(∂U/∂z), which contribute significantly to P ,
also normalized by 〈ε〉y . As the turbulence evolves downstream, the profiles of uv(∂U/∂y)

gradually approach zero and become approximately homogeneous, while the increase
in uw(∂U/∂z) exceeds the decrease in uv(∂U/∂y). This indicates that the flow field
becomes approximately homogeneous in the y-direction farther downstream but remains
inhomogeneous in the z-direction, which explains the significant increase in the TKE
production-to-dissipation ratio downstream in figure 30(a).

Based on the above analysis, the non-equilibrium near wake region (approximately
within x/H < 5.0 at ReH = 120 000) is highly inhomogeneous for the fractal trees,
with significant TKE production and transverse transport. This aligns qualitatively
with previous studies on fractal-grid-generated turbulence (Hearst & Lavoie 2016),
which compared fractal square element grids with regular grids. They found that the
fractal square element grids’ non-equilibrium near wake region was significantly more
inhomogeneous, with higher TKE production and transverse transport when compared
with the regular grids. In this study, the fractal tree exhibits even more significant
3-D inhomogeneities (in both the y- and z-directions) than the fractal grids. Thus,
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it can be considered that the inhomogeneous shape of the tree leads to greater
inhomogeneity and TKE production and transport in the non-equilibrium near wake
region.

However, it should be noted that non-equilibrium dissipation is not necessarily due to
one-point inhomogeneities (Nagata et al. 2017). While these one-point inhomogeneities
cause TKE production and transport, as observed in this study and previous research
(Nagata et al. 2013; Valente & Vassilicos 2014; Hearst & Lavoie 2016), they do not
affect the two-point energy equation at the scales where the inertial energy cascade
occurs (Valente & Vassilicos 2015). As Nagata et al. (2017) pointed out, the cascade
mechanism of the turbulence dissipation is not affected by one-point inhomogeneities.
The inhomogeneity of a two-point energy balance at the correct length scales is more
important than the inhomogeneity of the one-point energy balance. However, analysing
two-point statistics is beyond this paper’s scope and requires further investigation.

5. Conclusions
This study successfully employed large-scale numerical simulations for the fluid around
fractal trees using AMR–LBM. The main contribution of this study is the elucidation
of the relationship of the drag coefficient of trees with the tree shape and Reynolds
number, as well as the non-equilibrium dissipation behaviour Cε ∝ 1/Reλ in the wake
region of fractal trees. This behaviour is qualitatively consistent with the non-equilibrium
decay turbulence observed in fractal grids (Seoud & Vassilicos 2007; Gomes-Fernandes,
Ganapathisubramani & Vassilicos 2012). Moreover, various turbulence statistics and
scales were also explored, including turbulence intensity, global and local isotropy
parameters and Taylor-microscale-based Reynolds numbers.

Three configurations of the same type of fractal tree geometries with fractal iteration
numbers (n = 4, 6 and 8) were generated through the parametric L-system, with a fractal
dimension of 1.77. At low and medium Reynolds numbers, the drag coefficient increases
with the fractal iteration numbers (n) and decreases with the Reynolds number. However,
at high Reynolds numbers (ReH = 120 000), if the fractal iteration number is greater than
a certain value (n � 6), the drag coefficient becomes independent of the fractal iteration
number (n) and Reynolds number and tends to a constant value.

The energy dissipation scaling was also investigated. We confirm that, at high
Reynolds numbers (ReH � 60 000), the ratio of the integral length scale to the Taylor
microscale Lu/λ remains approximately constant while Taylor-microscale-based Reynolds
number Reλ decreases in the wake region of x/x peak � 1. Consequently, the energy
dissipation in the fractal tree’s near wake region does not follow the conventional scaling
ε = Cεu′3/L , as Cε is not a constant, but approximately Cε ∝ 1/Reλ, which is qualitatively
consistent with the non-equilibrium dissipation behaviour reported in the wake region of
planar fractal grids. Here Cε becomes approximately constant farther downstream. These
findings can be crucial for improving the accuracy of micrometeorology predictions and
human body-temperature simulations in urban environments, as current simulations do not
account for the non-equilibrium dissipation properties of tree models. We believe that our
results provide a valuable database and will contribute to future research. We find high
one-point inhomogeneity within the non-equilibrium near wake region, with significant
production and transverse transport of TKE, which qualitatively agrees with previous
studies on the near field of fractal grid turbulence (Valente & Vassilicos 2011b; Nagata
et al. 2013; Hearst & Lavoie 2016).

In terms of other turbulence statistics, we found that the normalization method used
by Gomes-Fernandes, Ganapathisubramani & Vassilicos (2012) for normalizing the
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centreline turbulence intensity can also be used to normalize the centreline turbulence
intensity in the wake region of fractal trees. At high Reynolds numbers (e.g. ReH �
60 000), this normalization method can collapse the turbulence intensity of fractal
trees with different shapes if the fractal iteration number reaches a certain threshold
(e.g. n = 6). However, this method cannot be used to collapse Reλ. Furthermore, the
isotropy characteristics were investigated. At high Reynolds numbers (ReH � 60 000),
with x/x peak � 1.0, the wake region of fractal trees can be considered essentially isotropic
at all heights. In addition, the height dependence of turbulence intensity and Reλ was
examined in the wake region, the maximum value of both turbulence intensity and
Reλ appeared approximately at the height near the trunk and the first branch (z/H =
0.35 − 0.5).
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