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The purpose of this note is to correct the proof of [1, Proposition 12] concerning
the existence of nonempty essential spectra of a linear relation on a complex normed
space.

Our notation is the same as in [1]. Let T € LR(X) where X is a complex normed
space. The essential resolvents, p.+(T) and p.(T), are defined by

Petr(T) ={LeC:A—-T € Fy}
and 3
Pe(T):={AeC:A—-TeFrNF_andk(A —T) =0}
Applying properties of Fredholm relations, we may equivalently define the above
essential resolvents as follows:
per(T)i={reC:a—T € ¢y}
and - ~
Pe(T) ={LeC:A—TepsNp_and k(A — T) =0}.

The essential spectra, o, (T) and o,(T), are the respective complements of the
essential resolvents: g, (T) :=C \ pe+(T) and 6,(T) := C\ pe(T).

Recall that the spectrum of T is defined in [2, Section VI.1(4)]as o (T) :=C\ p(T)
where

p(T):={LeC:T) =0 — f)_l is everywhere defined and single-valued}.

It is clear from the closed graph theorem that p(7T') consists of all A € C for which
A — T is injective, open and has dense range.

We now consider the essential spectrum, o, (T'), defined by o, (T) :=C \ p.—(T)
where p,_(T):={r€C:A—T € F_} which coincides with the set {A € C: 1 —
T eop_}.
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The proof of [, Proposition 12] relies on the following statement:

If T is a partially continuous linear relation with dense domain then T" is bounded
single-valued.

This, however, need not be satisfied.

REMARK 1. If the linear relation T is partially continuous and densely defined, but
not single-valued, then T and T" are bounded but both linear relations are not single-
valued.

PROOF. We first show that:

(1) if S€ LR(E, F) where E and F are normed spaces, then S” single-valued
implies S single-valued, which implies S single-valued.

We note that from [2, Proposition I1L.1.4(d)] we have D(5') € (D(8")")* = S(O)*
and then from [2, Proposition IIL.1.4(b)] we have St c D)t = D)t =
S”(0). Hence S(0)1L c S”(0). This last property together with the fact that S is
single-valued if and only if S(0) = {0} (see [2, Corollary 1.2.9]) implies that S (and
hence S) is single-valued whenever S” is single-valued.

We now prove that:

(2) T € LR(X) partially continuous implies that T, T' and T" are continuous.

This is immediate from the following chain of implications:

T partially continuous = T’ continuous (by [2, Corollary V.9.6]) < T continuous
(by [2, Proposition II1.4.9]) and T’ continuous = 7" continuous (by [2, Coro-
llary I1.1.13]).

(3) T partially continuous with dense domain implies that T and T" are bounded.

By virtue of (2), to establish assertion (3) it only remains to prove that T and T"
are everywhere defined.

Since T is continuous if and only if D(T) is closed [2, Theorem II1.4.2], we have
that D(T) =DDOH =T 0 =T 0= (D(T)L)T [2, Proposition III.1.4(b)]
=X (as T has dense domain). Hence D(T)

That D(T") = X" follows from the observation that 7’ is continuous if and
only if T'(0)t = D(T")=D(T)* =X". The first equality follows from [2,
Proposition 111.4.6(a)], the second from [2, Proposition III.1.4(b)] and the third from
D(T)=X. O

The following lemma is elementary but is used several times in the proof of
Proposition 3. Note that R(T') := T (D(T)) denotes the range of T and N(T) :=
T-1(0) denotes the null space of T'.

LEMMA 2. Let T € LR(X) such that T is everywhere defined and let n € p(T). Then
for all A # n we have:

) r—T=Sm-T)

(i) RMA—T)=R(S);

(i) N(A—=T)=N(S),

where S :=(n — M) ((n — A)~1 = T)).
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PROOF. (i) Since n — T is injective and D(n — T) = D(f) = X it follows from [2,
Section 1.1.3(9)] that

S=T)= U~ = VT)n—T)
=(-D7'@-T)— -0 -T)""H(n-T).
Then, since D((n — f)_l) =R(n — T) = )?, it follows from [2, Proposition 1.4.2(e)]
that
Sh-T)=(-T)"'4-T -0 —-)n—-T1)
and thus, by [2, Proposition VL.5.1],

So-D=-D'0-TYn-T)=-T)"'g-T)A-T)=1-T.

(ii) Follows immediately from (i) upon noting that R(n — T) =X.
(iii) Let x € X \ {0}. Then, using the fact that n € p(T) = p(T),
xeNO—T)s h—T)x= 0 —T)0)
& m—Tx=0—Dx+ - Mx
= (1= Mx+T(0) = —Vx+ @ —T)0)

& x = —NTyx + Ty(n—T)(O0) = (n — )Tyx
S0=U-mn-MT)x
& x e N(S). O

We proceed now to give a correct proof of [1, Proposition 12].

PROPOSITION 3. Let X be a complex normed space and let T € LR(X) be partially
continuous such that D(T) = X and p(T) # 0. Then the sets 0 (T), 6¢4-(T), 0o—(T)
and o,(T) are nonempty.

PROOF. o(T) # . By (3) of Remark | we have that T is bounded and thus it
follows from [2, Theorem VI.3.3] that the spectrum of 7" is nonempty. The assertion
now follows upon noting that o (T") = o (T).

In order to prove that the essential spectra of 7' are nonempty subsets of C let us
consider two cases for 7.

Case 1. T is bounded single-valued and X is complete.

It is well known that in this case, o.(T) coincides with the spectrum of the image
of T in the Calkin algebra B(X)/K (X) where B(X) and K (X) denote the class of
all bounded operators and bounded compact operators on X respectively (see, for
example, [3]), so that ¢,(T) is nonempty. This property, together with the fact that
0¢(T) is closed [1, Proposition 11], implies that the boundary of o¢,(7T), denoted
0.(T)?, is also a nonempty set.

Furthermore, by the stability of the index of a bounded semi-Fredholm operator
under small perturbation (see, for example [4, 2.c.9]) we deduce that the boundary
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of 0.(T) is contained both in ¢, (T) and in o,_(T). Therefore c.4(T) and o,_(T)
are nonempty sets.

Case 2. T is partially continuous with dense domain and has a nonempty resolvent
set.

Let n € p(T). Then by the open mapping theorem for linear relations [2,
Theorem 1I1.4.2], T; is a bounded single-valued linear relation. Moreover, it is
clear that N(7;) = (n — T)(O) T(O) and R(Ty) := R((n — T) h=D@un - T)
D(T) X (by (3)). Consequently 0 € p,_(T;) and since o._(T;) is nonempty by
Case 1, we conclude from Lemma 2 that there exists A % n such that A € o, (T).
Hence 0, (T) # ¢ and since o, (T) C 0.(T) we have that ¢,(T) is also a nonempty
set.

It only remains to prove that o,4(7)# . To this end, let us consider two
possibilities for 7 (0):

(a) dim T(O) < 00. In this case 0 € p.(T};) and then it follows from Case 1 and
Lemma 2 that 0,4 (T') # 0;

(b) dim T(O) 00. Then 0 € 0. (T),) since clearly N(T;) = T(O) Now, as @ #
ae(Tn)b C et (Ty) No._(Ty) (see the proof of Case 1) and 0 € p._(T;;) we
obtain that o, (7,) contains nonzero elements, and thus from Lemma 2 we
deduce that o, (T) # @, as desired. O
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