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THE MULTIDIRECTIONAL MEAN VALUE THEOREM
IN BANACH SPACES

M. L. RADULESCU AND F. H. CLARKE

ABSTRACT. Recently, F. H. Clarke and Y. Ledyaev established a multidirectional
mean value theorem applicable to lower semi-continuous functions on Hilbert spaces,
aresult which turns out to be useful in many applications. We develop a variant of the
result applicable to locally Lipschitz functions on certain Banach spaces, namely those
that admit a C 1-Lipschitz continuous bump function.

1. Introduction. The multidirectional mean-value inequality establishedin [6] isa
generalization of the mean-value theorem, in the following sense: it gives an estimate
for the differencesf (y) — f (X) wherey is no longer the end of afixed segment, but ranges
over a set Y. For example, when f is a smooth function on R", the theorem asserts the
existence of apoint zin the “interval” [x, Y] (i.e. the convex hull of {x} UY) such that:

m\;nf —f) <{f'@.y—x) Vyey.

The result is developed in [6] for lower semicontinuous functions defined on a Hilbert
space.

In this article we will establish a similar result for locally Lipschitz functionsin the
context of a Banach space that admits a C* Lipschitz continuous bump function. We
will discuss also a straightforward generalization of the multidirectional mean-value
inequality for uniformly smooth Banach spaces.

Let us establish some notation: X is a Banach space, || - || its norm, B the closed unit
ball in X, and B(x, p), the closed unit ball centered at x and of radius p. If xisapoint and
YasetinXthen[x, Y] :={z: z=x+1t(y — x) for somet € [0, 1] andy € Y}.

Letf: X — RU{+oo} beafunction and x € X be such that f(x) < co.

DEFINITION 1.1. Wesay that f attainsits strong minimumon X at xif f(x) = inf{f(X) :
X' € X} and ||, — X|| — O whenever x, € X are such that f (x,) — f(x).

DEFINITION 1.2. Wesay that f isFréchet subdifferentiableat xwithx* € X* belonging
to the Fréchet subdifferential at x, denoted def (x), provided that

y—0 Iyl
Let X; and X, betwo Banach spacesand (a. b) € domf, wheref isdefinedon X; x X.

We denote by d:f (a, b) the (partial) Fréchet subdifferential of f(-, b) at a and dz¢f (a, b)
that of f(a, ) at b.

>0.
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If Cis aclosed nonempty subset of X then the distance function dc is defined by
de(x) = inf{||x— c|| : ¢ € C}. Thedistance function is Lipschitz continuous of rank 1
and in case C is convex, it is convex too. Also, for > 0 we define C(17) by

C(p) :=={ze X:dc(2d < n}.

DerFINITION 1.3. A functional x* € X* issaidto beaFréchetnormaltoCat x, (x € C)
if for any ¢ > 0 there exists . > 0 such that

(X', X =x) <e||xX —x| foralx € CNB(Xx.n.).

We will denote by NE(X) the set of all Fréchet normalsto C at x. If C is convex NE(X)
coincideswith the normal convex coneto C at x which will be denoted asusual by N (X).

We will make the following hypothesis regarding the space X.
(H1) X isaBanach space that admits a Lipschitz continuous bump function which is
of class C! on X. By a bump function on X we mean a function with bounded
nonempty support on X.

2. Preliminaries. We recall the following results that we will use later on. We
suppose throughout this section that X satisfies (H1).

THEOREM 2.1 (THE SMOOTH VARIATIONAL PRINCIPLE[1Q]). Letf: X — (—o0, 00] be
a l.s.c. function bounded below. Then for every ¢ > 0 there exists a function g, which
is Lipschitzian, Fréchet differentiable on X and with g’ norm to norm continuous on X,
9]l < ¢, ]|d|| < € andsuchthat f + g attains its strong minimum on X.

Theorem 2.1 is aversion of the Borwein-Preiss smooth variational principle [1].

ProPOSITION 2.1 ([11]). Thereexistsa functiond: X — R* and K > 1 such that
(i) disbounded, LipschitziianonXandC?*on X\ {0}.
(i) x| <d) < K]|[x|| if ||x]| < landd(x) =2if||x|| > 1.

THEOREM 2.2 ([11]). Let f: X — R, X € X and p € X*. Then the following are
equivalent.
(i) Thereexistsa Fréchet differentiable function ¢: X — R suchthat f — o attainsa
local minimum at Xo, ¢’ (Xo) = p and ¢’ is normto norm continuous at Xo.

(ii) ThereexistsaneighbourhoodU of xo and a Fréchet differentiablefunction p: U —
R such that f — ¢ attains a local minimum at Xo, ¢’(Xp) = p, and ¢’ is normto
norm continuous at x.

(iii) p € 9¢f(x0).

THEOREM 2.3 (FRECHET SUBDIFFERENTIAL SUM RULE[12]). LetXo € X andfy, f, two
extended-valued functions defined on X, such that f; isl.s.c. near xp and f, is uniformly
continuous near Xo. Supposethat p € de(f1 +f2)(Xo) is given. Then for each e > 0, there
existx € X, pi € 9efi(x) i = 1, 2 such that

HXi —Xo“ <e =12 |fi(Xi) —fi(Xo)| <e i=12 Hp1+p2— p|| <e.
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The Fréchet subdifferential sum rule was initialy derived by loffe in [14], for two
functions, one |.s.c. and the other Lipschitz near xy defined on a Banach space with
Fréchet differentiable norm.

PROPOSITION 2.2 (EXACT PENALIZATION [4, P. 52]). Let X beany Banach space. Sup-
posethat f is Lipschitzof rank K near x and attainsa minimumover C at x. Thenf +Kdc
hasalocal minimum at x.

Now, by definition ||(x, y)||? = [|x]|% + ||y||?, for al (x.y) € X x Y.

PROPOSITION 2.3. Let f:X x Y — R be al.s.c. function and (a,b) € domf. Then
def(a. b) C 9:ef(a, b) x d2¢(a, b).

The proof is omitted.

ProPoSITION 2.4. Let A C X, B C Y betwo closed setsand a € X, b € Y such that
da(@) = «, dg(b) =3, « > 0, 3 > 0. Then d:xdaxs(a, b) C N,E(a)(a).

PROCOF. Let @ € dipdaxs(@ b) and e > 0. Then there exists § > 0 such that:
(a*,a —a) < daxp(@,b) — daxg(a b) + ¢||@ — a|| whenever @ € B(a, é).
Since

daxe(@. b) < daxa(a.b) iff @) +d2(b) < o? + 32
iff da(@) < a
iff &’ € A().

we conclude that

(a*,a —a) <¢||a —a|| fordla € B(ad)NA)

a* € Njy(@).
[ ]

For later purpose we will derive another piece of “fuzzy” calculus namely a Fréchet
subdifferential “chainrule” for certain functionsf and g.

PROPOSITION 2.5. Let X and Y be two Banach spaces. Assume that g: X — Y is
Lipschitz continuousnear xp andthat f: Y — R isFréchet differentiable near g(xo). Then

9k (f 0 g)(%0) C 3r(F'(9(%0))- 9()) (X0)-
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PROCF. Since g is Lipschitz continuous near X, there exist K and n; > 0 such that
[19(x) — g(x0)|| < K]|x —Xol|, for all x € B(xo, 11).

Letx* € dg(fog)(Xg) and e > 0. Thenthereexistsyn, > Osuchthatforall x € B(xg, 172),

* % €

F(900)) — (X', %0) < (909) = (X %) + S[Ix = Xell-

Sincef is Fréchet differentiable at g(xo), there existsé > 0st.foraly e B(g(xo). 6)

9

fy) — f(900) < (F'(90%0)). ¥ — 90%0)) + 5 [lg0x0) = VII-

Set 7 = min(n1. 2.6 /K). Combining the three inequalities with y = g(x) in the third

resultsin
(. x— %) < (F(9(x0))- 9) — ('(9(%0))- 9(%0))
£ £
o KX =]l + S[Ix = ol ¥x € B(xo. )

which completes the proof. "

COROLLARY 2.1. Assumethat h: X x Y — R is Fréchet differentiable near (. (%))
and

X" & o (F(90)) +h(--90)) ) G)-

Then

X — g_Q(Xo 9(x0)) € 8F<f’(g(x0)) + 2—;(Xo g(%0)). 9(')>(Xo)-

THEOREM 2.4. Let X and Y be two Banach spaces satisfying (H1).

Letg: X — Y beLipschitzcontinuousnear xgandletf: Y — R beuniformly continuous
near g(xo)-

Supposethat x* € 9g(f o g)(Xo). Then for any given e > 0 there exist X, zand ¢ such
that

IX=xl <&, [lgo) =7 <e. Yeof(@ and X €ap(v.g(-))(X) +B.

PROOF. Let p: X — RbeaC* function suchthat f(g(x)) — ¢ (x) attainsits minimum
at o and ’(Xg) = X* (see Theorem 2.2). We can assume without loss of generality that
f(9(¥) — ¢(x) attains its strong minimum at X (see [12] for example).

Let e > 0. Since p is CY, f is uniformly continuous near g(Xo) and g is Lipschitz
continuous near Xg, there exists§1, 0 < 61 < € and K > 0 such that:

M le'0—x < 5.
@ 1909 — 90| < Kllx— o] whenever [[x — x| < &1

and for any ¥ > 0, thereexists A\ < (61)/2 such that

(3) If(u) —fW)|| <7 wheneveru.v € B(g(x).61) and [u—v]| < A.
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Let
4 6= min(%.g—lld.

Sincef (g(X)) — ¢ (x) hasastrong minimum at X, there exists 71, 0 < 71 < 6 suchthat if

©) () — 09 < F(g0)) — p00) + 71 then [x— o] < 5.

Now (3) istruein particular for ¥ = (v1)/3, u = g(x) +y, v = g(x); so according to (2)
and (4), there exists A < 4 such that

(6) [f(909+y) — 1(a00)] < 2

whenever ||y|| < A and x € B(xo. 6).
(Indeed: [|g(x) +y — g0x0)l| < [[9(9) — g(xo)[| +[IYl] < 61/2+K -6 < 61).
According to Proposition 2.1 there exists d: X — R*, Lipschitz continuousand C* on
X\ {0} suchthat d(x) > |||, if ||x]| < 1.
For each n > 1 we define:

Hn(x.y) = {f(g(x) +Y) = () +nd’(y) if x—xol| <& and|lyl| <A
+00 otherwise.

X x Y is aBanach space such that there existsaC* Lipschitz continuous bump function
on it and Hu(x,y) is l.s.c. and bounded below on X x Y. So according to the smooth

variational principle, thereexistsaC* function h: X x Y — R such that Hn(x, y) + h(x, y)
attainsits strong minimum at some point (X,, yn) € B(Xo,6) x B(0, A), and such that

Y1 €
7 hl|le < = —.
™ Ihll < 3 .

CLAIM. (Xn,¥n) € intB(xp,0) x intB(0,\), SO (X Yn) is a local minimum for
Hn(X.y) + h(x. y).

PROOF OF THE CLAIM. Indeed, in particular

and ], <

Hn(n. Yn) + h(%n, Yn) < Hn(X%o, 0) + h(Xo, 0)

nllynll> < nd*(yn) < f(9(x)) — ¢(%0) + (X, 0)
® —f (g(Xn) + Yn) + (%) — h(Xa, yn)
< 1(g0%0) = F(90) *Yn) + 00) — 00) + 22
Theright-hand side is bounded, so choosing n large enough,

©) Iynll <A <8,
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S0y, € intB(0, ). Also by (6)

[f(90xn) +¥n) — f(g0))| <71/3.

Combining (8) and the above inequality we conclude that

f(9(n)) — w (%) < F(9(X0)) — ¥ (x0) + 71

so by (5), ||%n — %o|| < é/2 which completesthe proof of the claim.
Now set

(10) 9 +ty=2z  g(n)*Y¥n=12n
Then

z— 1(2) — ¢(%) + nd*(z— g(Xn)) + h(X. Z— g(Xn))
has alocal minimum at z,, so

_oh

(1) = () (2~ 90) — 51

(Xn: 20 — 9(%n)) € Of (20)-

Also,
x — f(z0) — () + nd?(z0 — 9(¥)) +h(x. 20 — 9(¥))
has alocal minimum at x,, so
# (%) € o (nc?(z0 = () * h(-- 20— 90)) ) ).

We deduce from Corollary 2.1 that

= 2/ (0) — 0 (. 20— )
€ de (e (70~ 0x) = 5 (0 066))- ) )
= 9r(¥. 9()) (%n)-
Relations (1), (4), (7) and the definition of p imply
"

X" —pll < =e.

NI ™
NI ™

According to (9) and (10) we aso have

1900) — zall < [l9(*%0) — g(a)l + [[¥nll < K]IXo — Xall + A
o1 b1 61
<< — < K— — .
< Ko+ 5 _K2K+ > <e
Consequently, the conclusion follows with

X=X, Z=2Z, and 1 givenby (11). ]
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COROLLARY 2.2. Besides the hypothesis in Theorem 2.4, assume that g is Fréchet
differentiable near xo. Then for any given e > 0, thereexistx € X,z€ Yand ¢ € Y*
such that

K=ol <. llgl) — 2| <.
beof@ and X —vog®| <e.

or equivalently, there existsw* € X*, [[w*|| < 1 such that
(X —ew' . x) = (¥, (g, %)) VxeX.

3. Themain result. Let X be a Banach space satisfying (H1), and Y C X a closed,
bounded, convex set. Suppose f: X — R is locally Lipschitz and bounded below on
[Xo, Y] + 0B for some by > 0. Define

Fi=infi(y) — f(x)

and
Va:={Xo+t(y—x):t€[al)yeVY}

THEOREM 3.1. Letr < f. Then thereexistsa, 0 < a < 1, such that for any 6 > 0O,
thereexist z € V, + 6B and ¢ € 9gf(2) such that

r<(&y—xo) Vyey.

PrROOF. We may assume without loss of generality that xg = 0.
Since Y is bounded, there exists M > 0 such that ||y|| < M for all y € Y and since f
is Lipschitz near O there exist K > 0 and v > 0 such that

(12 f@ —fO) <Kz vz]z| <.
Chooser satisfyingf >r1 >r.

If 1+ KM —r < Owechoose0 < a < min(y/M, 1) and
if 1+KM —T > 0wechoose0 < a < min(y/M,(f —1)/(1+KM —T).1).

petine )~ 7 if L) fal] x Y
- ty)—rt if(t,y) €la 1] x
HEY) {oo otherwise.
(For a justification of the choice of H, we refer to the “motivating idea’ behind the
multidirectional mean value inequality exposedin [6].)
Let

. (a r—r R
1 =,00,0, =————.T —TI].
(13) 0<a<mln(2 bo, 6 2A+ M/ f r)
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There existsa C* Lipschitz bump function on R x X and H is lower semicontinuous
and bounded below on R x X, so according to the smooth variational principle, there
existsaC? Lipschitz function g: R x X — R such that

H(t.y) + g(t.y) attainsits minimum at some point (t.y) € [a. 1] x Y

and . .
(14) 9l <e. IVl < 5. [VyGlloo < 5

N

CLAIM. t#1.

PROOF OF THE CLAIM. Supposet = 1; then,

fly) —r+o(ly) <f(ay) —ar+g(ay).

fy)—flay) <r—ar+2s<r—ar+a.

Since a was chosen such that a < /M, al|y]| < and according to (12)

—KaM +f(y) —f(Q) <r—ar+a,

igff(y)—f(O) <r—ar+a+Kam

that is
f—r<a(l+KM-r).

If 1+ KM —r < 0we haveacontradiction sincef —r > Oandif 1+ KM —r > 0, then
a> (f —r)/(1+KM —r) and we have a contradiction too, with the choice of a. This
establishesthe claim. n

Sincef islocally Lipschitz near ty, there exists K and ¥ such that
(15) B(ty.7) C Va+ajB and
Ify) —f@I <Klly—2z| Vy.zeB({y.").

(Vat+tadoB C {ty:te[all,y € Y+§B} C Va+60B C[0,Y] +50B).

Denote by K the Lipschitz constant of f(ty) — rt + g(t. y) near (t.y) and by A the set
[a. 1]. Then by Proposition 2.2, f(ty) — it + g(t. y) + Kdaxy(t. y) hasalocal minimum at
(t.y). Consequently

(16)  (.y) = (F— Vgt 9. —Vyg& 1) € o (FC- ) + Relaxr(: ) € 9).
where F(t, y) := f(ty). Set

1—-t 22 2 7 )

() o= min( 5= TR K T
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According to Theorem 2.3, for any 0 < A < Ag thereexist (ti,y;) i = 1, 2 such that

_ A _ A
(18) t-tf<3. ly-wl<3 i=12and

. A
(t".y") € 9rF(t1, y1) + Kdpdaxy(tz, y2) + 25

Furthermore, by Proposition 2.3

N A\B
(t*, W) S aFF(tl. yl) + Kf)l,:d/.\xy(tz. yz) X 32FdAXy(t2. yz) + T

Now, denote o := da(t2) and 3 = dy(y2).
Proposition 2.4 and the fact that A and Y are convex sets, imply that there exist

(19) n € NA(a)(tz). Ny € Ny(g)(yz). 0o € [O, 1] and w e X* with HWH <1

such that \ \
(t* — Rnt — Zaoy* — Rny — ZWO) € IeF(t1, y1)-

According to Corollary 2.2, for any A\,0 < A < Ao, thereexist 1.§) € R x X,Z€ X,
0 € R, ¥,w € X* such that

- A - A

(20) t—t] < > 1V —will < >
- A -

(2D ||t1y1 — Z” < > v € 9 (2),
(22) fe[0,1], |w]|<1 and

aft — Ry = 5(00+0) + [y —Rny— 500 +w).v) = {10y +¥)

for al («,v) € R x X, where (t*, y*) is given by (16).
Fora=0,v=y—Y, V€Y, the aboveineguality resultsin

. A N
(—Vya(Ey) —Rny - SWorw).y—yz) =iv.y—y2) forayye.
Using (14), (19) and (22) we obtain

>——=-¢ foranyyeYy.

r—r1| Z
:—r1| Z
-—r1| Z

(23) (.y—y2) =2 —

NI ™
NI ™

Now if wesetv =0, o #Z 0, and use again (14), (19) and (22),

(2 (.9) =T = Vg s) — 560 +8) ~ R > 7

NI ™
NI ™

(becausen; < 0, t, being # 1).
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Combining (17), (18) and (21) we obtain

. = . - X A MY Y
(25)  z=tl < ||z—toyall +tallys = VI + IVl [ = t] < >ttt 5 <3

So by (15) f is localy Lipschitz near Z with the same constant K which implies that
[l <K.
Starting with (24) and using once again (17), (18) and (21),

_ _ DY
(26)  T—e< (4. 9) < (.y2) + K[| —yol| < (¥.y2) +3K§ < (Y.y2) te.

Adding the inequalities (23) and (26) resultsin

I’_—s(2+¥) < (¢ y) foranyyey.

According to (13), (17), (18) and (20), [t — t| < A < a/2 and sincet > aiit follows that
t > a/2. Sofrom the last inequality we get

r_—s[2+ %] <{(¢,y) fordlyeY.

Since ¢ was chosen lessthen (' — 1)/ (2(1 + M/a)),
r<{y,y) foralyey.

By (17) and (25) ||z2—ty]| < e < § wheret € [a,1) andy € Y. Consequently Z € V,+5B.
Accordingto (21), ¥ € def(2) so the proof is complete. ]

We may reformulate the theorem in the following way:

COROLLARY 3.1. Under the same hypotheses on f, let 6 > 0. Then there exist a,
0<a<lzeVy+é6Band ¢ € def(2) suchthat,

inff —f(0) <({,y—x)+6 WyeY.

Obviously, the unidirectional “fuzzy” mean-value inequality follows from Theo-
rem 3.1. Werefer to [16] for adiscussion of various consequenceswhen Y isasingleton.

In the following corollary we will denote by dcf the generalized gradient of f; for
definition and properties see[4, chapter 2]. We mention that

Ief (X) C acf (X).

COROLLARY 3.2. Supposein addition that Y is compact. Then there exist z € [Xo, Y]
and ¢ € dcf(2) such that

m\;nf —fx) < (&,y—x) foranyyeY.
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PROOF. Leté§; > 0,8 — 0. Then by Corollary 3.1, there exist (&), & > 0, & — 0,
z € Vy +éiBand & € 9ef(z) such that

m\i{nf —f(Xo) < (&.y—Xo) +6i foranyye.

By the above inclusion, & € dcf(z). Since Y is compact and ocf is a weak* closed
multifunction we can pass to the limit in the inequality on a subsequence and the result
follows. ]

We now state without proof another version of the mean-value inequality which is
obtained by minor modificationsof the original one[6]. Suppose X satisfiesthefollowing
hypothesis:

(H2) Xisauniformly smooth Banach space.

Of course (H2) is stronger than (H1). However uniformly smooth Banach spaces
include a quite large class of spaces as for example LP-spaceswith 1 < p < co. On the
other hand the hypothesis on f will be weaker, namely f need only bel.s.c.

Let Y C X be anonempty, closed, bounded subset of X (not necessarily convex).

Letf: X x (—o0, +o0] beal.s.c. function, finite at x, and define

Fe=li deigjm{f(y) —f(®)}.

THEOREM 3.2. Let f be bounded below on [x, Y] + 6B for some 6 > 0. Then for any
r < fand e between 0 and 6, there exist zy € [x, Y] + B, yo € Y and ¢ € 9¢f(z9) such
that for any A > 0, thereexistsy > O such that for anyy € YN B(yo, V)

r<{&y—=x)+Ally—yol-
(If Y is convex the theoremapplieswith A = 0 and ¥ = +00).

4. Examples. Asalfirst application wewill give an “infinitesimal version” of The-
orem 3.1 (see Section 3 in [6]) which extends an important result of Subbotin [9] to the
Banach space setting.

For agiven subset E of X and a point X at which the function f is finite we introduce
Df(x; E), the quantity given by

DI(x E) := liminf_inf X110,
t|0 610 eE+5B t

Suppose X is a reflexive Banach space. Then it can be given an equivalent Fréchet
differentiable norm (seefor example[13]) and consequently the space satisfieshypothesis
(H1) (see[11]) for details and further comments).

THEOREM 4.1. Let E be a nonempty closed, bounded, convex subset of X and let
f: X — R bealocally Lipschitz function. Suppose for some scalar p we have

(27) Df(x;E) > p.
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Then for any ¢/ > 0 there exist a point z and £ € 9¢f(2) such that ||z — X|| < €/,
If(2 —f(x)| << and
(¢.e)>p. VecE.

The proof is based on Theorem 3.1 asfor the Hilbert space case givenin [6].
We now introduce the weak Dini derivative (or weak-Hadamard derivative)

DY (x: €) = inf lim inf &) ~ 10
{e} tl0

10, W, t

and the weak Dini (or weak-Hadamard) subgradient
apf(x) = {x* € X | D"f(x;v) > (X".v), Vv e X}.
In general def (X) C dpf(X) andin case X is reflexive they coincide (seefor example[3]).
ProPOSITION 4.1. If Y isa honempty closed, bounded, convex subset of X then

(28) Lren:z DY (x; €) < Df(x; E).

PrOOF. Let (1), (6;) and (&) be sequencessuchthatt; | 0,6; | 0,6 € E+¢;Band

f(x+tig) — f(X)

— Df(x; E).
ti

Since (g) is bounded there exists a weak convergent subsequence (without relabeling),
€ 2 e Since Y is closed and convex it is also weakly closed so e € E. Hence there
exists e € E such that

D" (x;e) < lim

1—00

fx+68) =10 _ peixe
] Df (;

which completesthe proof. ]

THEOREM 4.2. Let E be a nonempty closed, bounded, convex subset of a reflexive
Banach space X, and let f: X — R be alocally Lipschitz function.
Suppose that for some p we have

(29) inf D" (x; €) > p.
ecE

Thenfor anye > Othereexistz € Xand( € apf(2) suchthat||z—x|| < &, |f(2—f(X)| < e
and

¢.e)>p VYecE
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PROCF. Inview of Proposition 4.1, (29) implies (27), so Theorem 4.1 applies. ]

REMARK 4.1. The sameresult holds under hypothesis(H2) for al.s.c. function, finite
at x. In this case the inequality |f(2) — f(X)| < e isno longer implicit asin the Lipschitz
case. We refer again to [6] for the details.

As a second example of the use of the theorem we characterize monotonicity of a
function with respect to a cone by means of its Fréchet subdifferential. We refer to
[6, 7, 8] for the Hilbert version and for other applications.

DerINITION 4.1. Let K C X be acone. A function f: X — (—o0, 00] is said to be
K-nonincreasing if
y e x+K = f(y) < f(x).

The polar of anonempty set K C X isthe set
Kr={ye X:(y.x) <0,¥x € K}.

PROPOSITION 4.2. Suppose X satisfies (H1) (respectively (H2)), f: X — (—o0, +o0] is
a locally Lipschitz (respectively lower-semicontinuous) function, and K C X isa cone.
Then f isK-nonincreasing if and only if

(30) af() CK* ¥xe X

PROOF. In order to prove the necessity let x € X and z € K. By assumption,
f(x+12) <f(x) forall t > 0. Supposep € def(x) and let ¢ > 0. Then there exists i > 0,
such that (p,tz) — et||z]] < f(x+tz) — f(x) <Oforanyt, 0 <t < 5. Dividing by t and
letting ¢ — O leadsto (p,z) < 0. Since z € K is arbitrary we concludethat p € K*.

Now assume that (30) holds and suppose that f is not K-nonincreasing. Then there
exist pointsx andy such that y € x+ K but f (y) > f(x). We now apply Theorem 3.1 with
Y :={y}. So there exist zand p € 9¢f(2) such that

0<f(y)—f(¥) < (p,y—X).
But sincey — x € K this contradicts the assumption that p € K*. ]

Now wewill characterize weak-monotonicity. For adetailed discussion see[6] and [9].
Let D be anonempty, compact, convex subset of X, where X satisfies (H1) (respectively
(H2)) and let f: X — R, belocally Lipschitz (respectively lower-semicontinuous).

PROPOSITION 4.3. Supposethat
ue X, peku= Tig(p. d) <o0.
<
Then for any x € X and for any t > 0, we have

i <
yg;yng(y) <f(x.
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ProoOF. According to Theorem 3.1, for somez and some p € def (2)
r < min{p, td
< min(p. td)

for any r such that r < minyexo f(y) — f(X). By hypothesis, mingp(p.d) <0sor <0
and the conclusion follows. ]

We remark that the strong-monotonicity characterization uses only the unidirectional
mean-value theorem whereas the weak-monotonicity one requires the multidirectional
mean value theorem.

Finally we want to point out the specificity of the multidirectional mean value results
already known. In [6] Clarke and L edyaev treat functionswhich are just |.s.c. and in the
framework of a Hilbert space. The same authors derived in [7] a multidirectional mean
value theorem for locally Lipschitz functions defined on a general Banach space, in the
“two-set” case (i.e. the point Xg is replaced by a closed, convex, bounded set). However
the subgradient figuring in that theorem is the generalized gradient, ocf. Consequently,
on the one hand our result generalizesthe result in [6] from the point of view of the space
but under the hypothesis (H1) is more restrictive with respect to the class of functions.
Ontheother hand it generalizestheresult in[7] from the point of view of the subgradient
class, but is more restrictive with respect to the space and it covers just the “ point-set”
case. We remark that it gives a more precise estimate of the set in which the point zlies
in terms of theinitial tolerance in the choice of r.
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