
J. Functional Programming 2 (2): 237-244, April 1992 © 1992 Cambridge University Press 237

FUNCTIONAL PEARLS
Two greedy algorithms

R.S. BIRD
Programming Research Group, Oxford University, 11 Keble Rd, Oxford 0X1 3QD, UK

1 Introduction

At the recent TC2 working conference on constructing programs from specifica-
tions (Moeller, 1991), I presented the derivation of a functional program for solving
a problem posed by Knuth (1990). Slightly simplified, the problem was to construct a
shortest decimal fraction representing a given integer multiple of 1/216. Later in the
conference - and in a different context - Robert Dewar described a second problem
that he had recently set as an examination question. In brief, the problem was to
replace sequences of blanks in a file by tab characters wherever possible. Although
Knuth's and Dewar's problems appear to have little in common, I suspected that
both had the same 'deep structure' and were instances of a single general result
about greedy algorithms. The purpose of this note is to bring the general result to
light and to unify the treatment of the two problems. We begin by describing the
problems more precisely.

2 Knuth's problem

T^X uses integer arithmetic, with all fractions expressed as integer multiples of
1/216. Since the input language of 7 ^ documents is decimal, there is the problem
of converting between decimal fractions and their nearest internal representations.

Let D denote the set of digits d, where 0 ̂ d < 10, and let R denote the set
of real numbers r in the range 0 < r < 1. The function dec e [D] —> R converts
a decimal fraction to the number it represents, and is defined by a right-reduction
© «/• 0 (i.e.foldr (®)0 in functional programming), where d © r = (d + r)/10. The
problem in one direction is to compute the natural number

n = L216decx

In other words, introducing in defined by in r = [216r + 1/2J, the problem is to
compute in • dec. The restriction is that only integer arithmetic is allowed in the
computation.

The more challenging problem is the converse: given n in the range 0 ^ n < 216,
find a decimal fraction x = outn such that in (dec x) = n and x is as short as
possible; in symbols,

out = Min(#) • Inv(in • dec).

Here, Inv(/") denotes the inverse image of/, defined for / 6 A —* B by

\nv{f)b = {a eA\fa = b } .

The function Min(#) returns the shortest sequence in a set of sequences. More

https://doi.org/10.1017/S0956796800000368 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000368

238 R. S. Bird

precisely, Min(#) returns the minimum element under some total ordering ^# that
respects length, i.e. x ^# y implies #x ^ #y. There is a finite number of shortest
sequences in Inv(in • dec), so out is well-defined for any choice of <#.

3 Dewar's problem

As originally formulated, Dewar's problem was:

"Write a program TAB that does the exact opposite of what DETAB does, i.e. it replaces
blanks with tabs where possible."

In presenting the problem, Dewar added the following simplifications: assume
that the given file of characters does not contain tab or backspace characters, and
that no line of the file ends with blanks; assume also that tab stops occur in every
eighth column.

To formalise the problem we have to interpret the phrase 'replaces blanks with
tabs where possible'. One interpretation is that the output should contain as many
tab characters as possible. Another interpretation, and the one we shall adopt, is
that the output should be as short as possible. Thus, we shall specify tab by the
equation

tab = Min(#) • In\(detab),

where detab is the function which removes tabs. The function tab is well-defined
for any choice of ^# since lnv(detab) returns a finite set of sequences.

Perhaps the simplest way of defining detab is to give the program: detab =
untab 0, where untab n [] = [] and

{ [nl] -H- untab Ox if a = nl

[bl]8~" -H- untab Ox if a = tb
[a] -H- untab (n + 1) x otherwise.

Here, nl is the newline character, tb is the tab character, and [bl]m is a string of m
blank characters. We use + to denote addition modulo 8, so the term n + 1 in the
last line means (n + 1) mod 8. The first argument of untab is a counter in the range
0 ^ n < 8 so that 8 — n is the position of the next tab stop. The following property
of untab is needed below and can be proved by induction:

untab n {[a] -H- y) = x A [W]8"" € inits x (1)
=> (3z € tails y : untab n ([tb] -H- z) = x),

where inits and tails return the set of initial and tail segments of a list, respectively.
There is an instructive alternative definition of detab based on the fact that

detab works line by line. The idea is to break the file into lines, detab each line,
and then reassemble the lines. We have

detab = unlines • detabl* • lines

detabl = O/ fields

xOy = x -+f [bl]n -H- y where n = 8 - #x mod 8.

https://doi.org/10.1017/S0956796800000368 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000368

Functional pearls 239

The function lines is defined as the inverse of the injective function unlines, where

unlines = ©/ where x © y = x -H- [nl] -H- y,

and the function fields is defined as the inverse of the injective function unfields,
where

unfields = ©/ where x © .y = x -H- [tb] + +y.

The functions lines and unlines were considered as an exercise in Bird and
Wadler, (1988), .where essentially the following constructive definition of lines was
synthesised: lines = ®/ •/•, where fa = (a = nl —> [[], []], [[a]]) and

(xs -H- [x]) ® ([y] -H- ys) = xs -H- [x -tt- y] -H- ys.

Exactly the same definition works for fields with tb replacing nZ.
Note that both Knuth's and Dewar's problems have been expressed in terms of

computing some shortest sequence in a set of sequences defined as the inverse image
of a function returning sequences.

4 Greedy algorithms

Let us now put the two problems in a more general context. Suppose F is a function
with type

F € A - +

Thus, for a € A, the value F a is a nonempty, and possibly infinite, set of finite
sequences over B. We are interested in computing

/ = Min(C)-F

efficiently, where C e [B] —• N and N is the type of natural numbers. We assume
that F returns a finite set of sequences with minimal value under C, so / is
well-defined for any ordering ^ c that respects C.

We cannot say much about the computation of/ unless we impose some condi-
tions on C and F. We shall assume that C satisfies the following two conditions:

C x = 0 = x = []

C x < C j> = C (u -H- x) s$ C (u 4f y).

A function C satisfying these conditions will be called a cost function. Clearly,
is a cost function, as is any function of the form +/ • w*, provided w returns
nonnegative values. One immediate consequence of the conditions is the fact that
C x < C (x -ff y) for all x and y. Another is the fact that

Cx = Cy = C (u-H-x) = C (u-ti-y).

Turning now to F, we shall assume that F satisfies the following conditions for
some p, H, and 0. For all a € A,

[]eF a = pa

€F a = b eH a A x eF (aeb).

https://doi.org/10.1017/S0956796800000368 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000368

240 R. S. Bird

These conditions are equivalent to the assertion that F satisfies the equation

Fa = {[] |pa}u{[ft]-H- x \b eH a Ax eF(aeb)}.

One can think of the sequences in F a in terms of the paths in a directed graph.
Nodes of the graph are labelled with elements a € A, and edges are labelled with
elements ft G B. Node a has outgoing edges labelled with elements in H a. An edge
labelled b from node a leads to the node aQb. Nodes with labels a satisfying p a are
called terminal nodes. The elements of F a are then the sequences of labels along
paths from a to some terminal node.

Finally, we impose an important third condition on F and C, one that enables us
to compute / by a greedy algorithm. The condition is that there is some ordering
^ B on B with the property that for all a for which p a is false, if

[ft] 4f x € F a A b± Min«B)(H a),

then there exists a c and y such that

[c]-ti-yeFaAc<Bb/\C ([c] -H- y) s$ C ([b] -H- x).

This condition will be referred to as the greedy condition. Its effect is that we
can compute f a by choosing the smallest element under <B at each stage. More
precisely,

Theorem 1 Suppose/ = Min(C) • F, where C and F satisfy the conditions enumer-
ated above. Then we can find an ordering ^ c such that

(U if pa
f a = < [b] -H-/ (a Q b) otherwise

[where b = Min(^B)(^ a)-

Proof
To define ^c> w e nrst use the given ordering ^ B to construct a lexicographic

ordering </. on [B]. We take [] </, x for all x e [B], and define

[ft] -H- x ^L [c] -H- y = b <B c V (ft = c A x <L y).

Now we define <c by

x ^c y = C x <C y V (C x = C y Ax ^L y).
By construction, ^ c respects C.

Since, by definition of a cost function, [] is the least element under ^ c , we have
Min(C)(F a) = [] if pa holds. The proof of the theorem is completed by showing
that if p a does not hold, then

[ft] -H- x = Min(C)(F a) => b = Mm{^B)(H a) A x = Min(C)(F (a Q ft)).

To establish the first conjunct of the consequent, we argue:

[f t] 4 f x £ F a A f t ^ Min(^B)(H a)

=> {greedy condition}

{3c, y : [c]-H-y eF a A c <B ft A C{[c] -H- y) «S C{[b] + +x))

=> {definition of ^ c }

https://doi.org/10.1017/S0956796800000368 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000368

Functional pearls 241

(3c, y : [c]-H-y tFa A [c]-H-y < c [b]-H-x)

= {definition ofMin(C)}

[b]-H-x ^Min(C)(Fa).

For the second conjunct, we argue, for x,y e F (a Q b), that:

[6]-H-x ^ c [b]+fy

= {definition of ^c}

(C([b]4fx)<C([b]-H-y))V
(C ([ft] -H-x) = C ([ft] -fry) A [b] -H-x < t [6] -H-y)

=> {C is a cost function}

C x < C y V (C x = C 3/ A [b] -H- x ^L [b] -H- y)

25 {definition of <£,}

Cx<CyV(Cx = CyAx^)i)

s {definition of <c}
x ^ c y-

completing the proof of the theorem. •

5 Dewar's problem solved

Setting F(n,x) = ln\(untabn)x, Dewar's problem is to compute/(0, x), where
/(n,x) = Min(#)F(n,x). We know # is a cost function, so we have to find a
decompostion (p,H ,Q) for F and show that a suitable greedy condition holds.

It is immediate from the definition of untabn that [] e F(n,x) if and only if
x = [], so p x = (x = []). For x ^ [] we have

[l]+>ef(M)
s {definition of F}

untab n ([b] -H- y) = x

= {definition of untab}

(b = nl A [nl] -H- untab Oy = x) V
(b = tb A [6Z]8-" -H- untab Oy = x) V

(b g {n/, tb} A [b] -H- wntab (n + 1) y = x)

= {list calculus; definition of F}

(b = nl A nl = hdx A y € F(0, tazZ x)) V
(b = tb A [bZ]8-" e inits x A y e F(0,x -- [bi]8-")) V
(b g {ni,tb} A b = hdx A y e F(n + 1,tailx)),

where inits x is the set of initial segments of x, and x —- z is what remains when
initial segment 2 of x is removed from x. Thus, for x ^ [], the set H (n, x) of first
elements of sequences in F(n,x) is given by

H(n,x) = ([b/]8~n 6 initsx -> {tb,bl},{hdx}).

https://doi.org/10.1017/S0956796800000368 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000368

242 R. S. Bird

Furthermore, we can define © by

{(0, tailx) tfb = nl

(0,x - . [blf~n) ifb = tb
(n + 1, tail x) otherwise.

For the greedy condition, choose any ordering ^ on characters for which tb is the
minimum. We have

([b]-ti-y)eF(n,x) A b £ Min(H(n,x))

=> {since b =fc Min(if (n,x)) implies b = bl and [bl]s~" e initsx)

([bl] -H-JO e F(n,x) A [bl]s~n e initsx

= {definition of F}

untab n ([bl] -ff y) = x A [b/]8"" € inits x

=> {condition (1)}

(3z G iaiis y : untab n ([tb] -++- z) = x)

=> {since z € tails y implies #z

(3z : # z ^ # y A ([«»]-H-z) e
Since tb < 6i, the greedy condition is established. We obtain tabx =/(0,x), where
f(n, []) = [] and, for x ^ [],

{[nZ] 4f/(0, taiZ x) if hd x = nZ

[tb] -H-/(0, x -^ [bZ]8-") if [bZ]8"" 6 inits x
[/id x] -Vrf(n + 1, taiZ x) otherwise.

The program can be made more efficient by introducing g, where
g(n,m,x)=/(»,[bZ]m-H-x),

and where n+m ^ 7 . Using the assumption that no line of the text ends with blanks,
we obtain after a short calculation that tab x = g(0,0,x), where g(n,m, []) = [] and

g(n,m, [a]-H-x) =

[nl] -H- g(0,0,x) if a = nl
[tb]-H-g(0,0,x) ifa = bZA«+m = 7
g(n,m + l,x) ifa = b Z A n + m < 7
[bl]m -H- [a] 4f g («', 0,x) otherwise where

w' = (n + m + 1) mod 8.

6 Knuth's problem solved

Recall that Knuth's problem is to compute outn, where 0 ^ n < 216 and out =
Min(#) • Inv(in • 0 </• 0). We have in r = |_216r + 1/2J and d ® r = (d + r)/10.

Let F = Inv(in • © «/- 0). We know that # is a cost function, so it remains to find
a decomposition (p,H ,Q) for F and show that a suitable greedy condition holds.

As a first step we use the following rule for the inverse image of the composition
of two functions:

Invff • g) = U/ • Inv(g)* • Inv(fl.

https://doi.org/10.1017/S0956796800000368 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000368

Functional pearls 243

We then obtain F = U/ • Inv(© </• 0)* • Inv(in), where

Inv(in) n = {r e K | 2n - 1 ^ 217r < In + 1}.

It is not possible to obtain a decomposition (p,H ,Q) for F. However, a decomposi-
tion is possible if we generalise F to a function G, defined by G = U/ -Inv(© •/• 0)*7,
where

I(a,b) = {r eR \a < 217r < b}.

We restrict the definition of / to values b satisfying 0 < b < 217. Note that
Inv(in) n = I(2n — \,2n + 1) and 0 < 2n + 1 < 217 by the precondition on n, so that
Fn = G(2n-l,2n + l).

Writing G as a set comprehension, we have

G{a,b) = {[] |0eJ(a,fc)}u{[d]-H-x | d © (© */-0)x el{a,b)}.

Using the assumption 0 < b we have 0 G / (a, b) if and only if a < 0, so p a = (a ̂ 0).
Furthermore, for d e D and r € R,

d ®r el(a,b)

= {definitions of © and /}

10a ^ 2n(d +r)< 10b

= {since 0 ^ r < 1}

(10a/217 - 1 < d < 10b/217) A (10a - 217a" < 217r < 10b - 217d)

= {since d is natural and 10b/217 is not}

(LlOa/217J < d ^ Ll0b/217J) A r e / (10a - 217d\ 10b - 217d).

Hence, introducing

H(a,b) = {d e D | LlOa/217J ^ d ^ LlOb/217J}

(a,b)ed = (10a-2 1 7 r f ,10b-2 1 7 d) ,

we have

[d]-H-x 6C(n,fc)

= {definition of G}

(3r :d®rel{a,b) A (© </• 0)x = r)

s {above}

(3r :d €H(a,b) A r €l{{a,b)ed) A (ffi «/- 0)x = r)

= {definition of G}

d &H(a,b) A x £G{(a,b)ed).

We are left now with the verification of the greedy condition. Observe that if x,y e
G(a,b) with decx ^ decy, then z e G(a,b) for any z with decx ^ decz ^ decy.
Thus, setting e = Max(H(a,b)), we can argue

[d]-H-x € G(a,b) A dj=e

=> {definition of H }

https://doi.org/10.1017/S0956796800000368 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000368

244 R. S. Bird

(3y : [d]-H-x <=G{a,b) A [e] -U- y 6 G{a,b))

=> {since dec([d] -H- x) ^ dec[e] < dec(seqe -H- y)}

[e]eG(a,b),

and so the greedy condition is satisfied by taking the largest digit at each step. By
assumption b < 217, so the largest digit in H(a,b) is [10ft/217J. With this choice of
d we have 0 < 10b — 2lld < 217, so the restriction on the second argument of / is
maintained. The greedy algorithm is

f(nh\ = \
J (' \[d] -Vt-f (10a - 2vd, 10b - 2X1 d) otherwise where d = |.10i/217J.

References

Bird, R. S. and Wadler, P. 1988. Introduction to Functional Programming. Prentice Hall.
Moeller, B. (Editor). 1991. Constructing Programs from Specifications. North-Holland.
Knuth, D. E. 1990. A simple program whose proof isn't. In Beauty is our Business, (W. Feijen,

D. Gries, N. van Gasteren, editors). Springer-Verlag.

https://doi.org/10.1017/S0956796800000368 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000368

