Ergod. Th. & Dynam. Sys., page 1 of 32 © The Author(s), 2025. Published by Cambridge University 1
Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

doi:10.1017/etds.2025.14

A flower theorem in dimension two

LORENA LOPEZ-HERNANZ®+ and RUDY ROSAS® 3

T Departamento de Fisica y Matemadticas, Universidad de Alcald, Alcald de Henares,
Spain
(e-mail: lorena.lopezh@uah.es)
¥ Departamento de Ciencias, Pontificia Universidad Catdlica del Pert, Lima, Peru
(e-mail: rudy.rosas @pucp.pe)

(Received 4 April 2023 and accepted in revised form 11 March 2025)

Abstract. We prove a two-dimensional analog of the Leau—Fatou flower theorem for
non-degenerate reduced biholomorphisms tangent to the identity.

Key words: holomorphic dynamics, tangent to the identity biholomorphisms, parabolic
domains, flower theorem
2020 Mathematics Subject Classification: 32H50, 37F80 (Primary); 32S65 (Secondary)

1. Introduction

Let F' € Diff(C", 0) be a germ of a biholomorphism tangent to the identity. In dimension
one, the dynamics of F is completely described by the Leau—Fatou flower theorem [6, 9],
which guarantees the existence of simply connected domains with zero in their boundary,
covering a punctured neighborhood of the origin, which are stable either for F or for F~!;
moreover, in each of these domains F is conjugated to the unit translation.

In dimension two, no complete description of the dynamics of F is known. Some partial
analogs of the Leau—Fatou flower theorem have been obtained, guaranteeing the existence
of either one-dimensional [1, 5, 8, 12] or two-dimensional stable manifolds [7, 15]. With
no extra assumptions on F, the most general result is due to Abate [1], who showed that '
always supports some stable dynamics: either F' has a curve of fixed points or there exist
one-dimensional stable manifolds of F* with the origin in their boundary.

The proof of the above-mentioned results is crucially based on a resolution theorem
for F, which reduces the study of the dynamics of F to some combinatorial data of the
resolution and the study of the local dynamics of some reduced models of the transform
of F. This resolution theorem was introduced by Abate in [1] and is based on the
corresponding result for vector fields due mainly to Seidenberg [4, 14]. Before stating the
resolution theorem, we establish a precise definition of the reduced models suited to our
purposes (see also Remark A.4).

Definition 1.1. The germ of a biholomorphism in dimension two at a fixed point p is called
reduced if it is analytically conjugate to one of the following models.

Check f
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(i) Regular fixed points:
Fx,y) = (x +xMyV[1 + A(x, 1,y + xMyV B(x, y)),

where M, N > 0,(M, N) ¢ {(0,0), (1,0)},ord A>1and B € (y)if N > 1.
(ii) Non-degenerate fixed points:

F(x,y) = (x + M yNa + A(x, 91, y + xMyN by + B(x, ),

where M > 1, N >0,ab #0,a/b ¢ Q.9,ord A>1,0ord B > 2 and B € (y) if
N > 1.
(iii)  Saddle-node fixed points:

Fx,y) = (x +xMyVx + A(x, )1, y + xMyVB(x, y)),

where M,N >0, M+ N >1,ord A,ord B>2, Ae (x) if M > 1, B € (y) if
N > 1 and x + A and B have no common factors.

The resolution theorem, as we explain in Appendix A, guarantees the existence
of a finite composition of blow-ups 7 : (M, E) — ((Cz, 0), with E = 71 (0), which
transforms F' into a map F:(M,E)— (M, E) that fixes E pointwise such that for every
p € E the germ of F at p is reduced according to the previous definition.

Model (i) corresponds to the points p € E which are not singular, in Abate’s terminol-
ogy [1] (that is, the points which are non-singular for the saturation of the associated vector
field), and models (ii) and (iii) correspond to the points p € E which are singular; for the
latter, we use the names ‘non-degenerate’ and ‘saddle-node’ by analogy with the standard
terminology for vector fields, according to whether the linear part of the saturation of the
associated vector field has two or one non-zero eigenvalues, respectively. The dynamics of
biholomorphisms of the form (i) is described in [1, Proposition 2.1] when M = 0 and in
[3, Theorem 5.3] when N = 0.

In this paper we study the dynamics of non-degenerate fixed points. These are the only
models that appear at singular points in the resolution of a generic biholomorphism.

Actually, we consider in our study a slightly more general class of biholomorphisms,
since we do not impose the non-resonance condition a/b ¢ Q- . We distinguish two cases,
according to whether the fixed point set of F has one or two components. As a first case,
we consider biholomorphisms of the form

F(x,y) = (x + xMa + A(x, »1, y + xM[ex + by + B(x, y))), (A)

where M > 1,a,b,c € C,ab # 0,0ord A > 1 and ord B > 2. Non-degenerate fixed points
with N = 0 are included here. Biholomorphisms of this type appear, for instance, after one
blow-up at the point corresponding to a so-called non-degenerate characteristic direction
(see [8)]). Ecalle [5] and Hakim [8] showed that in this case there exist one-dimensional
stable manifolds for F with O in their boundary, called parabolic curves. Moreover, if
a and b satisfy the condition

Re(b/a) > 0, (A*)
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A flower theorem in dimension two 3

Hakim proved in [7] (see also [2]) the existence of two-dimensional stable manifolds with
0 in their boundary, called parabolic domains, where F is analytically conjugate to the map
(z,w) > (41, w).

As a second case, we consider biholomorphisms of the form

Fx,y) = (x + x5V a + A, w1y +xMyN b 4+ B(x, y)D), (B)

where M, N > 1,ab # 0 and ord A, ord B > 1. Non-degenerate fixed points with N > 1
are included here. If a and b are such that aM + bN # 0 and satisfy the condition

b
Re ¢ >0 and Re|{ — | >0, (B*
aM + bN aM + bN

Vivas proved in [15] the existence of parabolic domains for F.

The main result of this paper is an analog of the Leau—Fatou flower theorem for
biholomorphisms of this type, providing a complete description of the dynamics in a whole
neighborhood of the origin.

THEOREM 1.2. Let F be a local biholomorphism of the form (A) or (B). In the first case,
assume that F satisfies condition (A*) and set d = M and N = 0; in the second case,
assume that F satisfies condition (B*) and set d = gcd(M, N). Then, in any neighborhood
of the origin there exist d pairwise disjoint connected open sets Q7 , QT, cee Q;_l, with
0e BQ,:F Jor all k, and d pairwise disjoint connected open sets 2, 2|, ..., _,, with
0 € 9, for all k, such that the following assertions hold.
(1)  The sets QZ‘ are invariant for F and FI — 0 as j — +00 compactly on QZ‘ for all
k, and the sets 2 are invariant for F~land F~/ — 0 as j — 400 compactly on
Q, forall k.
(2) The sets Qg, e, Q:Ll s Qa, e, QL;] together with the fixed set {xyN = 0} cover
a neighborhood of the origin.
(3) For each k, there exist biholomorphisms (p,;|r : Q,;L — Wk+ c C? and @ P —
W, C C2, with W,j', W, C CxC*if N > 1, with the following properties:
(a) <ij and @, conjugate F with the map (z, w) — (z + 1, w).
(b)  The sets Wk+ and W, satisfy

U wE=G.o1=C*iftN=0; | J [WF—(j.0)]=CxC*if N>1.
+jeN +jeN

Our second result shows that if conditions (A*) or (B*) are strictly not satisfied, then F
has generic finite orbits in some neighborhood of the origin and so no two-dimensional
stable sets. A version of this result has already been proved by Lisboa [10] for analytic
vector fields.

THEOREM 1.3. Let F be a local biholomorphism of the form (A) or (B). In the first case,
assume that Re(b/a) < 0; in the second case, assume that either

b
Re ¢ <0 or Re|—— ) <O.
aM + bN aM + bN
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Then there exists a neighborhood U of the origin and there exist sets P, P~ C U, which
are one-dimensional submanifolds of U if F is of the form (A) and are empty otherwise,
such that the following properties hold: given p € U \ P outside the fixed set, there exists
j € N such that FI(p) ¢ U; given p € U \ P~ outside the fixed set, there exists j € N
such that F~1(p) ¢ U. If F is of the form (A), then P is the set of points in U that are
attracted under F to the parabolic curves of F, and P~ is the set of points in U that are
attracted under F~' to the parabolic curves of F~'.

The following example shows the necessity of the hypotheses in Theorems 1.2 and 1.3.

Example 1.4. For M > 1, N >0 and a, b € C* that do not satisfy the hypotheses in
Theorems 1.2 and 1.3, consider the biholomorphism F given by the time-one flow of the
vector field
X = )CA/IyN|:czxi + byi:|
ax dy

and let us show that for any neighborhood U/ of the origin there exists p € U outside the
fixed set such that the orbit { F/(p): j € Z} is contained in ¢/ and bounded away from the
origin.

Assume first that N = 0, so Re(b/a) = 0. If (x(¢), y(¢)) is a solution of X and we set
(x0, y0) = (x(0), y(0)), we get by integration that

x(1) = xo[1 —aMx(])V[t]_]/M and y(t) = yo[l —aMx(l)Wt]_b/(“M),

defined for all + € R provided that aM)c(’)W ¢ R. We have that |x(¢)| < Cl|xg| for some
C > Oand forallr € R, and if we set b/(aM) = i we have

y(0)] = Iyolef wei=aMxgn

so e BT | yg| < |y(1)| < e!P|yp]| for all 1 € R. Therefore, given a neighborhood U/ of the
origin, if we choose (xo, yp) as above and sufficiently small with yg # O then its orbit is
contained in ¢/ and bounded away from the origin.

Assume now that N > 1, so either aM +bN =0 or aM + bN # 0, Re(a/
(aM +bN)) >0 and Re(b/(aM + bN)) =0. If (x(¢), y(t)) is a solution of X with
(x(0), y(0)) = (x0, yo) and we set P(t) = x(1)™ y(r)", we have P’ = (aM + bN) P2,
x" =aPx and y' = bPy. Suppose first that aM + bN = 0. Then P(t) = P(0), x(¢) =
x0e?P O and y(1) = ype? PO 50

(x (1), y(t)) = (x0e™0 307 ypeb=s ¥ 1

for all r € R. Note that, since a/b =—N/M € R, in any neighborhood U/ of the
origin we can take (xo, yp) arbitrarily small with xgyp # O such that Re(ax(f)” yév )=
Re(bx(’)w y(])v ) =0. In this case, the expression above shows that [x(¢)| = |xo| and
|y()| = |yo| for all ¢ € R, so the orbit of (xg, yg) is bounded away from the origin and
contained in U provided (xg, yg) is small enough. Suppose now that aM + bN # 0,
Re(a/(aM + bN)) >0 and Re(b/(aM + bN)) =0. By integration we have that
Pty =x{yY11 — @M + bN)x}!y\'117" and
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x(1) = xo[1 — @M + bN)x{! ylY 117/ @M +0N)
y() = yoll — (aM + bN)x(I)VIyévt]*b/(aM+bN)’

defined for all + € R provided (aM+bN)x6"’yéV ¢ R. If we set a/(aM +bN) =
o) + i, withay > 0,and b/(aM + bN) = if8, we have

M N
(O] = lxoll T = (@M +bN)xg! yg'r] 7122 el @R 0D

and

V@] = yolef w1 =@M+bNIGTD),

SO
Ix(0)] < Cel|xgl, e PIT|yo] < |y ()] < e |yp]

for some C > 0 and for all # € R. Therefore, given a neighborhood I/ of the origin, if we
choose (xg, yo) as above and sufficiently small then its orbit is contained in ¢/ and bounded
away from the origin.

To conclude the introduction, let us briefly describe the structure of the paper. In §2
we prove some basic dynamic facts in the spirit of the Leau—Fatou flower theorem that we
will use throughout the paper. Sections 3—7 are devoted to the proof of Theorem 1.2. In
§8§3 and 4 we show the existence of invariant domains and invariant functions for maps of
the form (B), with N > 0, satisfying the hypotheses of Theorem 1.2; as we will explain
in §7, this will also allow us to obtain Theorem 1.2 for maps of the form (A). In §5 we
construct an approximation of Fatou coordinates (that is, conjugations with (z, w) —
(z + 1, w)), which we modify to actual Fatou coordinates in §6. The final details of the
proof of Theorem 1.2 are provided in §7. Finally, in §8 we prove Theorem 1.3.

2. Stable subdynamics in two variables
In this section we prove Proposition 2.2, which provides some basic dynamic facts in the
spirit of the Leau—Fatou flower theorem, adapted to our two-dimensional context.

Definition 2.1. Givend € N, e > 0and 0 € (0, w/2), we define the sets
S, e,0) ={z€C: %] <, argz))| < 6},

whose connected components are the d sectors

2k 0
Sk(d,e,0) =3z€C:|z] < gl/d arg z — atid < —
d d
fork=0,...,d —1,and
S, ¢, 0) =S(d,e,9)U{z eC: zd—geﬂ'e < %} U {ze(C: zd—geig N %}
whose connected components are d sectorial domains §k (d, ¢, 0) of opening (7 + 20)/d
bisected by the rays e2"1/IR* fork =0,...,d — 1.
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PROPOSITION 2.2. Let G : @ — C? be a holomorphic function, where 2 is a neighbor-
hood of 0 € C2. Denote (xj,yj) = G/ (x,y)forall j > 0. Let m,n, d € Z>q be such that
m+n > 1andd > 1 and suppose that

x;ny;l — y _ (xmyn)dJrl + (xmyn)d+10(x’ y)'

There exist functions g, G, 5g (0, /2) — RT with the following properties.

(1) If S is a connected component of S(d, ¢, 0) or E(d, g,0) with 0 € (0, 7/2) and
& < eg(0), then for all (x, y) withx™y" € S, |x| < 6 (0) and |y| < 8G(0) we have
that x{'y] € S. Hence, if x"y" € S and |xj| < 6G(0), |y;| < 8 (0) forall j >0
then x;”y;’ € Sforall j > 0. In this case, if S is a component of S(d, €, 0) we have
that

Ly nid 2 " y" |4
21+ jlxmyn)d = = b7yl = cos O 1+ jlxmyn|d

forall j >0, and if S is a component of E(d, &, 0) we have that
nd
Ly

e = 213 eyl forall j >0,
| m n|d 6
|x JI - 1+j|xmyn|d forall] = |xmyn|d'

In particular, x y — 0as j - +oo.

(2) Consider a component §k(d, g,0) of g(d, g,0) with ¢ < eg(0) and assume the
following additional hypothesis on G: there exist v > 0 and 6, > 0 such that

il < x4 vy and il < Iyl + vy

whenever x™y" € gk(d, g, 0), |x| <6, and |y| < 8,. Then, given u > 0, we find
i > 0 with the following property: if x™y" € Sx(d, ¢, 0), |x| < i and |y| < [,
there exists jo > 0 such that x'" yj € Sr(d, ¢, 0) and, for every j < jo, x;”y;‘ €
Sk(d, e, 0), 1xj| < pand |y;| < p. 3

(3) Taked € (0, 71/2) and consider a point (x, y) with x™ y" # 0 such that |x ;| < 3G (6)
and |y;| < 8G(0) for all j = 0. Then xm ” — 0 as j — +o00 and there exists

k €{0,. d — 1} such thatx eSk(d 8 0) for any ¢ > 0 and for j > 0 big
enough. Moreover the two last lnequalmes of assertion 1 hold.

We will need the following result.

LEMMA 2.3. There exists k : (0, 1/2) — RT with the following property. If f(z) = z — 2>
forz € Cand either S = S(1,¢,0) or S = S, &,0) with0 € (0, t/2) and e < k(0), then

f(S) C Sandforallz € S,

dist(f(z), 8S) > «(0)|z|*.

Proof. Suppose firstthat S = S(1, €, 0). Setk(0) = % sin(6/2) and assume thate < x(0).
An easy computation shows that the map z — w = 1/z conjugates f to
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1
gw)y=w+1+——
w—1
and transforms S into

W={weC: |w|l>1/e, |largw| < 6}.

Fix z € 8(1,¢,0) and set z1 = f(z), w =1/z and w; = 1/z1 = g(w). Consider the
sectors Sy, () and S, (6/2), where

Sw@)=w+{¢eC:|¢| >0, |arg | < a}.
Clearly, S,,(6/2) C Sy, (0) C W and
dist(w + 1, 8, (6/2)) = sin(6/2).

Then, since

1 - 1 . 1
lw —1] 1/k@)—1 8/sin(0/2) — 1
we see that wy € S, (8/2) C W, which proves that f(S) C S. Note that

1
dist(w + 1, wy) = < ) sin(6/2) < sin(0/2),
dist(wy, 08y, (0)) = |w; — w] sin B,

where B is one of the angles determined by the ray ww; in the sector S, (). Since
wi € Sy(0/2), we have that 8 > 6/2 and therefore

dist(wy, S, (0)) > |wy — w]| sin(@/2) > <1 - ) sin(0/2)

> (1 — 1 sin(8/2)) sin(6/2) > 3 sin(6/2).

lw — 1]

Then, since S, (0) C W,
3
dist(wy, W) > dist(wy, 35, (0)) > 1 sin(6/2),

sothedisk D ={¢ € C: | —w| < % sin(6/2)} is contained in W. If we set h(¢) = 1/¢,
we have that /(W) = S and h(D) contains the disk {£ € C: |§ — h(w)| < r}, where

r = min{|h(¢) — h(wy)|: ¢ € 9D}
Notice that if ¢ € 9D, then |¢| < |w;| + 3/4 < 2|wq|. Then

. & —w
r = min
wi

¢

3 5in(0/2) _ 3 5in(9/2)
2wy |? [wy |2

1 € BD} >
Thus, since
Vwi > = |z1 1 = 12121 = 12D? = [z12(1 = k() = [z]*(1 — 1/8)* > 3|z)%,

we see that r > JT sin(0/2)|z|*> > k(0)|z)?. Therefore we conclude that S contains the disk
{¢ € C:|¢ —z1] < k(0)|z|?}, which concludes the proof.
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Suppose now that S = S(l €, 0), take k() = g sm(n/4 0/2) and assume that
& < k(0). Then the map z — w = 1/z transforms S into

W=WU{weC: Re(we %) > 1/e} U {w € C: Re(we'?) > 1/s}.

Note that S, (w/4 —6/2) C Sy(w/2 —60) C W. Then the proof follows exactly as in
previous case, with /2 — 6 instead of 6. Finally, to unify the selection of k we can take
k(0) = % min{sin(6/2), sin(;r /4 — 0/2)}, which works for both cases. O]

Proof of Proposition 2.2. From the expression for x{"y} we obtain that
(xinyl )d (xm n)d (xmyn)Zd + (xmyn)ZdU(x7 y) (1)
and
1 . 1
(xl M1 )d (x’”)’")d

where o = O(x,y) and o1 = O(x, y). Moreover, notice that x{"yy/(x"y") =1+
O(x, y) is arbitrarily close to 1 provided x and y are small enough. Then, given
0 € (0, 7/2), we can find §G(f) > O such that for all (x,y) with |[x| < §5(0) and
|y| < 8G(0) we have that

+ 14+ o01(x,y), (2)

x'yy T —26

d s

lo(x, )| <k(0), loi1(x, y)| < % and |arg
where « (0) is given by Lemma 2.3. Set e (0) = k(0).

Let us prove assertion 1 of the proposition. Take ¢ < g5 (0), let S be one of the
components of S(d, ¢, ) or §(d, g, 0) and take (x, y) such that x"y" € S, |x| < §g(6)
and |y| < 8G(9). Set f(z) = z — z%. Note that S = {z?: z € S}is one of the sets S(1, ¢, 0)
or 5(1, &, 0), so by equation (1) and Lemma 2.3 we have that

Iy — ™y < ,(@)|x™y" 2 < dist(f((x™y™)), 8S),

which means that (x{"yf myd ¢ S. Since the components of S(d, e,0) or S(a’ g, 0)
are separated by a sector of opening at least (x —26)/d and |arg(x{"y]/(x"y"))| <
(r —20)/d, we conclude that (x}" y1 myd belongs to the same component S.

Now, let (x, y) be such that x™ y" € S with |x;| < §g(0) and |y;| < §g (@) forall j > 0.
From (2) we obtain that

] | it

= +Jj+ E o1 (X1, Y1)s
m . ,n\d d
(xj y]') (x™y™) =0

SO

1 1 1 1
mi’_ldS mnd—i_']—i__]52 mnd+J
Wy ey 4 ]

for all j > 0, which gives the lower bounds in the inequalities of assertion 1. On the other
hand, from the equation above we have that
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j—1
|y |d = Re (xMy™yd = Re (xmynyd ti- Z o1 Cx, 1)
J 7 J 7 1=0
R 1 y 1. R 1 N 3.
e — ——j=Re —— + —j,
— (xmy")d J 4J (x’"y”)d 4J

for all j > 0. If S is a component of S(d, ¢, 6), since |arg(1/(x™y")?| < 6, we have that
Re(1/(x™y™)?) > cos /|x"y"|¢ and therefore

1 - cos 6 +3.>COS9 1 Iy
wryiid = Jemymd T4 = T \emymd Y

for all j > 0, which gives the upper bound in the first inequality of assertion 1. If S is a
component of S(d, €, 0) we obtain that for all j > 6/|xmy"|d,

3 1 3 1
SO DR PR T P VAR BN
yd = R Gmymd T3 = T T3 = 2(|x"1y"|d ”)

which concludes the proof of assertion 1.

Let us prove assertion 2. From the expression for x{"y| we can write x{"y] = x"y"
(1—=2¢),where¢ = (1/d + r)(x’"y”)d and t = O(x, y). Then, up to reducing §,, we have
that if |x| < §, and |y| < §, then

gl <1, Jarg(—=¢)| <60/d, |1/d+7|> 38y, |arg(l/d+1)] <6,
where 6* = min{6/2, w/4 — 6/2}. Set

7 — o—27v/(d8y sin 6%)

M min{M’ 8\)7 8G}

Take x™y" € §k(d, e,0) such that |x| < and |y| < fi. If |arg(x”y")¢| < 6, we have
that x™y" € Sx(d, ¢, 0) and, since i < pu, we can take jo = 0 and we are done. Thus we
can assume that |arg(x”y")?| € [0, § + 7/2). Moreover, we assume that arg(x"y")¢
[0, 6 + 7 /2); the other case is analogous. Then

arg ¢ = arg(1/d + 1) + arg(x"y")? € (6 — 6%, 0 + /2 +6%) C (6/2,6/2 + 371/4)
and hence
Im ¢ > |¢| min{sin(6/2), sin(8/2 + 37 /4)} = || sin 6*.
Then, since || < 1, sin(arg(l —¢)) = —Im ¢ /|1 —¢| < —% sin 6*|¢| and therefore
—6 < arg(1 — ¢)¢ < d sin(arg(l — ¢)) < —%l sin 0*[Z].
It follows that
0 < arg(x"y")! —0 < arg(x"y") 4 are(l — ) < arg" ") — & sin %1

d
< arg(x"y"9 — E(Susin 0% |x™y"4;
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10 L. Lopez-Hernanz and R. Rosas
that is, arg(x{" y] M = arg(x™y")? 4 arg(1 — ¢)¢ satisfies
d
0 < arg(x™"y"M? < arg(x™y")? — 56” sin 6% [x™ y"|4. (3)

Then |x™y" |4 < (2/(d$, sin 6*)) arg(x"y")¢ < 27 /(d8, sin 6*) so

il < (L vy |) < e < e @ sin0T) = ming, 5, 86)

and, analogously, |yi| < min{u,$,,dc}. Thus, if arg(x{"yf md <9, since x'yj €
Sk(d &, 0) because of assertion 1, we have that x{"y} € Sx(d, ¢, ), we can choose jo = 1
and we are done. We assume then that arg(x" y{ "4 ¢ [0, 6 + /2). Proceeding exactly as

above, we obtain that

0< arg(xé"yg’)d < arg(x]"yy ¥ — Svsm 0% |x{" ! nd
and, in view of (3),
m_ n\d m  n\d d . *) . .m_ n d nd
0 < arg(xy' yy)* < arg(x™y") —58vsm6 [x™y | ——8vs1n9 EHEI
Then
2 2
m_nd d m n\d
YT T < e Gge Y < e
SO

d d
2l < [ (14 vlx™y" [ (1 + vty |9y < |x|eW" Y IR

27v/(d8, sin 6%) __

< [ie = min{u, 8, 86}

and, analogously, |y2| < min{u, 8,, 8c}. Thus, if arg(xy’ yz)d < 6, we have that x7'yy €
Sr(d, €, 0), we can take jo =2 and we are done. We assume then that arg(x2 Yy )d
[6, 6 + /2) and repeat the argument. If assertion 2 were false, this process would continue
indefinitely and we would obtain, for every j > 0, that |x;| < g, |y;| < ¢ and

2

xmnd+xm11+ +xmn )
"y e I < g

But the inequalities in assertion 1 show that >0 |x}71 y;? |4 diverges, which is a contradic-
tion.

Let us prove assertion 3. Let 6 € (0, 7/2). Choose 61 > 0 such that for all (x, y) with
|x| < &1 and |y| < 81 we have |o1(x, y)| < % tan 6 and set

56(0) = min(sy, 66, e¢ "),
Take (x, y) such that |x;| < 8G(0) and |y;| < 8G(6) for all j > 0. From (2) we have

1 1.
(x )d + —jtané.

j—1 1
2

'I + Y lo1x, y)l < |Im
1=0

Im — R —
‘ (xmyn)d (xmyn)d
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A flower theorem in dimension two 11

On the other hand, as we showed in the proof of assertion 1,

1 3
e > Re +—J.
(1 ye (xmymyd 4

Therefore, for j big enough,

Im(1/ (7 y"H)D)| _ m(1/G™y) )+ (1/2); tan 6

< < - < tan 6.
Re (1/(x7'y) Re(1/("y")d) + (3/4)]

This means that |arg(1/(x;"y7)d)| < 6 for j big enough, so we can fix jy > 0 such
that |arg(x%y;?0)d| < 6. Moreover, since |(x;.’(’)y;?0)d| < 8 (0)mtmd < ¢ (0), we have that
x%y;?o € S, e (9), 0). Thus x;'(’)y;’o € Sr(d, eg(9),0) for some k € {0,...,d — 1} and
it follows from assertion 1 that x;"y;? € Sx(d, eg(0),0) for all j > jo and x;?’y;.’ — 0.
Clearly, given ¢ > 0, up to increasing jy, we have that x;-” y? € Sx(d, ¢, 0) for all j > jj.
Moreover, arguing exactly as in the proof of assertion 1 we have that the two last

inequalities of that assertion hold. This concludes the proof of Proposition 2.2. O

3. Existence of parabolic domains

In this section we show the existence of parabolic domains for biholomorphisms of
the form (B) satisfying condition (B*). Actually, we consider a slightly larger class of
biholomorphisms, since we allow N > 0 (note that if N = 0 condition (B*) is precisely
condition (A*)).

Consider a biholomorphism of the form (B), with N > 0, satisfying condition (B*). Set
d=Mif N =0andd = gcd(M, N) otherwise. Applying a linear change of coordinates
of the form (x, y) — (ax, By), we obtain the same expression for F but with a and b
respectively replaced by a = —a/(aM + bN) and b= —b/(aM + bN), so hypothesis
(B*) becomes Re @ < 0 and Re b < 0, and we have aM + bN = —1. Thus, we directly
assume that

Rea <0, Reb<O0 and aM +bN = —1.

Setm = M/d and n = N/d. Given a point (x, y) in the domain of definition of F, we
denote (x;,y;) = F J (x, y) for all j > 0. Notice that, from the expression for F, we easily
obtain that

1
xll’nyi'l — xmyn _ E(xmyn)d-‘rl + (xmyn)d-i-lo(x’ y) (4)
Definition 3.1. Fix y € (0, 1) such that
14 14
y(m+n) <1, Re a—i—z <0 and Re b+§ <0
andsett =0ifn =0and¢ = 1ifn > 1. Given 8 € (0, 7/2) and ¢, § € (0, 1], we consider

the sets Dy = Di(e, 0, 8), Dy = D (e, 6, 8) and Uy = Ui(e, 0), for k € {0, . .., d — 1},
defined by
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12 L. Lopez-Hernanz and R. Rosas

Dy ={(x,y) € Cc?. x"y" e Si(d, €, 0), x| <8, |y| < 8},

D = {(x,y) € C%: x"y" € Si(d, &, 0), |ix| <8, |y| < 8},
where Sy (d, €, 6) and §k (d, &, 0) are the sets of Definition 2.1, and
Up = {(x,y) € C?: x™y" € Sp(d, &, 0), x| < |x™y" |7, |y| < |x"y"|"}.

Remark 3.2. If n > 1, the condition x"y" € Sx(d, ¢, 6) or x"y" € §k(d, &, 0) implies
that the sets Dy, l~)k and Uy are disjoint from the coordinate axes {xy = 0}. If n = 0, we
have that x”*y" = x so the sets Dy, Dy and Uy are disjoint from {x = O} but they intersect
{y = 0}. On the other hand, if n = 0 notice that Uy = {x € Sx(d, ¢, 6), |y| < |x|¥} and,
since ¢, y < 1, the inequality |x| < |x|” holds in U. Therefore, even if n = O we can write

Ur = {(x, y) € C?: x"y" € Sp(d, €, 0), |x| < |x"™y"|7, |y] < |x"y"|"}.
Finally note that, because of the condition y (m + n) < 1, the set Uy is non-empty.
Since |arg(—a)| < w/2 and |arg(—b)| < m/2 and, by the choice of y, |arg(—a —
y/d)| < /2 and |arg(—b — y/d)| < 7 /2, we can fix 8y € (0, 7 /2) such that
larg(—a)| + 260y < /2, |arg(—a —y/d)| + 26y < /2,
larg(—=b)| + 260y < /2, |arg(—b — y/d)| + 200 < /2.
PROPOSITION 3.3. Let F be a biholomorphism of the form (B) with N > 0 satisfying
condition (B*) and fix 6y as above. Given 6 € (0, 0y), there exist €g, 59 € (0, 1] such that

for e < ey and § < &y the following properties hold.
(1) Foreveryk € {0,...,d — 1} we have that

F(Dy(e,0,08)) C Dr(e,0,8), F(Uk(e, 0)) C Uk(e, 9),

F/ =0 as j — +oo uniformly on Ui (¢, ), Di(¢g, 0, §) is contained in the basin of

attraction of Uy (g, 0), and every point (x, y) € Ui(¢e, 0) U Dy(¢, 0, §) satisfies
2 |men |d

cos O 1+ jlxmyn|d

mynd
Loy
21+ jlxmyn|d — 7J

®)

d
yilt =

for all j > 0. Moreover, any orbit of F that converges to 0 eventually lies in Uy (¢, 6)
for some k € {0,...,d —1}.

(2) There exists Se (0, 1] such that Bk (¢, 0, 5) is contained in the basin of attraction of
Uk(e,0) forallk € {0,...,d — 1} and

F/(Dy(e, 0,8)) C Di(e, 6, )
forall j > 0.

Proof. From the expression for F, we can write x; = x(1 — ¢), where ¢ = (—a +0)
(x"y"M? and ¢ = O(x, y). By the choice of 6, we can take 8y > 0 such that for all (x, y)
with |x| < &g and |y| < §p we have

80 < |—a+o| <1/8, larg(—a +0o)|+ 2600 < 7/2.
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A flower theorem in dimension two 13
Setn = ngcos(n/Z — 6p) > 0and g9 = §p cos(w/2 — 6p). Let us show that if ¢ < gy and
ke€{0,...,d— 1} then for all (x, y) € Di(e, 0, §9) we have

il < el =l y"1 ) < . (6)
Consider (x, y) € Dk (e, 8, §p) with ¢ < g9. We have that
1 < 1™y /80 < €/80 < 1
and
larg ¢| < |arg(—a + 0)| + Jarg(x™y")?| < (7/2 —260) + 0 < 7/2 — 6.
Thus [¢| < &/80 < cos(w/2 — 6p) < cos(arg ¢) and so |¢|> < Re ¢. Then
1—¢P=1-2Re¢+[¢)*<1—-Ref <1—Re¢+1(Re)’>=(1—1Reo)?
and therefore |1 — ¢| < |1 — % Re¢|=1- % Re ¢, so
1—¢l<1—1tRe¢=1-4cos(arg¢)[¢| <1 — 5 cos(r/2 — 6p)[¢|

and hence |1 —¢| < 1 — %80 cos(m/2 — 90)|xmy"|d, which proves (6). Proceeding in the
same way, up to reducing 8o if necessary, we get that for all (x, y) € Dk (e, 0, §p) with
& = &,

il < Iyl = nlx™y™%) < |yl. (7)

From the expression for F, if x, y € C* are small enough, we have that

Il YT+ bG™y)4 (1 + O(x, )
YTyl = (y/d)(xmyE (1 4 O(x, y))|

_ Iyl m.n~d 14

= oy 14+ &%y b+3+0(x,y) ;

SO we can write
[y1] [yl

= 1—¢l,
ey

where ¢y = (=b — y/d + t)(x’"y”)d with T = O(x, y). By the choice of 6y, reducing &y
if necessary, we get that for all (x, y) with |x| < 8¢9 and |y| < §p we have

So<|—b—y/d+rt|<1/8, |arg(—b—y/d+ 1) +2600<m/2.

Let us show that if ¢ < gp and k € {0, ..., d — 1}, then for all (x, y) € Di(e, 0, §p) we
have
Iy1l Iyl d |yl
< 1_ m_n < . 8
by = ey TR S Ty ®

Consider (x, y) € D (e, 8, 8p9) with & < gg9. We have that

o1 < |x™y"|4 /80 < /80 < 1
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14 L. Lopez-Hernanz and R. Rosas
and
larg ¢1| < |arg(—b — y/d + T)| + |arg(xmy”)d| < (/2 —20p) + 6 < 7/2 — By,

so proceeding exactly as above, we obtain that |1 — 1| < 1 — nlx™y" |4 which proves (8).
If n > 1, analogously we get, up to reducing & if necessary, that for (x, y) € Dy (e, 6, &o)
with ¢ < g9 we have

X X X
M e eyt < 2

R o LA b U U |y |y

€))

Notice that, because of equation (4), F satisfies the hypotheses of Proposition 2.2. Set
S0 = mi . dly d/ly
9 = min{l, 89, 67 ()} and &g = min{l, eo, er(0), )" ", r(O)"7},

where e¢r(0) and §r(0) are the constants given by Proposition 2.2. Now, consider
e <¢gg,6 <bpand k €{0,...,d — 1} and let us show that Dy (e, 6, §) and Uyi(e, 6) are
invariant by F and that estimates (5) hold. First, take (x, y) € Di(¢, 8, §). Then, it follows
from (6) and (7) that |xi| < |x| <§ and |y;| <|y| < §. Moreover, since & < er(6),
8 < 6r(0) and x™y" € Si(d, €, ), we have by assertion 1 of Proposition 2.2 that x{"y}' €
Sr(d, €, ). Therefore (x1, y1) € Di(¢, 6, 8) and so Di(e, 6, 8) is invariant by F. Now,
take (x, y) € U (e, 0). Then |y| < [x™y"|” < 7/4 < 8y and in the same way |x| < &,
so (x, y) € Di(e, 0, 8). It follows from (8) and (9) that |y;| < |x{"y]|” and analogously
lx1] < |)c1 i ™Y . Moreover, since x™y" € S;(d, €,0),e < ep(0), |y| < g¥/d < Sr(0) and
x| < /4 < §(0), we have by assertion 1 of Proposition 2.2 that x{"y| € Sx(d, ¢, 9),
which proves that Uy (¢, 6) is invariant by F. Moreover, if (x, y) € Uk(g, 6) U Dy (¢, 8, 6)
we have estimates (5) directly from assertion 1 of Proposition 2.2.

Let us prove now that F/ — 0 uniformly on Uy (e, ). Take (x, y) € Ui(e, #). Since
(xj,y;) € Ur(e, 0) forall j > 0, by (5) we have

npd 2 |x™myn|d _ 21
Yj _cosel+j|x’"y”|d_cosej

|x

for all j >0, which shows that xm y” — 0 uniformly on U(e, #). Then, since
lyjl < |x R Y and |x;| < |x R Y, We have that x; — 0 and y; — O uniformly on
Ui(e, 0).

Consider now an orbit (x;, y;) converging to 0 and let us show that it eventually lies
in Uy = Ui (e, 0) for some k. Let §7(0) be the constant given by Proposmon 2.2. Since
(xj, yj) — 0, there exists jo > 0 such that |x;| < (SF(G) and |y;| < SF(G) for all j > jp.
By assertion 3 of Proposition 2.2, up to increasing jp, we have that x}" y;’ € S, ¢, 0) for
all j > jo and for some k € {0, ...,d — 1} so, increasing jo again if necessary, we get
that (x;, y;) € Di(e, 8, &) for all j > jo. Then, by iterated applications of (8),

|YJ0|

[yl -
IR T

7 ]_[(l—nlxl A

JOyJO
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A flower theorem in dimension two 15

for all j > jo. The estimate

yiid > 1 xmynd

x _—
| _21+]|xmy |

from (5) implies that ]_[l jo(l —nlx" yl| ) tends to 0 as j — +oo and so does
|yj|/|x |” Hence |y;| < |x |V for j big enough and, if n > 1, analogously
x| < |xm yj Y for j big enough Wthh proves that eventually (x;, y;) € Ui. Then, to
prove that Dk(a 0, 8) is contained in the basin of attraction of Uy (¢, 0) it suffices to show
that the orbit of any point in Dg(¢, 6, §) converges to 0. Take (x, y) € D(e, 0, §). Since
(xj,yj) € Dr(e, 0, 8) forall j > 0, we can apply (6) and (7) for each (x;, y;) and we have

Jj—1 Jj—1
il < bxol [T =nbx>7 1D, 1yl < Ivol [ = nlxf"y1%.
=0 =0

We have as before, by estimates (5), that the product above tends to zero and so do x; and
y;j. This concludes the proof of assertion 1.

Let us prove assertion 2. From the expression for F© we have in a neighborhood
of 0 € C? that |x1]| < |x|(1 + v|x™y"|%) and |y1| < |y|(1 + v|x™y"|?) for some v > 0.
Let § = min{l, 1}, where i is given by assertion 2 of Proposition 2.2 for u =§. If
xMy" e ﬁk(s 0,35), by Proposition 2.2 there exists jo > 0 such that |x;| <&, |y;| <
and x’”y" € Sk(d e, 0) for all j < jo and x]oy]0 € Si(d, &, 0). In particular, (x}y, yj,) €
Dy (e, 9 8) so by assertion 1 (x;, y;) € Dy(e, 0, 8) for all j > jo so it eventually lies in
Uk (¢, 0). Moreover, since |xj| < 8, |y;| < 8 and x;”y;? IS §k(a’, e, 0) for all j >0, we
have that Fj(ﬁk(s, 6,8)) C Bk(a, 0, é) for all j > 0. This concludes the proof of the
proposition. O

4. Existence of invariant functions
In this section we show the existence of invariant functions for F on the domains
Ui = Ui (e, 9) given by Proposition 3.3 (up to reducing ¢).

Since F is close to the time-one flow of the vector field

M 0 0
x7y (axa— + by 5)
and the vector field ax(d/dx) + by(d/dy) has the Liouvillian first integrals x"?y="4,
n € C*, our aim is to find an invariant function close to one of these first integrals,
for which we start by defining a suitable branch g(x, y) of x%?y=4¢ on Uy, where
0 <k <d — 1. From now on, if z € C\[—00, 0] and A € C\Z, we denote 7~ = etlogz
where log is the main branch of the logarithm. Note that, since m and n are coprime if
n > 1, there exist p, ¢ € Nsuch thatgm — pn = 1;ifn = 0, we set p = 0, ¢ = 1. Denote
A =d(ap + bq) and define g : Uy — C as

g(x, y) = xPyl(x"™y"*, (10)

which is well defined since x y” belongs to C\[—o0, 0] for all (x, y) € Uy. We point out
thatif n > 1, since Uy is disjoint from {xy = 0}, the function g is non-vanishing whereas if
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16 L. Lopez-Hernanz and R. Rosas

n =0, since g(x, y) = yxM? and Uy, intersects {y = 0}, the function g has Uy N {y = 0}
as zero set.

If x and y belong to a small sector bisected by R™ we have, in view of the identity
dma + dnb = —1, that

g+ni __ db —da

”))‘:xp"'m}‘y =xy ,

gx,y) =xPyl(x"y

so g is a branch of x??y=44 on Uy.

PROPOSITION 4.1. Let F be a biholomorphism of the form (B) with N > 0 satisfying
condition (B*) and fix 6y as in §3. Consider 0 € (0,0y) and let g9 be the constant
given by Proposition 3.3. Then there exist &g € (0, eg] and functions v, € O(Uy) for all
kel0,...,d— 1}, where Uy = Uy (&p, 0), such that Yy o F = Yrx. Moreover, Yy = ug,
where g is the function defined above and u € O(Uy) satisfies lu(x, y) — 1| < 1/2 for all
(x, y) € Uy, in particular, Vi is non-vanishing if n > 1 and has U, N {y = 0} as zero set
ifn=0.

Proof. Take &y < ey. Note that the domains Uy = Uy (&p,0) for k € {0,...,d — 1}
satisfy the conclusion of Proposition 3.3.
We define ¥y as

Yr(x, y) :,-hj‘olo gxj,yj), (x,y) €Uy,

where (xj, y;) = F J(x, y). It is clear that this function, if well defined, will be invariant
by F. Let us show that it is well defined and holomorphic. Using the expression for F' and
equation (4), we have that

xpyq
L — 1 4 "y ap + bg + O(x, y)]
_xqu
and
'yt :
o = 1= @y Z 10wy
for all (x, y), so
g(x1, y1) =14 £(x, y), with £(x, y) = (xmyn)dO(X, y). (11)

g(x,y)

Since (xj, y;) € Uy for all j, we have that |y;| < |x’"y [V and |x;] < |x Ay Y so
|€Cxj, ¥l < Ky 147

for some K > 0. Therefore, by estimates (5), the product szo(g(xjﬂ’ Vi+1)/8(xj, ¥;))
converges uniformly for (x, y) € Uy and defines a holomorphic function u € O(Uy). Then
g(xj,yj) — u(x, y)g(x,y) uniformly on Uy, so vy is well defined and holomorphic
in Uy, and we have vy = ug. Note that the function u is arbitrarily close to 1 if
we suppose |[x™y"| to be small enough: if n € N is large enough the finite product
HOSan (g(xj41,yj+1)/g(xj, y;)) is arbitrarily uniformly close to u and we have from
(11) that this finite product is arbitrarily uniformly close to 1 if |x”y"| is small enough.
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Therefore, since [x™y"| < éé/d in Uy, we get that |u(x, y) — 1| < 1/2 for all (x, y) € Uy,

provided &g is small enough. O

5. Approximate Fatou coordinates

In this section we find a change of coordinates ¢; on each of the domains
Ui (e, 0) provided by Propositions 3.3 and 4.1 (up to reducing ¢ and 6) which
gives a first approximation of Fatou coordinates (that is, conjugations with (z, w) —
(z+ 1, w)).

Definition 5.1. Given 0 € (0, r/2) and ¢ € (0, 1] such that Proposition 4.1 holds in
Ui = Ui(e, 0), we consider the map ¢ : Uy — C2 given by

1
Or(x,y) = (W, Yy (x, y)),

where Y € O(Uy) is the invariant function for F given by Proposition 4.1. Note that
or(Up) C Cx C*ifn > 1. We also define the set V = V (g, 0, r),for0 < r < 1, as

V={GweC: |zl >e', largz| <6, |w| < r|g| Reb/m=y/dm)

if n = 0 and

V={(zw) eC?:|z| > &, larg z| < 0,

r—l|Z|Re a/n+y/(dn) <|w| < r|z|—Re b/m—y/(dm)}
if n > 1. Since Rea + y/d <0 < —Reb — y/d, V is non-empty. Notice also that V is
homeomorphic to CZifn =0andto C x C*ifn > 1.

PROPOSITION 5.2. Let F be a biholomorphism of the form (B) with N > 0 satisfying
condition (B*) and fix 6y as in §3. There exist 01 € (0, 0y) and &1 € (0, &g, ], where g, is
the constant given by Proposition 4.1, such that ife < €1, 8 < 61 and r is small enough and
we denote V = V (g, 0, r) then the following properties hold for each k € {0, . ..,d — 1}.
(1) V C ¢r(Uy) and ¢y, - qbk_l(V) — V is a biholomorphism.

(2) Uk(e, 0) is in the basin of attraction of(]bk_1 ).

(3) The map F = ¢roF o ¢k_1 maps V into V and has the form F(z, w)=(z+1+

h(z, w), w) with

1 oh
lz+ 1+ h(z, w)|>|z| + > |h(z, w)| <K|z|7"¢ and ‘8—(2, w)| <K'z 1-r/d
z

for some K, K' > 0 and for all (x,y) € V.

Proof. Consider 61 € (0, 6p) with cos 81 > 2/3 and let &1 = &y, be the constant given by
Proposition 4.1. From equation (4) we have that

1
(ftyhyd - (xmymyd

+1+ 0(x, ).
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Thus, since |x| < |x™y"|” and |y| < |x™y"|” for all (x,y) € Ui(eq, 61), there exists
K > 0 such that

(xi”lyi’)d B <xmlyn)d 1 < K"y < Kel' (12)
forall (x, y) € Ur(e1,01)and allk € {0, ..., d — 1}. Then, up to reducing &1 if necessary,
we can assume that

! - ! - 1' < l (13)
(typd (xmymyd 6

for all (x, y) € Ug(e1,61) andallk € {1,...,d — 1}. We now fix 6 < 6y and ¢ < &1 and
we denote U, = Uy (¢, 0).

Let us prove assertion 1; without loss of generality we assume that k = 0. Let g be
the function defined by (10). Using the fact that gm — pn = 1 and adm + bdn = —1, a
straightforward computation shows that the map ¢ : Uy — C? given by

px,y) = <W g(x, y))
is injective and its inverse is given by
o Nz, w) = @w™, Luw™).
Consider a point (zg, wg) € V, and set
Agy =, y) € C ™y = 25" x| < 2ol 77/ Iyl < Jzol /).

Notice that A;; C Up and A, is a Riemann surface with boundary. If we set x = zjw,"
—1/d

and y =z8w(’)", then x"y" =z, /4 and g(x,y) = wg. Moreover, |y|= |z(b)w(’)"| <
r’”|z€||z()|_Re b=yld < ymelbl0|70|=7/d and, if n > 1, analogously |x|= lzGwy " | <
rel®?z20177/4 so (x,y) € A, if r is small enough. Therefore, since ¢ is injective,
8 |AZO assumes the value wq once. If we show that

[Yo(x, y) —g(x, y)| < |g(x, y) —wol whenever (x, y) € 04, (14)

then, by Rouché’s theorem, the function | Az will also assume the value wg exactly once,

showing that V' C ¢ (Up) and that ¢y is injective in qb(;l (V). Let us prove that inequality
(14) holds. If n > 1, the boundary 0 A of A, is composed by two connected components,

1

— d _
DAz, ={(x,y) € C2:xy" =254, x| = |z0177/4},

—1/d _
hA, = {(x,y) € Cox™y" = 75 |yl = |20l 7774},

whereas if n =0 we have dA;, = d,A;,. Consider a point (x, y) € dA;, C Up. Since

X"yt =z, 1/ d, it follows from the computation of ¢! that
—1_a

g, " =x"'z0 and g(x, )" = yz,”.
We suppose first that (x, y) € d2A;,. Then

—b/m

_ —b _
1gCe, W1 = [y1™12g ™) = Lz 77/ P > o IbIO/m

|Z0|—Reb/m—y/(dm)
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5o |g(x, y)| > e 1P10/mp=T1yy5]. Then

oIb10/m

lg(x, y) —wol = [g(x, )| — |wol > (1 — Mg,y = 3lgx, )

if r is small enough. This relation, together with the fact that

lyo(x, y) — g(x, Y| < 31g(x, y)l

for all (x, y) € Up, as was shown in Proposition 4.1, implies (14). Analogously, if (x, y) €
01Az, (son > 1) then

a/n

1
mze™" = lzo

|y/(dn)|zg/’l| < olalo/ny, \Rea/nty/(dn)

lg(x, y)| = Ix|~ |zol

s0 |g(x, y)| < e!®?/"r|wg| and hence

f|u|9/nr71

lg(x, y) —wol = [wol| — g(x, ¥)| > (e — Dlgx, »)| = Flgx, y)|

if r is sufficiently small, which again implies (14) and assertion 1 is proved.

Now take (x,y) € Uy. If we set (z;, w;) = ¢r(xj, y;), then clearly |z;| > ¢~ and
larg z ;| < 0; moreover, since Yy is invariant by F* we have that w; is constant for all j
while z; — +oo because of (5), so for j large enough we get |w;| < r|z;|~ Reb/m=v/(dm)
andif n > 1, since w; # 0, |w;| > r‘1|zj|Re”/”+V/(d”), so (zj, w;) € V and assertion 2
is proved.

Let us prove assertion 3. For r; € (0, 1), consider the set V1 = V (¢, 61, r1). Proceeding
exactly as in the proof of assertion 1, we can choose r; € (0, 1) such that V| C
¢k (Ux(e1,01)) and ¢y : ¢, ' (V1) — V) is a biholomorphism for every k. Then ¢, ' is
well defined on V| and takes values in Ui (eq, 01), so F = ¢roF o qbk_l is well defined
on V. Since Yy is invariant by F, we can express F(z,w) = (f(z, w), w). Then, if we
write ¢k_l(z, w) = (x, y) € Ug(e1, 01) and F(x,y) = (x1, y1), we have from equation (4)
that

1

1
(xrymyd - (xmymyd

where h(x, y) = O(x, y). That s,

f(z,w) = +1+h(x, y),

f@w)=z+1+h(z,w),
where by (12) and (13)
|h(z, w)| < K|z| 7% and  |h(z, w)| < ¢
for all (z, w) € Vi. Thus, since cos 61 > 2/3, we have

|f(z, w)* =z + 1+ h(z, w)]* = |z]* + 2 Re z + 2 Re(zh(z, w)) + |1 + h(z, w)|?
> |z|* + 2 cos 61]z] — 2|z||h(z, w)| + |1 + h(z, w)|*
> 212 + 41z1/3 — 121/3 + (5/6)* > (Iz] + 1/2)%,

so | f(z, w)| > |z| + 1/2 for all (z, w) € V.
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We now fix r satisfying assertion 1 and such that » < r;. Consider a point (z, w) € V.
Since (f(z, w), w) € ¢ (Uy), itis clear that | f (z, w)| > ¢! and |arg(f(z, w))| < 6 and,
since |w| < r|z|” Reb/m=v/m) and | f(z, w)| > |z|, we also have that

wl < rlf Gz, w)|~ ReP/mv/dm,

Analogously, if n > 1, since |w| > r~!|z|Re@/n+v/@m and | £ (z, w)| > |z|, we have |w| >
=Y f(z, wy|Rea/nty/@n) o F(z, w) € V.

To prove the bound for dh/dz let us first show that there exists p > 0 such that if
(zo, wo) € V and |z — z0| < plzo| then (z, wg) € V1. Consider (zp, wg) € V and assume
that |z — zg|] < p|zo|. Then

lz| > (1 = p)lzol > (1 — p)e~ ",

so |z| > 81_1 for p sufficiently small. Since |z/z0 — 1| < p, we have |arg(z/z0)| <
arcsin p, so

larg z| < |arg zo| + arcsin p < 6 + arcsin p,

hence |arg z| < 6 if p is small enough. Since |zg] < (1 — 0)~ Y z], it follows that
|wol < rlzo| ™ ReP/MTVEM < p[(1 — p)~H || ” Reb/mmy/dm),

Re b/m—y /(dm)

so |wo| < r1|z|™ if p is small enough and, if n > 1,

lwo| > r71|ZO|Rea/n+y/(dn) - Vﬁl[(l _ p)71|z|]Rea/n+y/(dn)’

so |wg| > rl_lllee“/"+7’/(d") if p is small enough. Hence, (z, wp) € V| if p is small
enough. Now, take a point (zg, wo) € V. As we have seen, if D C C is the disk of radius
p|zo| centered at zg, then D x {wg} is contained in Vj, so the function

hwy: z € D = h(z, wop)
is well defined and
lhwy ()| < K|z 777 < K1 = p)77/4|z0| 7774,

Thus, it follows from Cauchy’s inequality that

= (huy) z0)| < K1 — p) 741201774 (plzo)) ™" = K'|z01 717774,

ah( )
9z 20 wo

which finishes the proof of assertion 3. O

6. Existence of Fatou coordinates
In this section we construct Fatou coordinates for F* on the domains ¢, l(V) C Uy given
by Proposition 5.2.

PROPOSITION 6.1. Let F be a biholomorphism of the form (B) with N > 0 satisfying
condition (B*), let ¢, 6 and r be as in Proposition 5.2 and denote Uy = Uy(e, 0)
and V=V (e, 0,r). Then, for each k € {0, . ..,d — 1}, there exists a biholomorphism
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(p,:“: qb,:l(V) — W c C? with W CxC* if n>1, conjugating F with the map
(z, w) = (z + 1, w) and satisfying

Uw—-g.o1=¢® ifn=0 JW-@G.0l=CxCifn=1. (15
JjeN jeN

Proof. By Proposition 5.2, we have that ¢y : ¢, 'Wy=>Visa biholomorphism conju-
gating F' with F= ¢roFo ¢,:1 : V. — V. Thus, it is enough to find a biholomorphism
®:V—>WcCC? with WcCxC*ifn>1, conjugating F with the map (z, w)
(z+ 1, w). Since F: V — V is written F(z, w) = (f(z, w), w), each function f,,: z >
f(z, w) maps the domain V,, = {z € C : (z, w) € V} into itself. Thus, we start consider-
ing w € C fixed (w € C* if n > 1) and we will find, following the ideas in [13, Lemma
10.10], a map By, : Vi, — C conjugating f,, with z — z + 1. We will also show, arguing
as in [13, Lemma 10.11], that

JBu(Vu) = j)=C. (16)
jeN

Finally, from the maps B, we will construct a global map B:V — C such
that S o F(z,w) = B(z, w)+ 1, so the function & :V — C2 given by &(z, w) =
(B(z, w), w) is a Fatou coordinate for F.

From the definition of V' we have

Vw ={z € C: |z] > Ry, larg(z)| < 6},
where

Rw = max{g—l’ (r—l|w|)—dm/(dReb+)/)’ L(r|w|)d”/(d Rea+y)}

(recallthatt = 0ifn =0andt = 1ifn > 1).
Take a base point p € V,,. The map B, conjugating f,, with 7+ z+4+ 1 will be
constructed as the limit of the functions

Bi(z) = fli(z) — fl(p), jeN.

In order to simplify the proof of the convergence of these functions we assume p to be
large enough so that for all z € V,, the Euclidean segment [z, p] is contained in V,,, which
is possible because 0 < 7 /2. Since | f,(p)| > |p| + 1/2 by Proposition 5.2, the sequence
| 1 (p)| is increasing, hence the property above also holds for f;(p). In particular we have,
forallz € Vyyandall j € N,

£, fi(p)] C Vi

Since fu(z) =z + 1+ h(z, w) and [0h/dz(z, w)| < K'|z|~'77/¢ by Proposition 5.2, it
follows from the mean value inequality that, if [z{, z2] C V,,, then

Sfuw(z1) — fu(z2) _

1 —22

h(zi, w) — h(z2, w) K’
< max ———o.
71— 22 zelz1zal |z 1Y/

1=
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Since the angle between z; R and z,R™ is bounded by 20 < 7, there is a constant T > 0
depending only on 6 such that min{|z| : z € [z1, z2]} = T min{|z1], |z2[}, so

TS AC K

21— 22 ~ (r min{|zy], |zo|DIHY/d’
In particular, setting z; = fuf (z) and zp = fuj; (p), we obtain
K’
" (e min{| £ @1 | (P

- e

- - 1
fir(@) = fi(p)

A

Bi+1(@) 1‘ _
Bi(2)

for all z € V,, and j € N. Therefore, since |fuJ; (z)] = j/2 and |f1£ (p)| = j/2, we obtain

Bj+1()

Bj(z)

for all z € V,, and j € N. This shows that the product [[(8 i+1(2)/Bj(2)) is uniformly
convergent in V,, and therefore 8; converges uniformly to a function 8,, € O(V,,). Let us
show that B,, is one-to-one and conjugates f,, with the map z — z + 1. Since f,,(2) =
24 1+ h(z, w) and |h(z, w)| < K|z|~7/? by Proposition 5.2, we have

1‘ < K/(Z_L,—l)l-i-)//dj—l—y/d

£ () = f(p) = 1 = I (f(p), w)l < as j — 0.

—_— =0
| fir(p)IY/4
Thus, since B (fuw(2)) = Bj+1(2) + fu];H(p) — fu];(p), we obtain, taking j — oo,
Buw(fw(@) =Buw@ +1, z€Vy.
Finally, since B; is injective for all j and B, is not constant, we conclude that B, is
injective.
Now, as in [13, Lemma 10.11], we prove that g,, satisfies (16). We show first that

lim;— o0 (Bw(2)/2) = 1. Since B; tends uniformly to By, for some / € N we have that
|Bw — Bl is bounded, whence

1Bu = fhl < 1Bw — Bil + 1B — f]
is bounded. Then, since f,,(z) = z + 1 + h(z, w) and |h(z, w)| < K |z|7V/¢,

o B @ _ L @)
im = lim —/—/——= =

=00 7 =00 7

1.

Consider ¢ € C. In order to prove (16) we will show that for j € N large enough the point
¢j = ¢ + j belongs to By, (Vy,). Since V,, is essentially a sector of opening 20, if we take a
positive number p < sin 6, it is not difficult to see that, for j large enough, the closed disk
Dj of radius r; = p|¢;| centered at ¢; is contained in V,,. By Rouch€’s theorem, if

[Bw(z) —z| <r;j
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for all z € 9Dj, then ¢; € By(D;) C Bw(Vy). Since By (z)/z — 1 when z — oo, for z
large enough we have |B8,,(z) — z| < t|z|, where T > 0 is taken such that 7(1 + p) < p.
Then, if z € 9D; and j is large enough,

1Puw(2) —zl < tlzl = t(gj[ +rj) = (1 + p)Ig;] < plgjl =7

and (16) follows.
The function B,, that we have constructed depends on the choice of the base point
p € Vy, but its derivative does not, as we can check from the definition of §;:

(Bu)' @) = lim (f))'(2).

It is easy to see that the same choice of p also works for any w’ in a neighborhood
of w and the function B, will depend holomorphically on w’. That is, B,/ (z) is a
holomorphic function of (z, w’). Thus, we can find an open covering C = J;., W; if
n=0orC* = Ul-€ ; Wiif n > 1 and, for each i € I, a holomorphic function

iel

Bi(z, w), forzeV,, weW,

such that, for each w € W;, the map z € V;, = B;(z, w) € C is univalent and satisfies
Bi(f(z, w), w) = Bi(z, w) + 1. Moreover, from the observation above, the partial deriva-
tive dB; /dz does not depend on i € I, that is,

0Bi 0B; .
a—(z,w)za—(z,w) forzeVy, weW,NW;, i,jel.
Z Z

Therefore, if W; N W; # (), there is a function g;; € O(W; N W;) such that
Bz, w) — Bi(z, w) = gij(w) forzeVy,, weW;NW,, (17)

hence g;;j + gjx +gri =0o0n W; N W; N Wy, for i, j, k € I. Then, since the first Cousin
problem can be solved in C and C*, there exist functions g; € O(W;), i € I, such that
gij = & — gj on W; N W; and it follows from (17) that

Bj(z, w) + gj(w) = Bi(z, w) + gi(w) forzeVy,, weW;NW,.
Therefore we can define a global function g € O(V) by
Bz, w) =Bi(z, w) + gi(w) forzeV,, weW,
and we can see that for each w € C*, the map
7€ Vyr Bz, w)eC

is univalent and B(f(z, w), w) = B(z, w) + 1 for every (z, w) € V. Now it is easy to
check that the holomorphic function

Oz, w) = Bz, w),w), (z,w)eV,

is univalent and satisfies ® o F(z, w) = ®(z, w) + (1, 0) for every (z, w) € V. To show
that W = ®(V) satisfies (15), consider a point (zg, wg) € C2, with (zg, wg) € C x C* if
n > 1.1f wg € W;, we have

B(z, wo) = Bi(z, wo) + gi (wo) = Buy(2) + gi (wo)
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for all z € Vy,. By (16) there exist z € Vy,, and j € N such that [z9 — gi(wo)] + j =
ﬂu)() (Z)9 thus

D(z, wo) = (B(z, wo), wo) = (20 + Jj, wo)
and therefore (zg, wog) € W — (j, 0). O]

7. The flower theorem
In this section we prove Theorem 1.2. We do this first in the case we have been dealing with
in the previous sections: a biholomorphism F of the form (B) with N > 0 and satisfying
condition (B*). At the end of the section we deal with biholomorphisms of the form (A).
Let ¢,6 be as in Proposition 5.2 and denote U = Ui(e, 6). Let 5§ >0 be the
constant given by assertion 2 of Proposition 3.3 and consider the sets Di (e, 6, 8). Since
ged(m, n) = 1, it is easy to see that these sets are connected. For each k € {0, ..., d — 1}
we define

o = FI(Dy(e, 0, 5)).
j=0
This set is connected and invariant by F. Moreover, in view of Proposition 3.3, we have
that QZ‘ is in the basin of attraction of Uj and
Di(e, 0,8) C @ C Di(e, 0, 89).

It is easy to see that the diffeomorphism F~! is also of the form (B), with the same pair
(M, N) and (—a, —b) instead of (a, b). Thus, if we work with F~! instead of F, our
constructions allow us to find connected open sets 2, . . ., ,_,, which play for F ~! the
role of the sets Q,‘: in the case of F. We can assume that the constructions are done with
the same constants ¢, &, 5, etc. Thus, the sets €2, are defined by

Q= F/(Dg (e.0.9)),
Jj=0
where
Dy (8,6,8) = {(x,y) € C: x"y" € 5, (d, &,0), ix| <3, |y| <8},

in which §k_ (d, ¢, 0) is one of the connected components of
£
<—=1U
o]

D (6,6,8) C Q@ C Dy (e, 0, 8).

E £ ;
o4 ELitr—0) d_E i(r+6)

(zeC: 7% <e, |arg(zd)—7r|<9}u{ Z

d
<—1.
2

In each Q;, we have that F~/ — 0 and

Since the opening of the sets §k d, e, 0) and Ek_ (d, €, 0) is greater than 7 /d, it is clear that
the domains Q(")", e, QZ_I, S VT together with the fixed point set {xy* = 0},
cover the open set

1/d

{(x,y) € C*: |x™y"| < eV x| <8, |y| < 8},

so assertions 1 and 2 of Theorem 1.2 are proved.
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For each k, let <,0k+ o 'V) > W c C?be the biholomorphism given by Proposition 6.1,
which conjugates F with the map (z, w) — (z 4+ 1, w). It is straightforward to extend (p,;"
as a biholomorphism

o - wt c C?,
with Wk+ C C x C*ifn > 1, defining, for each p € QZ‘,
o (p) =@ (F/(p)) — (j.0)

for any j > 0 such that F/(p) € qbk_l(V); this is possible because Q,’: is in the basin of
attraction of Uy and, by Proposition 5.2, Uy is in the basin of attraction of ¢k_l(V). This
shows assertion 3a of Theorem 1.2 for the domains SZ(‘)" N Q:{_l; property 3b follows
from (15). We can proceed analogously with the sets Qa ,...,8,_, and this finishes the
proof of Theorem 1.2 for F of the form (B) with N > 0.

Suppose now that F is of the form (A) satisfying (A*). Up to a linear change of
coordinates of the form (x, y) — (ax, y), we can assume thata € R™. In this case, Hakim
proved in [8] that if r is small enough then for any k € {0, ..., M — 1} there exists a
holomorphic map uy : D,y — C, with Jux(x)| < K|x log x| for some K > 0 and for all
X € Dy, such that ug(Fi(x, ug(x))) = Fa(x, ug(x)), where D,y is the component of
{x € C:|x™ —r| < r} bisected by ¢*"*/MR*_ Moreover, with the small modification
of her proof introduced in [11, Lemma 4.4], we can enlarge the domain of definition of
uy to the set Ek (M, g9, 0) for any 6 € (0, 7/2) and for &y small enough. Then, making the
sectorial change of coordinates

(x, ¥) € Sk(M, £0,0) x C = (x,25) = (x, y — ug (x)),
we can write
F(x, 2 = ¢+ xMa + 01(x, 291, & + M5 b + 01(x, 29D,

where we use the notation O (x, z5) = O(x, x log x, ZF). The key point to note is that
all the constructions we made in the previous sections to obtain the invariant sets Q,”:
for a map F of the form (B) with N = 0 were performed in §k (M, g,0) x C, and all the
calculations involved work similarly if we have O;(x, y) instead of O(x, y). Then, for
some ¢ < &g, the domains QZF can be defined in the same way, but in sectorial coordinates
(x, zk) depending on k, and the same holds for Q. Assertions 1 and 3 of Theorem 1.2,
since referred to a fixed k € {0, ..., M — 1}, follow exactly as above if we work in the
corresponding sectorial coordinates. For the proof of assertion 2, it is enough to show that
each Q,:r contains, in the original coordinates (x, y), a set of the form

D ={(x.y) € C*:x € S(M.&.0), |y| <8}
for some &', §’ > 0, and the same for each 2, . By definition, Q,:r contains the set
Dy ={(x,7") e C?:x € Si(M, ¢,0), 25| < §}.

Take 8’ < §/2 and let ¢/ < ¢ be such that |ux(x)| < /2 for all x € Sy(M, ¢,6) and
k €{0,...,d—1}. Take (x, y) € D;. In the sectorial coordinates this point is given by
(x, 2% with z5 = y — ug(x). Then |2¥| < |y| + lux(x)| < 8’ +8/2 <8, so (x, z¥) € Dy.
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This proves that Q,:r contains D; and clearly the analogous property holds for each €2, so
Theorem 1.2 is proved.

8. Proof of Theorem 1.3
Suppose first that F is of the form (B). As in §3, up to a linear change of coordinates, we
can write F as

F(x,y) = +x"yNa+ 0, Ly +x"y" b+ 0, ).
with M > 1, N > 1 and aM + bN = —1, so the hypothesis of Theorem 1.3 means that

either Re a > 0 or Re b > 0. We assume without loss of generality that Re b > 0. Also as
in §3, putd = gcd(M, N) and set m = M/d,n = N/d. Since aM + bN = —1, we have
that

iyl ="y — (x'"y")”f“ + @y o, y).

Since y; = y(1 + [b + O(x, y)](xmy")d) and Re b > 0, with a similar argument to the
one we used for equation (6) we find ¢, 5, v > 0 and 6 € (0, 7/2) such that, for each
kef{0,...,d—1},if x"y" € S;(d, &, 0) with |x| < § and |y| < § then

il = I+l "), (18)
Take 8’ = min{8, 8 (0)}, where 8 (9) is given by Proposition 2.2, and set
U={(x,y) eC?: x| <8, |yl <8

Consider a point (x, y) € U outside the fixed set {xy = 0} and let us show that there
exists j € N such that (x;, y;) ¢ U. Assume by contradiction that (x;, y;) € U for all

Jj. Then, by assertion 3 of Proposition 2.2, we find k € {0, ...,d — 1} and jy > O such that
x;" y;l € Si(d, ¢, 0) for all j > jy. Thus, by iterated applications of (18) we obtain, for all
J = Jo, that

j—1
il = il JTC +vixyp .

I=jo
But the estimate
mnd
X"y |d 1|x—|
T E 2T ey

from assertion 3 of Proposition 2.2 shows that Y |xl Y |d = 400, 50 |y;| = oo, which is
a contradiction. In the same way, up to reducing §’, we can prove that the negative orbit of
any (x, y) € U\{xy = 0} leaves U.

Suppose now that F is of the form (A). Again as in §3, up to a linear change of

coordinates, we have
F(x,y) = (x +xMH[—1/M + 0(x, )1, y + xM[by + O(x, yH)]),

where Re b > 0. As explained in the previous section, for some gy > 0 there exists
a holomorphic map uy : Sx(M, &9, w/4) — C such that in the sectorial coordinates
(x, zk) = (x, y — ug(x)) defined in Sy (M, &g, w/4) x C we can write
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F(x, 2% = (0 + xM T =1/M + 01(x, 21, 25 + x5 [b + 01 (x, 2.

Since z’f =K1+ [b+ 01(x, Z5)1xM) and Re b > 0, as in the previous case we can

find constants ¢,8,v > 0 and 8 € (0, 7/4) such that, for each k € {0, ..., M — 1}, if
x € Sk (M, ¢, 0) with |x| < 8 and |z¥| < 8 then

12 = 12511+ v ™). (19)

Take 89 < &/2 such that |ur(x)| < 6/2 for all |x| < &9 and k € {0, ..., M — 1}. Notice
that the equation

x1 = x +xM—1/M + 0(x, y)]

satisfies the hypothesis of Proposition 2.2 withm = 1,n = 0 and d = M, so there exists a
constant § (@) satisfying assertion 3. Set 8" = min{8y, §#(#)} and

U={(x,y)eC?: x| <&,y <&

Consider a point (x, y) € U outside the fixed set {x = 0} and let us show that there
exists j € N such that (x;, y;) ¢ U. Assume by contradiction that (x;, y;) € U for all
J- Then, by assertion 3 of Proposition 2.2, we find k € {0, ..., M — 1} and jo > O such
that x; € S (M, ¢, 0) for all j > jo. Since |x;| < 8 < 8y < S forall j > 0, we have that

251 < Iyjl + lua (x| < 8 +8/2 < 8
for all j > 0. Thus, by iterated applications of (19) we obtain, for all j > jo, that

j—1
51 = 125 [T+ vial™).

I=jo

But the estimate

from assertion 3 of Proposition 2.2 shows that if z’j‘.o # 0 then z’j‘. — +00, which
is a contradiction. Hence zlj0 = 0, which means that the orbit of (x,y) eventually
lies in the parabolic curve z¥ =0 of F in the domain Sy(M, &, 7/4) x C. For each
ke{0,..., M — 1}, let Py be the set of points in U attracted by F|;; into the parabolic
curve of F in S;(M, ¢, w/4) x C; it is not difficult to see that Py is a one-dimensional
complex submanifold of I/, and we have shown that every point in I/ outside the fixed set
{x = 0} and outside the manifold P™ = Py U - - - U Pys_ has a finite positive orbit in /.
In the same way, up to reducing &', if P, is the one-dimensional complex submanifold
of U of points attracted by F~!|;; into the parabolic curve of F~! in the domain
S, (M, g, m/4) x C, then every point in U outside the fixed set {x = 0} and outside the
manifold P~ =P, U-.-UP,, _, has a finite negative orbit in U. This concludes the
proof of Theorem 1.3.
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A. Appendix. Resolution theorem for biholomorphisms

The resolution theorem for two-dimensional biholomorphisms stated in the introduction
is valid not only for biholomorphisms tangent to the identity, but more generally for
unipotent biholomorphisms, and is based on the corresponding theorem for vector fields
and foliations in C2. A formal vector field X in (CZ, 0) can be written, in a unique way up to
multiplication by a unit, as X = f(A(d/dx) + B(d/dy)), where f, A, B € C[[x, y]] and
A and B have no common factor. The vector field Sat X = A(d/dx) + B(9/dy) is called
the saturation of X. If f is not a unit, we say that Sing X = /(f) is the singular locus of
X; if f is a unit, we say that X is saturated and define Sing X = {0} if A and B are not
units and Sing X = ¢ otherwise. An irreducible formal curve (g) in (C2, 0) is said to be a
separatrix of a formal vector field X if X (g) € (g). If X is not singular, its formal integral
curve through the origin is its only separatrix. The branches of the singular locus of X are
separatrices, which are called fixed.

We say that a saturated singular vector field X in (C2, 0) is reduced if the eigenvalues
A1, A2 of its linear part satisfy Ay # 0 and Ap/A; € Qso; if A2 # 0 we say that X is
non-degenerate, otherwise X is called a saddle-node. A reduced vector field X has exactly
two formal separatrices, which are non-singular and transverse, and each one is tangent to
an eigenspace of the linear part of X. The resolution theorem for vector fields (see [4, 14])
asserts the following (throughout this section, if g is any analytic or formal object, we
denote by g, its germ at the point p).

THEOREM A.l. Let X be a singular formal vector field in (C?,0). There exist a finite
composition of blow-ups w: (M, E) — (C2,0), a formal vector field X along E with
71*5( = X, and finitely many points p1, ..., pr € E such that Sat 5(,,1, ..., Sat f(pk are
reduced and Sat }N(,, is not singular for any p € E\{p1, . . ., pk}-

The set E, called the exceptional divisor, is a finite union of smooth rational curves
with normal crossings; we say that a point in E is a corner if it is the intersection of two
components of D. Up to composing  with some additional blow-ups, we can assume that
the family of separatrices of X, even if it is infinite, is desingularized by 7:

(a) the strict transform of each separatrix is a non-singular curve at a non-corner point
of E and is transverse to E;
(b) the strict transforms of different separatrices are curves at different points of E.

Any map 7 as above is called a resolution of X and we also say that X is a resolution
of X. Any further blow-up at a singular point of X in E gives another resolution of X.
As may be expected, there exists a unique minimal resolution of X in the sense that any
other resolution is obtained from the minimal one by performing finitely many additional
blow-ups. If X is a nilpotent vector field in ((Cz, 0) (that is, its linear part is nilpotent) and X
is a resolution of X, then X p is nilpotent for any point p € E. In particular, if X is nilpotent
then the singular points of X in E are not isolated: an isolated singularity p of X would be
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saturated and reduced, so X p» would not be nilpotent. Therefore the set Sing ; X of singular
points of X in E is a union of components of E. We define the singular locus Sing X of
X as the union of Sing g X with the strict transform of Sing X by m. It is easy to see that
(Sing f()p = Sing f(p for all p € E. Observe that E U Sing X is the transform of Sing X,
s0 it is a finite union of smooth curves with normal crossings, and so is Sing X.

LEMMA A.2. Let X be a resolution of X and let p € E such that Sat )~(,, is singular (hence
a reduced singularity). Then each branch of (E U Sing X), is one of the two separatrices
of Sat X .

Proof. Let S1 and S, be the separatrices of Sat X p- If both §1 and S, were not contained
in E, they would be the strict transforms of different separatrices of X passing through the
same point in E, contradicting (a), so we can assume that S is contained in a component
of E. Suppose that there is a branch S of (E U Sing X) p different from Sy and S;. If Sis a
component of E then p is a corner and S5 is the strict transform of a separatrix of X passing
through p, which contradicts (a). If S is a branch of Sing X p Dot contained in E then S is
the strict transform of a separatrix of X, so by (a) p is not a corner and then S, is also the
strict transform of a separatrix of X passing through p, contradicting (b). [

If X is a resolution of X, we classify the components of the exceptional divisor into two
types.

(1) A component D of E is invariant if for some point p € D the germ D), is a separatrix
of Sat X p- In this case the same happens for any other point in D.

(2) If a component D of E is not invariant, we say that it is dicritical. In this case
D C Sing X and, as we will see next, the vector field Sat X p s non-singular and
transverse to D for all p € D, and any other component of E intersecting D is
invariant.

Let us show the assertions in (2). By Lemma A.2, if Sat X p were singular for some

p € D then D would be invariant, so Sat X p 1s not singular and its formal integral curve

C is different from D, because D is not invariant. If p is not a corner, then C is the strict

transform of a separatrix of X, so C is transverse to D; if p is a corner, from (a) we conclude

that C = D;,, where D’ is the other component of E through p and therefore Sat X p 18

transverse to D. This also shows that any component D’ of E intersecting D is invariant.

Consider now a unipotent biholomorphism F, that is, DF(0) = I + N where [ is
the identity and N is nilpotent. In a formal sense, F is the time-one flow of a unique

formal vector field in (C2, 0), denoted log F, which is singular at the origin and has N

as linear part. In particular, if F is tangent to the identity then log F has order at least

two. Moreover, the fixed point set of F coincides with the singular locus of log F, which
is therefore convergent. If 77 is the blow-up at the origin, the map F =7 'o Fon isa
biholomorphism in a neighborhood of E = 7 ~!(0) which leaves E invariant, and satisfies

log Fp = )~(p for any fixed point p € E of F.

THEOREM A.3. Let F be a unipotent biholomorphism in (C?, 0), let  be a resolution of
log F and let F = 1~ o F o 7 be the transform of F by 7. Then, if p € E =~ '(0) is a
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fixed point of F, the germ F p is reduced, according to Definition 1.1. If F is tangent to the
identity and m is the minimal resolution of log F, then E is fixed pointwise by F.

Proof. Let X be the transform of X = log F by m and let p € E be a fixed point of F,so0
p € Sing X.

Suppose first that p belongs to a dicritical component D of E. Then D C Sing X
and Sat X p 1s non-singular and transverse to D. Since (D U Sing X) p is smooth or has
two smooth transverse branches, we can take holomorphic coordinates (x, y) at p such
that D = {x = 0} and such that {y = 0} is the other branch of Sing X p if it exists, so
Sing )?p C {xy = 0}. Then, up to rescaling the coordinates, we have

N - 0 ~ d
X, =xMyN A+ A, ) — + B(x, y)— |,
ax dy

where ord A >1,M>1,N > 0and (M, N) # (1, 0) because X p is nilpotent. Therefore
its time-one flow F » will be of the form (i) once we show that B e (y) if N > 1.
Suppose that N > 1, so {y = 0} C Sing }?p, and let C be the formal integral curve of
1+ A)(B/Bx) + B(B/By) through the origin. If {y = 0} is a component of E then p is a
corner and, in view of (a), necessarily C = {y = 0} and therefore B e (y). If {y =0} is
not a component of E, then it is the strict transform of a (fixed) separatrix of X so, in view
of (b), it has to coincide with C and again Be ).

Suppose now that p does not belong to a dicritical component of E. We assume
first that Sat X p is not singular. Take a component D of E such that p € D. As in the
previous case, we have holomorphic coordinates (x, y) at p such that D = {y = 0} and
Sing X C {xy = 0}. Since D is invariant, {y = 0} is the formal 1ntegra1 curve of Sat X
through P, SO we can write Sat Xp =(1+ A)(8/8x) + B(8/8y) with B € (y). Then, up
to rescaling the coordinates, we have

- N B
X, =xMyN|Q+A)— +B—|,
» xy[(-l—)ax-i- By}

where M, N > 0and M, N ¢ {(0, 0), (1, 0)} because )}p is singular and nilpotent, so Fp
is of the form (i).

Assume now that Sat X p 1s singular, hence reduced. We suppose first that it is
a saddle-node. Let S be the separatrix of Sat X p that is tangent to the eigenspace
associated to the non-zero eigenvalue of the linear part of Sat X p» and let Sy be the other
separatrix. Let (x, y) be holomorphic coordinates at p such that {x = 0} and {y = 0} are
respectively tangent to Sp and S, so we can write Sat )}p =+ A) (0/0x) + 1§(8/8y),
where ord A, ord B >2andx + A and B have no common factors. We know that Sing X P)
has one or two branches, which by Lemma A.2 are contained in {S, So}. Thus, we
can assume that the coordinates are chosen in such a way that if Sy C Sing X p then
So = {x =0}, so Ac (x), and if S C Sing 5(,, then S = {y =0}, so Be (v); hence
Sing X p C {xy = 0}. Thus, up to rescaling the coordinates, we have

- ~ 0 ~ 0
X, =xMyN A)— +B—|,
p=XxX"y |:(x+ )8x+ 8y]

https://doi.org/10.1017/etds.2025.14 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2025.14

A flower theorem in dimension two 31

where M + N > 1,0rdA~,ord1§ ZZ,A e (x)if M > 1,1§ e (y)if N > land x + A and
B have no common factors. Hence, F » is of the form (iii).

Finally, suppose that Sat X p 1s non-degenerate. Since Sing X p contains at least one
branch, in suitable coordinates (x, y) we have {x = 0} C Sing X p S0, by Lemma A.2,
the curve {x = 0} is a separatrix of Sat X p- As in the previous case, we can assume that
the other separatrix S of Sat X p is tangent to {y = 0} and that S = {y = 0} C Sing X p if
Sing )~(p has two branches, so Sing )2,, C {xy = 0}. Therefore we have

U PR L RPN
Xp,=x"y"|(ax + Ax)— + (by + B) ,
ax dy

where M > 1, N >0, a,beC*, a/b ¢ Q-o, ordA>1, ord B>2 and B ¢ (y) if
N > 1,50 F), is of the form (ii).

In order to prove the last assertion of the theorem it suffices to show that if a vector
field X has order at least two and 7 is its minimal resolution, then 7 ~!(0) C Sing X.
Suppose that this property holds when the minimal resolution of X is achieved with fewer
than n € N blow-ups, and let X be a formal vector field with ord X > 2 whose minimal
resolution is obtained with n blow-ups. Let o be the blow-up at the origin and let X
be the transform of X by o. Since ord X > 2, we have that X vanishes on D = o1 (0)
with order v > 1 if D is invariant or v > 2 if D is dicritical. So D will be in the singular
locus of the resolution of X and, in view of the inductive hypothesis, it is enough to show
that X has order at least two at each point in D that is blown up in the resolution. Let
p € D be one such point. Since ord X p =V, it suffices to consider the case where D is
invariant and v = 1. We can also assume that Sing X p = D) and that X p vanishes on
D, with multiplicity one, because otherwise ord X p = 2. Then, if (x, y) are holomorphic
coordinates at p such that D, = {y = 0}, we have

A

~ 0 ~ 0
X, = y|:(a+A)a + (b+B)$i|,

where ord A, ord B > 1, and necessarily b = 0 because X p is nilpotent. If a # 0, we see
that X, is actually in final form, so no further blow-up at p would be necessary. Therefore
a=0andord X, > 2. O

Remark A.4. The reduced models (i), (ii) and (iii) of Definition 1.1 correspond to the
standard final models for vector fields, and are not exactly the same ones that appear in
the resolution theorem in [1]. Our set of reduced fixed points is stable under blow-ups, in
the sense that any further blow-up will produce only reduced fixed points (for example,
the dicritical fixed points considered as final models in [1] can be reduced by additional
blow-ups to non-dicritical models). In our final models, the blow-up of a fixed point of the
form (i) produces fixed points of the form (i), the blow-up of a fixed point of the form (ii)
produces fixed points of the form (i) and (ii), and the blow-up of a fixed point of the form
(iii) produces fixed points of the form (i), (ii) and (iii).
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