
J. Appl. Prob. Spec. Vol. 48A, 217–234 (2011)
© Applied Probability Trust 2011

NEW FRONTIERS
IN APPLIED
PROBABILITY
A Festschrift for SØREN ASMUSSEN
Edited by P. GLYNN, T. MIKOSCH and T. ROLSKI

Part 5. Stochastic growth and branching

ON SOME TRACTABLE GROWTH-COLLAPSE PROCESSES
WITH RENEWAL COLLAPSE EPOCHS

ONNO BOXMA, EURANDOM and Eindhoven University of Technology
EURANDOM and Department of Mathematics and Computer Science, Eindhoven University
of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
Email address: boxma@win.tue.nl

OFFER KELLA, The Hebrew University of Jerusalem
Department of Statistics, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905,
Israel.
Email address: offer.kella@huji.ac.il

DAVID PERRY, Haifa University
Department of Statistics, Haifa University, Haifa 31905, Israel.
Email address: dperry@stat.haifa.ac.il

APPLIED PROBABILITY TRUST
AUGUST 2011

https://doi.org/10.1239/jap/1318940467 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940467


ON SOME TRACTABLE GROWTH-COLLAPSE PROCESSES
WITH RENEWAL COLLAPSE EPOCHS

BY ONNO BOXMA, OFFER KELLA AND DAVID PERRY

Abstract

In this paper we generalize existing results for the steady-state distribution of growth-
collapse processes with independent exponential intercollapse times to the case where
they have a general distribution on the positive real line having a finite mean. In order to
compute the moments of the stationary distribution, no further assumptions are needed.
However, in order to compute the stationary distribution, the price that we are required
to pay is the restriction of the collapse ratio distribution from a general distribution
concentrated on the unit interval to minus-log-phase-type distributions. A random
variable has such a distribution if the negative of its natural logarithm has a phase-type
distribution. Thus, this family of distributions is dense in the family of all distributions
concentrated on the unit interval. The approach is to first study a certain Markov-
modulated shot noise process from which the steady-state distribution for the related
growth-collapse model can be inferred via level crossing arguments.

Keywords: Growth collapse; shot noise process; minus-log-phase-type distribution;
Markov modulated
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1. Introduction

Consider a growth-collapse process that grows linearly at some given rate c. The collapses
occur at renewal instants with interrenewal time distribution function F with mean µ and
Laplace–Stieltjes transform (LST) G. The remaining level (e.g. funds) after a given collapse
form a random fraction of the level just before the collapse occurred. It is assumed that the
sequence of random proportionsX1, X2, . . . are independent and identically distributed (i.i.d.),
and independent of the underlying renewal process. Of course, since these are proportions, it
is naturally assumed that P[0 ≤ X1 ≤ 1] = 1 and, to avoid trivialities, that 0 < EX1 < 1.
From, e.g. [13], it is known that this process is stable without any further conditions. Our aim
is to identify a relatively broad family of distributions ofX1, which is dense in the family of all
distributions on [0, 1], for which the stationary distribution of this process can be calculated.

The idea is to first consider an on/off process, where during on times the process increases
linearly at rate c and during off times, whenever the process is at level x, it decreases at the rate
rx for some r > 0. As assumed, on times have some general distribution F , while off times,
denoted by P1, P2, . . . , will be assumed to have a phase-type distribution. If we restrict the
process to off times then what we obtain is a shot-noise-type process with upward jumps having
distribution F(·/c) with mean cµ, LSTG(cα), and interarrival times which have a phase-type
distribution.
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Given that at the beginning of an off time the level is given by some x, as long as the period
does not end, the dynamics of the process are given via

W(t) = x − r

∫ t

0
W(s) ds, (1.1)

where t is the time that has elapsed since the beginning of this period. Hence, as is well known,
it follows that W(t) = xe−rt for 0 ≤ t ≤ Pi for some index i. Thus, at the end of this
period the level will be xe−rPi . Setting Xi = e−rPi we see that when we restrict our process
to on times, then it becomes the type of process that is described in the first paragraph. For
example, when the Pi are exponential with rate r , then theXi are Uniform(0, 1). If the Pi have
an Erlang distribution then the Xi are products of uniform random variables. For a general
phase-type distribution, the Xi are (possibly infinite) mixtures of products of uniformly (on
(0, 1)) distributed random variables. Since phase-type distributions are dense in the family of
all distributions on [0,∞), then the family of distributions of the collapse ratio is dense in the
family of all distributions on [0, 1].

For the process at hand, it follows from [11] that if f0 is the stationary density for the process
restricted to on times and f1 is the stationary density for the process restricted to off times,
provided that they exist (note that when starting from a positive state, the process as described
never hits 0), then cpf0(x) = rx(1 − p)f1(x), where p = µ/(µ + EP1) is the fraction of
on times. Thus, studying the stationary distribution of the shot-noise-type model is equivalent
to studying the stationary distribution of the growth-collapse model. Also, we note that the
growth-collapse model with growth rate 1 and intercollapse times with LST G(cα) has the
same stationary distribution as the model initially proposed (with growth rate c) and, thus, we
will, without loss of generality, assume that c = 1 from now on in order to simplify the notation.

The paper is organized as follows. Regarding shot noise, in Section 2 we actually study a more
general model and then restrict to the special case of the model proposed in this introduction.
In Section 3 we relate the moments of the shot noise process to the moments of the original
growth-collapse process. In Section 4 we study the steady-state behavior of the growth-collapse
process immediately after a collapse. Several distributions for the intercollapse times and the
collapse proportions are considered.

As shown in [13], for quite general growth-collapse processes, there is a direct relationship
between the time stationary distribution, the stationary distribution of the process immediately
after collapses, and the stationary distribution of the process immediately before collapses. In
particular, for the i.i.d. case, knowledge of one gives knowledge of the other two. For the general
minus-log-phase-type collapse ratios, we found it more accessible to study the time stationary
version, while, for the models of Section 4, it was more natural and easier to study the discrete-
time process immediately after collapses. For some earlier studies of growth-collapse processes
and their applications, see [2], [6], [8], [14], [16], [17], [18], and the references therein.

2. Shot-noise-type processes with phase-type interarrival times

In [3] a shot-noise-type process with Markov-modulated release rate was considered. Kella
and Stadje [15] studied a more general model where the input is a Markov additive process
(MAP) and the release rate is Markov modulated as well. In the latter paper, the MAP is not the
most general possible. In particular, it did not include the additional jumps that can occur at state
changes of the underlying Markov chain. This additional aspect, which we very much need here,
can be included by applying a technique from [4]. We will first write some results regarding
the most general setup, that is, the one-dimensional version of [15] but with the possibility of
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additional jumps at state change epochs. We will then specialize to the case which we need to
solve the problem of this paper. Thus, let (X, J ) = {(X(t), J (t)) | t ≥ 0} be a nondecreasing
MAP (see [4]) with exponent matrix F(α) = Q ◦ G(α) + diag(ϕ1(α), . . . , ϕK(α)), where
Q ◦G(α) ≡ (qijGij (α)), J is an irreducible, finite state space, continuous-time Markov chain
with states 1, . . . , K , rate transition matrixQ = (qij ), and stationary probability vectorπ = πi ,
andGij (α) is the LST of the distribution of the (nonnegative) jump occurring when the Markov
chain J changes state from i to j with Gii(α) ≡ 1 for all α ≥ 0 (LST of the constant 0). The
Laplace exponent of a nondecreasing Lévy process is of the form

ϕi(α) = −ciα −
∫
(0,∞)

(1 − e−αx) dνi(x),

where νi is a Lévy measure satisfying
∫
(0,∞)

min(x, 1) dν(x) < ∞. Moreover, we assume that
µ(i, j) ≡ −G′

ij (0) < ∞ and ρ(i) ≡ −ϕ′
i (0) = ci + ∫

(0,∞)
x dνi(x) < ∞ for all i and j .

As in [4], we recall that the process X behaves like a nondecreasing Lévy process (subordi-
nator) with exponent ϕi(·) when J is in state i and when J switches from state i to a different
state j . Moreover, X jumps up by an independent amount which has a distribution with LST
Gij (·).

Now consider the following Markov-modulated linear dam process:

W(t) = W(0)+X(t)−
∫ t

0
r(J (s))W(s) ds. (2.1)

Here the input is the process X and the output rate is proportional to the content of the dam,
where the proportion r(J (s)), with r(i) ≥ 0 for all i, is modulated by the Markov process J .
Then we have the following result.

Theorem 2.1. Suppose, in addition to the irreducibility of J and the assumptions that ρi < ∞
and µ(i, j) < ∞ for all i, j (see above), that there is at least one i for which r(i) > 0. Then
a unique stationary distribution for the joint (Markov) process (W, J ) exists, and it is also the
limiting distribution, which is independent of initial conditions.

Before we prove this result, let us first show the following result concerning an alternating
renewal process.

Lemma 2.1. Let {(Xn, Yn) | n ≥ 1} be independent pairs of nonnegative random variables
which are identically distributed for n ≥ 2, let P[Y2 > 0] > 0, and let EX1,EX2 < ∞. Set
S0 = 0, Sn = ∑n

i=1(Xi + Yi) for n ≥ 1, and

I (t) =
{

0 if t ∈ ⋃∞
n=0[Sn, Sn +Xn+1),

1 if t ∈ ⋃∞
n=0[Sn +Xn+1, Sn+1),

Z(t) =
∫ t

0
I (s) ds.

Then, for any positive constant r , E
∫ ∞

0 e−rZ(t) dt < ∞.

Proof. For simplicity, we prove this for the case where (X1, Y1) has the same distribution
as the rest of the sequence. The generalization to the case where the first pair has a different
distribution is trivial. Since∫

[Sn,Sn+1)

e−rZ(t) dt = e−rZ(Sn)(Xn+1 + r−1(1 − e−rYn+1))
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and Z(Sn) = S
y
n , where Sy0 = 0 and Syn = ∑n

i=1 Yi for n ≥ 1, it follows that

∫ ∞

0
e−rZ(t) dt =

∞∑
n=0

e−rSyn (Xn+1 + r−1(1 − e−rYn+1)) = r−1 +
∞∑
n=0

e−rSynXn+1.

Thus, as E e−rY1 < 1 (since P[Y1 > 0] > 0), it follows that

E
∫ ∞

0
e−rZ(t) dt = r−1 + EX1

1 − E e−rY1
< ∞,

as required. This completes the proof.

We note that in Lemma 2.1, the off times (Z(t) = 0) must have a finite mean, while, for
n ≥ 2, the on times (Z(t) = 1) cannot be almost surely (a.s.) 0. These are the minimal
assumptions in the sense that if one of them fails to hold then E

∫ ∞
0 e−rZ(t) dt = ∞. We note

that it is possible that X1, X2, or Y1 is a.s. 0.

Proof of Theorem 2.1. From (2.1) and Theorem 1 of [16], it follows that

W(t) = W(0) exp

[
−

∫ t

0
r(J (s)) ds

]
+

∫
(0,t]

exp

[
−

∫ t

u

r(J (s)) ds

]
dX(u),

and, thus, if we start the system with two different initial conditions W 1(0) and W 2(0), then

W 1(t)−W 2(t) = (W 1(0)−W 2(0)) exp

[
−

∫ t

0
r(J (s)) ds

]
. (2.2)

Since there is at least one i for which r(i) > 0 and J is irreducible, it follows that, a.s.,∫ ∞
0 r(J (s)) ds = ∞, so the right-hand side of (2.2) converges a.s. to 0 as t → ∞. Thus, if there

is a limiting distribution for (W(t), J (t)), it does not depend onW(0). It is standard thatJ can be
coupled with its stationary version after an a.s. finite time. Since the value ofW at this coupling
time has no effect on the limiting distribution if it exists (for the same reasons as just explained
for the initial conditions), we may assume without loss of generality that J is stationary. For this
case, the two-dimensional process {(∫ t0 r(J (s)) ds,Xt ) | t ≥ 0} has stationary increments in
the strong sense that the distribution of {(∫ t+u

u
r(J (s)) ds,Xt+u −Xu) | t ≥ 0} is independent

of u. Thus, we can extend this process together with J to be a double-sided process having
these properties. To complete the proof, it follows from Theorem 2 of [16] that it remains to
show that, a.s., ∫

(−∞,0]
exp

[
−

∫ 0

u

r(J (s)) ds

]
dX(u) < ∞.

We will in fact show that

E
∫
(−∞,0]

exp

[
−

∫ 0

u

r(J (s)) ds

]
dX(u) < ∞.

Defining J̄ (t) = J (−t) and X̄(t) = −X(−t) for t ≥ 0, we find that {(X̄(t), J̄ (t)) | t ≥ 0}
is also a MAP where J̄ is stationary with transition rates q̄ij = πjqji/πi , Ḡij = Gji , and
ϕ̄i = ϕi . By the method of uniformization, let {N̄(t) | t ≥ 0} be a Poisson process with some
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(finite) rate λ ≥ maxi (−q̄ii ) = maxi (−qii), in which arrival epochs we embed a (stationary)
discrete-time Markov chain {J̄n | n ≥ 0} with transition probabilities

p̄ij =

⎧⎪⎪⎨
⎪⎪⎩
q̄ij

λ
, i 	= j,

1 + q̄ii

λ
, i = j.

Now, by conditioning on J̄ we have

E
∫
(−∞,0]

exp

[
−

∫ 0

u

r(J (s)) ds

]
dX(u)

= E
∫

[0,∞)

exp

[
−

∫ u

0
r(J̄ (s)) ds

]
dX̄(u)

= E
∫

[0,∞)

exp

[
−

∫ u

0
r(J̄ (s)) ds

]
ρ(J (t)) dt

+ E
∫

[0,∞)

exp

[
−

∫ t

0
r(J̄ (s)) ds

]
d
N̄(t)∑
n=1

µ(J̄n−1, J̄n), (2.3)

where we recall that ρ(i) = −ϕ′
i (0) < ∞ and µ(i, j) = −G′

ij (0) < ∞. Defining ρ̄ =
maxi ρ(i) and µ̄ = maxij µ(i, j), we find that the right-hand side of (2.3) is bounded above
by

ρ̄ E
∫

[0,∞)

exp

[
−

∫ t

0
r(J̄ (s)) ds

]
dt + µ̄E

∫
[0,∞)

exp

[
−

∫ t

0
r(J̄ (s)) ds

]
dN̄(t). (2.4)

Since {N̄(t)− λt | t ≥ 0} is a zero-mean right-continuous martingale and exp[− ∫ t
0 (J̄ (s)) ds]

is adapted, continuous, and bounded, it follows that (2.4) is equal to

(ρ̄ + λµ̄)E
∫

[0,∞)

exp

[
−

∫ t

0
r(J̄ (s)) ds

]
dt.

For any i such that r(i) > 0,

E
∫

[0,∞)

exp

[
−

∫ t

0
r(J̄ (s)) ds

]
dt ≤ E

∫
[0,∞)

exp

[
−r(i)

∫ t

0
1{J̄ (s)=i} ds

]
dt, (2.5)

and the right-hand side is finite by the irreducibility, and, hence, the positive recurrence, of J̄
(due to that of J ) and Lemma 2.1. This completes the proof.

From [4], the following is a zero-mean martingale:∫ t

0
exp[−αW(s)] 1J (s) dsF (α)+ exp[−αW(0)] 1J (0)− exp[−αW(t)] 1J (t)

+ α

∫ t

0
exp[−αW(s)] 1J (s) r(J (s))W(s) ds. (2.6)
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Thus, if (W ∗, J ∗) has the stationary distribution associated with the process (W, J ) then, from
(2.6), it follows that

E e−αW ∗
1J ∗ F(α) = α

d

dα
E e−αW ∗

1J ∗ r(J ∗).

Thus, with wi(α) = E e−αW ∗
1{J ∗=i}, w(α) = (wi(α)), and Dr = diag(r(1), . . . , r(K)), we

have
w(α)�F(α) = αw′(α)�Dr, (2.7)

where πi = wi(0) is the stationary distribution for the Markov chain J , summing to 1 and
satisfying π�Q = 0. We do not expect to be able to solve (2.7) analytically. Nevertheless, it
can immediately be deduced from this equation by differentiation that

n∑
k=0

(
n

k

)
w(k)(0)�F (n−k)(0) = nw(n)(0)�Dr,

and since F (0)(0) = F(0) = Q, we have

n−1∑
k=0

(
n

k

)
w(k)(0)�F (n−k)(0) = w(n)(0)�(nDr −Q).

Thus, when nDr − Q is invertible, we have a recursion formula that computes the moments
E(W ∗)n 1{J ∗=i}.

Specializing to the problem we set out to solve, assume that instead of K states for the
modulating Markov chain there are K + 1 states, indexed by 0, . . . , K . We will first consider
the modulated process with r(0) = 0, r(1) = · · · = r(K) = 1, Gi0(α) = G(α), and, for all
other i, j , Gij (α) = 1. Finally, we assume that, other than the jump that occurs when entering
state 0 and the specified rates, nothing happens. That is, ϕ0(α) = · · · = ϕK(α) = 0. Thus, we
see that if we restrict the process to the intervals where the modulating Markov chain is in states
1, . . . , K then we have a shot noise process with phase-type interarrival times and general i.i.d.
jumps.

It is easy to check that (2.7) becomes

K∑
i=0

wi(α)qij = αw′
j (α)

for j 	= 0 and, for j = 0, we have

−q0w0(α)+G(α)

K∑
i=1

wi(α)qi0 = 0,

where q0 = −q00. By substitution we thus have, for j 	= 0,

K∑
i=1

wi(α)

(
qij + qi0q0j

q0
G(α)

)
= αw′

j (α) (2.8)

with initial conditions wi(0) = πi , where π is the stationary distribution for the modulating
Markov chain. Denote by 1 aK-vector of 1s, let S = (sij ) with sij = qij for 1 ≤ i, j ≤ K , let
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βj = q0j /q0, and note that qi0 = − ∑K
j=1 sij . Then the underlying phase-type distribution of

Pn defined earlier is
P[Pn ≤ x] = 1 − β�e−Sx1.

Thus, in matrix notation (2.8) becomes, with ŵ(α) = (wi(α))1≤i≤K and I the identity matrix,

(I + β1�G(α))S�ŵ(α) = αŵ′(α).

Therefore, the stationary LST for the shot noise process with phase-type interarrival times and
jumps with distribution having LST G is given by

w(α) =
∑K
i=1wi(α)

1 − π0
= 1�ŵ(α)

1 − π0
.

It is easy to check that
K∑
j=1

(
qij + qi0q0j

q0

)
= 0 (2.9)

and that
K∑
j=1

πi

(
qij + qi0q0j

q0

)
= 0; (2.10)

thus, (2.8) can also be written as

µ
q0j

q0
Ge(α)

K∑
i=1

wi(α)qi0 = −
K∑
i=1

wi(0)− wi(α)

α

(
qij + qi0q0j

q0

)
− w′

j (α),

where Ge(α) = (1 −G(α))/αµ is the stationary residual lifetime LST associated with G. If
we similarly define

we,i (α) = wi(0)− wi(α)

−w′
i (0)α

= 1 − E[e−αW ∗ | J ∗ = i]
E[W ∗ | J ∗ = i]α

and let µwn,i = E[(W ∗)n | J ∗ = i], then

µ
q0j

q0
Ge(α)

K∑
i=1

wi(α)qi0 = −
K∑
i=1

πiµ
w
1,iwe,i (α)

(
qij + qi0q0j

q0

)
− w′

j (α).

In particular, letting α ↓ 0,

µπ0q0j = µ
q0j

q0

K∑
i=1

πiqi0

= −
K∑
i=1

πiµ
w
1,i

(
qij + qi0q0j

q0

)
+ πjµ

w
1,j

=
K∑
i=1

πiµ
w
1,i (δij − q̃ij ), (2.11)

where q̃ij = qij + qi0q0j /q0. It follows from (2.9) and (2.10) that Q̃ = (q̃ij )1≤i,j≤K is a rate
transition matrix with stationary distribution πi/(1 − π0) for i = 1, . . . , K .

The following is a straightforward exercise, but we include it for ease of reference.
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Lemma 2.2. If P is a stochastic matrix, D1 and D2 are nonnegative diagonal matrices, and
D1 +D2 has a strictly positive diagonal, then D1 − (D2(P − I )) is nonsingular.

Proof. Note that D1 − (D2(P − I )) = (D1 + D2)(I − (D1 + D2)
−1D2P) and, thus,

it suffices to show that, with A = ((D1 + D2)
−1D2P), An → 0 as n → ∞, since then

(I −A)−1 = ∑∞
n=0 A

n. To show this, we note that (D1 +D2)
−1D2 is a nonnegative diagonal

matrix where the diagonal entries are all strictly less than 1. Thus, if we let d denote the
maximum of these entries then An ≤ dnP n and, since the entries of Pn are bounded, the result
immediately follows.

Since a rate transition matrix of a finite state space, continuous-time Markov chain is of
the form D(P − I ) for some nonnegative diagonal matrix D and some stochastic matrix P , it
follows from Lemma 2.2 that I − Q̃ is nonsingular and, thus, (2.11) has a unique solution for
the unknowns µw1,i . Denoting by µn the nth moment with respect to the jump distribution F
(with LST G), then, since µG(n−1)

e (0) = (−1)n−1µn/n and, similarly,

µw1,iw
(n−1)
e,i (0) = (−1)n−1

µwn,i

n
,

it is easy to check that, after differentiating n−1 times and letting α ↓ 0, the following recursion
holds:

q0j

q0

n−1∑
k=0

(
n− 1

k

)
µk+1

k + 1

K∑
i=1

πiµ
w
n−1−k,iqi0 =

K∑
i=1

πiµ
w
n,i

(
δij − q̃ij

n

)
.

Upon multiplying by n, observing that(
n− 1

k

)
n

k + 1
=

(
n

k + 1

)
,

and making an obvious change of variables in the first sum, we obtain

q0j

q0

n∑
k=1

(
n

k

)
µk

K∑
i=1

πiµ
w
n−k,iqi0 =

K∑
i=1

πiµ
w
n,i(nδij − q̃ij ).

Finally, denoting by p̃0 a vector with coordinates p0j = q0j /q0, we have, with ã� = p̃�
0 (I −

Q̃)−1,

πjµ
w
n,j = ãj

n∑
k=1

(
n

k

)
µk

K∑
i=1

πiµ
w
n−k,iqi0.

Thus, setting mwn = ∑K
i=1 πiµ

w
n,iqi0 and

ã =
K∑
i=1

ãiqi0 = 1

q0

K∑
i=1

K∑
j=1

q0i (I − Q̃)−1
ij qj0,

we have, for n ≥ 1,

mwn = ã

n∑
k=1

(
n

k

)
µkm

w
n−k, (2.12)

https://doi.org/10.1239/jap/1318940467 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1318940467


On some tractable growth-collapse processes with renewal collapse epochs 225

so that

µwn,j = ãj

πj ã
mwn

and the unconditional moment is

1

1 − π0

K∑
j=1

πjµ
w
n,j = mwn

(1 − π0)ã

K∑
j=1

ãj . (2.13)

From (2.12), it follows that

mwn = ã

1 + ã

n∑
k=0

(
n

k

)
µkm

w
n−k + 1

1 + ã
δ0n,

and, upon multiplying by (−α)n, dividing by n!, and summing, and noting that ifG is uniquely
defined by its moments then G(α) = ∑∞

k=0(−1)kµkαk/k!, we obtain

mw(α) =
∞∑
n=0

(−1)nmwn
n! αn = 1/(1 + ã)

1 − ãG(α)/(1 + ã)
=

∞∑
k=0

1

1 + ã

(
ã

1 + ã

)k
Gk(α).

This implies that if we let

H(x) =
∞∑
k=0

1

1 + ã

(
ã

1 + ã

)k
F ∗k(x)

then mwn is the nth moment with respect to H . If Sn is a sum of n i.i.d. random variables
distributed likeF (S0 = 0) andN is an independent geometric random variable with probability
of success (1 + ã)−1, counting only the number of failures, then H is the distribution of SN .
Although this seems nice, we should point out that the analysis is not complete as we have not
shown that these moments define a unique distribution.

2.1. The K = 2 case

With aij = qi0q0j /q0, (2.8) reduces to

αw′
1(α) = w1(α)(q11 + a11G(α))+ w2(α)(q21 + a21G(α)), (2.14)

αw′
2(α) = w1(α)(q12 + a12G(α))+ w2(α)(q22 + a22G(α)). (2.15)

Differentiating the second of these equations, using (2.14) for w′
1(α) and, finally, (2.15) to

eliminate w1(α), we obtain the following second-order differential equation in w2(α):

αw′′
2(α) = w′

2(α)

(
−1 + q22 + a22G(α)+ q11 + a11G(α)+ αa12G

′(α)
q12 + a12G(α)

)

+ w2(α)

(
1

α
(q21 + a21G(α))(q12 + a12G(α))+ a22G

′(α)

− 1

α
(q22 + a22G(α))(q11 + a11G(α))+ q22 + a22G(α)

q12 + a12G(α)
a12G

′(α)
)
.

(2.16)
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Now consider the special case of exp(µ) jumps, i.e.G(α) = µ/(µ+α), and Markov transition
rates q12 = −q11 = ν1, q20 = −q22 = ν2, and q01 = −q00 = ν0, i.e. the times in state i are
exp(νi)-distributed, for i = 0, 1, 2. Then (2.16) reduces to

α(µ+ α)w′′
2(α)+ (ν1 + ν2 + 1)(µ+ α)w′

2(α)+ ν1ν2w2(α) = 0. (2.17)

Setting z = µ + α, a = ν1, b = ν2, and c = 0 in Equation (15.5.1) of [1, p. 562] reduces
that differential equation to (2.17). Its solution is given by the hypergeometric functions in
Equations (15.5.20) and (15.5.21) of [1, p. 564].

3. Moments for the growth-collapse model

In this section we relate the nth moment of the stationary distribution of the growth-collapse
model to the (n+ 1)th moment of the stationary distribution of the shot noise model. Consider
the growth-collapse model with collapse ratio distribution of minus-log-phase-type. Let P
denote a generic interarrival time of the corresponding shot noise process; P is phase type (cf.
Section 1). An expression for EP is given via the system of equations for the ti , which are
mean interarrival times when the first phase is i, i.e.

ti = 1

qi
+

∑
j 	=0,i

qij

qi
tj ,

or, equivalently, ∑
j 	=0

qij tj = −1,

which has a unique solution. Then EP is a weighted average of t1, . . . , tK , where the weights
are the initial distribution of the phase-type distribution, which in our case is chosen to be
q0i/q0.

From [11] we recall that, for the on/off model of Section 1, the relationship between the
stationary density during on times (f0(·)) and that during off times (f1(·)) is given by pf0(x) =
(1 − p)xf1(x), where p = µ/(µ+ EP). Hence,

∫ ∞

0
e−αxf0(x) dx = EP

µ

∫ ∞

0
e−αxxf1(x) dx = −EP

µ

d

dα

∫ ∞

0
e−αxf1(x) dx,

so that the nth moment of the stationary distribution for the growth-collapse model is given
by EP/µ times the (n + 1)th moment (see (2.13)) for the shot noise model with phase-type
interarrival times.

We also observe that in general there is a more direct way of computing the moments, as
pointed out in [13]. That is, if V has the stationary distribution of the process immediately after
collapses, Y has the intercollapse time distribution, and X has the collapse ratio distribution,
thenV

D= (V + Y )X, whereX, Y , andV are independent, and the time stationary distribution is
T

D= V + Ye, whereV andYe are independent, andYe has the stationary excess time distribution
of Y . From this, as in Equation (34) of [13],

EV n = EXn
n∑
k=0

(
n

k

)
EV k E Yn−k.
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It will be shown in the next section that, whenever E Yn < ∞, EV n < ∞ and, thus, recursively
(with EV 0 = E Y 0 = 1),

EV n = EXn

1 − EXn

n−1∑
k=0

(
n

k

)
EV k E Yn−k, (3.1)

and in particular EV = EX E Y/(1 − EX). Hence, if E Yn+1 < ∞ then

E T n =
n∑
k=0

(
n

k

)
EV k E Yn−ke

=
n∑
k=0

(
n

k

)
EV k

E Yn−k+1

(n− k + 1)E Y

= 1

(n+ 1)E Y

n∑
k=0

(
n+ 1

k

)
EV k E Yn+1−k

= (1 − EXn+1)EV n+1

(n+ 1)EXn+1 E Y

= (1 − EXn+1)EX EV n+1

EXn+1(1 − EX)(n+ 1)EV

= (1 − EXn+1)EX

EXn+1(1 − EX)
EV ne , (3.2)

whereVe has the stationary excess time distribution ofV . In this particular case, sinceX = e−P
with P[P > x] = β�e−Sx1, then EXα is the LST of a phase-type distribution, which is well
known and can be written as β�(S(S + αI)−1)1. Thus, as I − S(S + αI)−1 = (S + αI −
S)(S + αI)−1 = α(S + αI)−1, we have

1 − EXn = 1 − β�(S(S + nI)−1)1 = β�(I − S(S + nI)−1)1 = nβ�(S + nI)−11.

Thus, we can use these equations together with (3.1) and (3.2) to compute the moments.
Algorithmically, the complexity of doing it this way or via the related shot noise process is
more or less the same.

4. The discrete-time process embedded after collapse epochs

In this section we study the steady-state behavior of the growth-collapse process immediately
after the nth collapse, Vn, defined by

Vn = (Vn−1 + Yn)Xn, (4.1)

where V0 is the initial state.
As observed, for example, in Equation (2) of [13],

Vn = V0

n∏
j=1

Xj +
n∑
i=1

Yi

n∏
j=i

Xj .

We assume in the sequel that {Xi | i ≥ 1} and {Yi | i ≥ 1} are independent sequences of i.i.d.
random variables distributed like X and Y , where X and Y are independent and nonnegative.
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We will initially assume thatX has support [0, 1]. From [13], it follows that, when EX < 1 and
E Y < ∞, a limiting distribution for the process {Vn | n ≥ 0} exists, which is independent of the
initial condition V0, and it has a unique stationary version. It is easy to check that this continues
to hold when X is nonnegative but not necessarily restricted to [0, 1], as, when EX1 < 1,∏n
j=1Xj → 0 a.s. as n → ∞, and

∑n
i=1 Yi

∏n
j=i Xj is stochastically increasing (as it is

distributed like
∑n
i=1 Yi

∏i
j=1Xj ) and its mean is bounded above by E Y EX/(1−EX) < ∞.

Thus, throughout this section, it is assumed that EX < 1 and E Y < ∞.
The fact that, when starting from V0 = 0, Vn is stochastically increasing can also be used

to justify the fact that the limiting distribution of Vn has a finite mth moment if and only if
E Ym < ∞ and EXm < 1, as in this case

(1 − EXm)EVmn ≤ EVmn − EXm EVmn−1 = EXm
m−1∑
k=0

(
m

k

)
EV kn−1 E Ym−k, (4.2)

where, by induction, EV kn < ∞ and converges to the kth moment of the limiting distribution
by monotone convergence (finite or infinite). Thus, if the first m− 1 moments of the limiting
distribution of Vn are finite, E Ym < ∞, and EXm < 1, then the mth moment is finite as well.
If either E Ym = ∞ or EXm ≥ 1, then (4.2) also implies that the mth moment of the limiting
distribution of Vn is necessarily infinite.

Let V denote a random variable having this distribution, such thatX, Y , and V are indepen-
dent. Then

V
D= (V + Y )X. (4.3)

We might also focus on Z := V + Y , which has the limiting distribution of the state of the
system immediately before collapses. This leads to

Z
D= ZX + Y.

Much of the literature on (4.1) has concentrated on the existence of a limiting distribution,
and on the tail behavior of that limiting distribution. In the present section we know that this
limiting distribution exists provided that EX < 1. Our goal is to determine it, for a number of
choices of the distributions of X and Y . We start with the following formula for the LST ψ(α)
of V :

ψ(α) = Eψ(αX)η(αX) =
∫

[0,1]
ψ(αx)η(αx) dFX(x). (4.4)

Here η(α) denotes the LST of Y , and FX(x) = P[X ≤ x]. We will also study EV n in a number
of cases, comparing it with (3.1). In the sequel, we assume that all required moments of Y are
finite, with the exception of an example of regular variation at the end of the section, and note
that, since X has support [0, 1] and EX < 1, then EXn < 1 for all n ≥ 1 also.

We start with a case that has already been treated in [20]. We review it here, as it is the basis
for extensions later in this section.
4.1. Case 1: X ∼ Beta(D, 1)

In this case, X has distribution F(x) = P[X ≤ x] = xD, 0 ≤ x ≤ 1. When D is
a positive integer, X is distributed like the maximum of D independent U [0, 1]-distributed
random variables. From (4.4) we have

ψ(α) =
∫ α

0
ψ(u)η(u)D

(
u

α

)D−1 du

α
,
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or

αDψ(α) = D

∫ α

0
ψ(u)η(u)uD−1 du.

Differentiation yields, after some rearrangement,

ψ ′(α) = −Dψ(α)1 − η(α)

α
, (4.5)

so, since ψ(0) = 1,

ψ(α) = exp

[
−D

∫ α

v=0

1 − η(v)

v
dv

]
= exp

[
−D E Y

∫ α

0
ηe(v) dv

]
, (4.6)

where ηe(v) = (1−η(v))/v E Y is the LST of the stationary residual lifetime distribution of Y .

Remark 4.1. For D = 1, ψ(α) is the LST of the classical shot noise process; see [12]. For an
integer D > 1, V is apparently the sum of D independent shot noise processes, each having
D = 1. This is not a coincidence. It follows from the fact that if

Wi(t) = Xi(t)− r

∫ t

0
Wi(s) ds

for i = 1, . . . , D then

D∑
i=1

Wi(t) =
D∑
i=1

Xi(t)− r

∫ t

0

D∑
i=1

Wi(s) ds,

so that if the Xi(·) are independent processes then the Wi(·) are also independent shot noise
processes and

∑D
i=1Wi(·) is itself a shot noise process with driving process

∑D
i=1Xi(·). In this

particular case we may observe from the relationship discussed earlier between the shot noise
and growth-collapse processes that a uniformly distributed jump ratio for the growth-collapse
process corresponds to exponentially distributed interjump times for the shot noise process.
Thus, in this case, for D = 1, the Xi(·) are independent compound Poisson processes with
arrival rate λ = 1 and jumps distributed like Y , so that

∑D
i=1Xi(·) is also a compound Poisson

process with arrival rate D and jumps distributed like Y .

4.1.1. Moments. It follows from (4.5), after k−1 differentiations and denoting by Ye a random
variable with stationary residual lifetime distribution associated with Y , that

EV n = D E Y
n−1∑
k=0

(
n− 1

k

)
EV k E Yn−1−k

e ,

from which recursion all moments of V can be obtained (starting with EV = D E Y ). The
equivalence with (3.1) follows by observing that EXn = D/(D + n) and that E Yne =
E Yn+1/(n+ 1)E Y .

4.2. Case 2: X ∼ Beta(ζ1, ζ2) and Y ∼ Gamma(ζ2, β)

In this case there is the following shortcut. It is well known (usually given as a standard
exercise in a first-year probability course when discussing multidimensional transformations
and Jacobians) that if V is Gamma(ζ1, β)-distributed and Y is Gamma(ζ2, β)-distributed, and
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V and Y are independent, then V/(V + Y ) is distributed like Beta(ζ1, ζ2) and is independent of
V +Y , which is distributed like Gamma(ζ1 + ζ2, β). Thus, the joint distribution of (X, V +Y )
is the same as that of (V/(V + Y ), V +Y ), which implies thatX(V +Y ) is distributed like V ,
so that (4.3) is satisfied. As there is a unique limiting distribution for recursion (4.1), it must
be Gamma(ζ1, β).

Remark 4.2. It is easily verified that, in the case of Y being exponentially distributed, i.e.
Gamma(1, β), and X being Beta(D, 1)-distributed as in Case 1, (4.6) yields ψ(α) = (1/(1 +
βα))D; so, indeed, V has a Gamma(D, β) distribution. This particular case is mentioned in [20,
p. 765].

4.2.1. Moments. Since V has a Gamma(ζ1, β) distribution, it immediately follows that

EV n = βn
�(ζ1 + n)

�(ζ1)
.

4.3. Case 3: X has an atom at 0

Suppose that P[X = 0] = p > 0 and that X assumes, with probability 1 − p, values
on (0,∞) (so we do not necessarily restrict X to [0, 1]). It is easy to see that the limiting
distribution of {Vn | n ≥ 0} always exists, as 0 is a regenerative state with geometrically
distributed (hence, aperiodic finite-mean) regeneration epochs. We will study several subcases.

4.4. Case 3(a): X has atoms at 0 and c

Assume that P[X = 0] = 1 − P[X = c] = p, with p > 0 and c > 0 (also allowing c > 1).
From (4.1),

ψ(α) = p + (1 − p)ψ(cα)η(cα),

of which repeated iterations yield

ψ(α) =
∞∑
j=0

p(1 − p)j
j∏
i=1

η(ciα).

The sum obviously converges for all 0 < p ≤ 1. Inversion of the LST reveals that

V
D=

N∑
i=1

ciYi, (4.7)

whereN is geometrically distributed (counting only failures) with probability of success p and
is independent of {Yi | i ≥ 1}. Indeed, this also follows directly by applying (4.1), in the form
Vn = c(Vn−1 + Yn), N times, with V0 = 0. See also [20, p. 762] (where c = 1).

4.4.1. Moments. From (4.7),

EV n =
∞∑
j=0

p(1 − p)j
∑

∑j
i=1 ni=n

n!∏j
i=1 ni !

c
∑j
i=1 ini

j∏
i=1

E Yni .
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4.5. Case 3(b): X ∼ mixture of an atom at 0 and Beta(D,1)

Assume that P[X ≤ x] = p + (1 − p)xD, 0 ≤ x ≤ 1, p > 0. In this case, (4.4) reduces to

ψ(α) = p + (1 − p)

∫ 1

0
ψ(αx)η(αx) dx,

yielding, after manipulations similar to those in Case 1,

ψ ′(α) = pD

α
+ ψ(α)

(1 − p)Dη(α)−D

α
. (4.8)

The solution of this first-order inhomogeneous differential equation is

ψ(α) = C exp

[
D

∫ α

0

(1 − p)Dη(v)−D

v
dv

]

+
∫ α

0

pD

z
exp

[∫ α

z

(1 − p)Dη(v)−D

v
dv

]
dz. (4.9)

It is easily seen that the first integral on the right-hand side of (4.9) diverges, so we have to take
C = 0. By observing that ((1 − p)Dη(v)−D)/v is bounded between −D/v and −pD/v,
and, hence, that the expression in the last line of (4.9) is bounded between

∫ α

0

pD

z

(
z

α

)pD
dz and

∫ α

0

pD

z

(
z

α

)D
dz,

it follows that the expression on the last line of (4.9) has a value between p and 1. When α ↓ 0,
the above bound −pD/v becomes tight and the expression on the last line of (4.9) approaches 1.

4.5.1. Moments. The most suitable approach to obtain EV n via the LST here seems to be
to multiply both sides of (4.8) with α and differentiate k − 1 times. However, the resulting
calculation is not much easier than when starting from (3.1), and, hence, we omit it.

4.5.2. Tail behavior. Suppose that the distribution of Y is regularly varying at ∞ with index −ν.
Then application of Lemma 8.1.6 of [5] to (4.9) readily shows that V is also regularly varying,
with the same index. We do not provide details because considerably more general tail results
can be obtained for (4.1); see [19] for regularly varying Y and [7] for light tailed Y .

4.6. Case 3(c): X ∼ mixture of an atom at 0 and a product of two i.i.d. U [0,1]

The density of the product of two i.i.d. random variables which are uniformly distributed on
[0, 1] is − ln x, 0 < x < 1. Formula (4.4) now reduces to

ψ(α) = p − (1 − p)

∫ 1

0
ψ(αx)η(αx) ln x dx,

so

αψ(α) = pα − (1 − p)

∫ α

0
ψ(u)η(u) ln

(
u

α

)
du,

which, after two differentiations, leads to

α2ψ ′′(α)+ 3αψ ′(α)+ (1 − (1 − p)η(α))ψ(α) = p. (4.10)
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In the special case that Y ∼ exp(µ) (hence, η(α) = µ/(µ+ α)) this equation simplifies to

α2(µ+ α)ψ ′′(α)+ 3α(µ+ α)ψ ′(α)+ (µ+ α − (1 − p)µ)ψ(α) = p.

For p = 0, we obtain a known case:

α(µ+ α)ψ ′′(α)+ 3(µ+ α)ψ ′(α)+ ψ(α) = 0.

Note that this is differential equation (2.17) for the case of ν1 = ν2 = 1, which makes sense:
Y being exponential and X being a product of two independent U [0, 1] random variables
corresponds to having an exponential on-time distribution and an Erlang-2 off-time distribution
in the on/off model of Section 1 (which was directly related to the growth-collapse model and the
shot noise model). Slightly more generally, if X = U

1/ν1
1 U

1/ν2
2 , with U1 and U2 independent

and U [0, 1]-distributed, we obtain (2.17) with ν1 and ν2.

Remark 4.3. We note that the density of the product of k ≥ 2 i.i.d. random variables which are
uniformly distributed on [0, 1] is (− ln(x))k−1/(k − 1)!, 0 < x < 1; thus, in a similar manner
we may derive a kth-order differential equation for ψ(α).

Remark 4.4. When p = 0 and η(α) = (µ/(µ+ α))2, i.e. Y is Erlang-2, then (4.10) becomes

ψ ′′(α)+ 3

α
ψ ′(α)+ α + 2µ

α(µ+ α)2
ψ(α) = 0. (4.11)

When p = 0 and η(α) = bµ1/(µ1 + α) + (1 − b)µ2/(µ2 + α) with 0 < b < 1, i.e. Y is
hyperexponentially distributed, then (4.10) becomes

ψ ′′(α)+ 3

α
ψ ′(α)+ b(µ2 + α)+ (1 − b)(µ1 + α)

α(µ1 + α)(µ2 + α)
ψ(α) = 0. (4.12)

Both (4.11) and (4.12) are special cases of Heun’s differential equation; cf. [9].

4.7. Case 4: X ∼ U [0,a]

We are interested in studying the case in which X is not restricted to [0, 1]. We assume that
X is U [0, a]-distributed, with EX = a/2 < 1. As noted in the first paragraph of this section,
together with E Y < ∞, this implies stability. Formula (4.4) now becomes

ψ(α) = 1

a

∫ a

0
ψ(αx)η(αx) dx = 1

aα

∫ aα

0
ψ(u)η(u) du,

and differentiation gives (see (4.5))

ψ ′(α) = ψ(aα)
η(aα)

α
− ψ(α)

α
. (4.13)

By introducing ζ(α) ≡ ψ(eα) we can rewrite (4.13) as the differential-difference equation

ζ ′(α) = ζ(α + c)ξ(α + c)− ζ(α),

with c = ln a < 0 and ξ(α) := η(eα). There is an extensive literature on differential-difference
equations; see, for example, [10]. However, solutions of such equations are only known in
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special cases, such as when ξ(α) is a constant. Below we consider (4.13) in the special case
that Y ∼ exp(µ). Equation (4.13) then reduces to

(µ+ aα)αψ ′(α) = µψ(aα)− (µ+ aα)ψ(α).

We might solve this equation by introducing the Taylor series expansion ψ(α) ≡ ∑∞
n=0 fnα

n,
with f0 = ψ(0) = 1, and solving the resulting recursion for fn (which is (−1)n EV n/n!).

We prefer an alternative approach, starting from (3.1):

EV n = EXn

1 − EXn

n−1∑
k=0

(
n

k

)
EV k E Yn−k = n! an

n+ 1 − an

n−1∑
k=0

EV k

k!
1

µn−k
.

If we define Bn = ∑n
k=0 µ

k EV k/k! then Bn − Bn−1 = anBn−1/(n+ 1 − an) so that Bn =
(n+ 1)Bn−1/(n+ 1 − an), which implies that Bn = (n+ 1)!/∏n

i=1(i + 1 − ai). Hence,

µn EV n

n! = Bn − Bn−1 = ann!∏n
i=1(i + 1 − ai)

,

and, thus, when a < (1 + n)1/n,

EV n = (a/µ)n(n!)2∏n
i=1(i + 1 − ai)

.

Remark 4.5. For a = 1, we obtain EV n = n!/(µ)n, corresponding to V being exponentially
distributed; see Remark 4.2. We further recall that EV n < ∞ if and only if EXn =
an/(n+ 1) < 1 (see (4.2) and the discussion there). Note that (1+n)1/n equals 2 for n = 1 and
decreases to 1 as n → ∞, so that, for 0 < a ≤ 1, all the moments exist, but not for 1 < a < 2.
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