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A LOCAL RATIO THEOREM
M. A. AKCOGLU AND R. V. CHACON

1. Introduction. Let T, ¢ > 0, be a strongly continuous semigroup of
positive linear contractions on the Li-space of a o-finite measure space
(X, &, u). We denote the integral fo‘Tsfds,f € L,, by So*f, which is defined
as the limit of Riemann sums, in the norm topology of Li. It is easy to see that,
given f € L,*, there exists a function F on the product space X X (0,0),
measurable with respect to the usual product o-field, such that for every
t =0, IO‘F(-, s) ds gives a representation of Splf. We write So'f(x) for
IO’F(x, s) ds, with a fixed choice of F.

Our aim in this article is to prove the existence of lim,¢(So’f/So’g) a.e., on
a certain part of X and to use this result to show the existence of
lim,y0(1/8)So’f a.e., on X. We note that the existence of the latter limit has
recently been proved independently by Krengel [3] and by Ornstein [4], under
the additional hypothesis of continuity at ¢ = 0. We will show that there are
semigroups which do not satisfy this hypothesis.

Acknowledgment. We would like to express our thanks to Professors
U. Krengel and D. S. Ornstein for making their manuscripts [3; 4] available
to us prior to publication.

2. Preliminaries. Let (X, %, u) be a o-finite measure space, let L,,
1 £ p <00, be the usual Banach space of functions on (X, %, u), and let
L,* denote the positive cone of L,, consisting of the non-negative functions
in L,. Let, for every ¢t and s > 0, T;: Ly — L, be a linear operator with
T, =1, T,.Lit C Lt and T',Ts = T,y Also, assume that for every ¢t > 0
and f € Ly, limg, ||Tsf — T.f|] = 0.

We first show that 7', ¢t > 0, divides the space X into two sets, which can
be called the initially conservative and dissipative parts of X.

Definition 2.1. Let g € L;, g > 0 a.e. and C = {x| So’g(x) > 0,V ¢ > 0},
D=X-_C.

To justify this definition we prove the following result.

Lemwma 2.1. C and D are uniquely determined up to sets of measure zero, and
do not depend on the choice of g, g € Ly, g > 0, a.e.

Proof. 1t is clear that for a given g, C is determined up to a set of measure
zero. Now, let f € Ly, f > Oa.e., and assume that there exists E € %, u(E) > 0,
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such that for all ¢ > 0, So’f > 0 a.e. on E, but for almost all (a.a.) x € E,
there exists ¢ = f(x) > 0 such that Sy'®g(x) = 0. Then for a.a. x € E one
can find a rational number 7 = r(x) > 0 such that Sy"®g(x) = 0. Let
74 1 = 1, be a counting of the positive rational numbers and let

E;, = {x|x € E, Sy"ig(x) = 0}.

Then there exists a rational number 7; > 0 such that u(E;) > 0. To simplify
the notation let E; = E and r; = §. We then have Sy’f > 0 a.e. on E and
So’g = 0 a.e. on E. Let € > 0 be fixed and choose z > 0 large enough so that
ng = f a.e. except on a set H with fyfd,u < e. Let fi = xgef and fs = xuf.
Therefore, So’f; = 0 a.e. on E, and hence,

LS&P@:L&,%@:K@Lrsfzduganleléae.

But this is a contradiction, since [ zSo’f du is a fixed positive number and
€ > 0 is arbitrary. This completes the proof.

We also note that a similar argument shows that So’f = 0 a.e. on D, for
any f € Lyand ¢t = 0.
To prove the next result on C we first observe the following general fact.

LeMMA 2.2. Let T: Ly — L, be a positive linear contraction, f € L+, E € F,
and f > 0 ae on E, T = 0 a.e. on E, for all n, 1 < n < N. Then for any
g E L1+7

N
> | Tgau s [lell.
n=0 E

Proof. A simple argument, similar to those used in the proof of Lemma 2.1
shows that T"xzh = 0 a.e. on E, for all #, 1 < # £ N, and for all # € L;*.
Now let {fo, f1, . . . , fa} and {ho, k1, . . ., hy} be defined as follows: fo = xzg,
ho = xgg, fo = Xxglhw1, by = XgelTh,—1, 1 = n = N. An induction argument
shows that

T¢ = > T" % +h, 0=n=N,
k=0

and hencefET"gdu = fEfn du = || ful|- Butitisclear that 35 _o|| ful| < llgll.

LeEMMA 2.3. Let f € Lyt and K = {x| f(x) > 0} N\ C (K 1is determined up
to a set of measure zero). Then, for all £ > 0, So'f > 0 a.e. on K.

Proof. Let K, = {x]| So'f(x) > 0} N K, t > 0. Clearly ¢{ < ¢ implies that
K, C K, (CK). We would like to show that K, = K for all ¢ > 0. If thisis
not true, there exists a 6 > 0 such that u(K — K;) > 0. Let E = K — K.
Then 7T5f = 0 a.e. on E, for all 5, 0 < s < §; in fact, otherwise there would
exist a o, 0 <o =<4, with fET(,f du > 0. But this would imply that
Jotds [ g7 f du > 0, since the integrand of the second integral is a continuous
function of s. Hence we would have fESo‘Sf du > 0, which is a contradiction.
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Hence T5f = 0 a.e. on E, for all 5, 0 < s =< §. Now assume that C is defined
in terms of g. Then fESo‘sg du = fg“dstTSg du = a > 0. Hence if Ny is
sufficiently Iarge,

f Tsngdu = a/2 forall N = N,.
n—O

Therefore, for a sufficiently large NV,

N-—-1

Z | Ton'g > |lell.

=o
By letting T = T;,5, however, we see from the previous lemma that this is a
contradiction.

3. The local ratio theorem. As mentioned before, our main purpose is to
prove the following result.

THEOREM 3.1. Let Ty, t > 0, be a strongly continuous semigroup of positive
linear contractions on Li(X, F , u) and let C be the initially conservative part
of X. Then for all f € L1 and g € Lt

So'f .
lim o~ exists ae. on K = {x|gx)> 0} N C.
1,0 So
Before giving the proof we note the following theorem as a corollary.
THEOREM 3.2. For all f € Ly, lim,o(1/t)So’f exists a.e. on X.

Proof of Theorem 3.2. It is clear that, assuming f € L+, lim,0(1/£)Se’f = 0
a.e. on D. Now let g > 0 a.e. on X, g € L; and let, for example, 2 = Sp'g.
If So'g is represented by fo’G(-, s) ds, then it is easy to see that

t s/'+1
f ds’ f G, s) ds
0 s’

represents So'h. Hence lim,yo(1/£)So'h = h a.e. and, since &> 0 a.e. on C,
Iiino tSOf =h- htl;no i'ofh exists a.e. on C,
by the previous theorem.

The proof of Theorem 3.1 will be divided into several lemmas.

Definition 3.1. If « € L, and ¢ > 0, then let T'2: L; — L; be defined as
Tef=af +T,(1 —a)f, f€ Ly. I f€ LyT and ¢ > 0, then f <*f’ means
that there exists an integer # = 1 and # functions a; € L, 0 S a; £ 1,
1=1,...,n, and n positive numbers £;, 2 = 1,...,#n, with X.7_1f; < tand
fr=T,m. . . Tyrf. f E€CF,f€ Lit,and t > 0, we let

ee'f=sup | f'du (éffdu)
<tjt JYE E

https://doi.org/10.4153/CJM-1970-062-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-062-2

548 M. A. AKCOGLU AND R. V. CHACON

and

soEf=1m<pE‘f (; J;fd,L).

LEmMMA 3.1, If f,g € Lit, th > 0, and suposis:Se'(f — g) > 0 a.e. on
E € F, then opf = ng du.

Proof. For a.a. x € E there exists a positive rational number » = »(x) < ¢,
such that Sy"®(f — g)(x) > 0. Let 74, ¢ = 1, be a counting of the positive
rational numbers less than f{, and let E, = {x|x € E, So"i(f — g)(x) > 0}.
Let € > 0 be fixed and choose IV large enough so that

f gdp <e

E—(UIX_—lE")

Also, for every ¢ = 1, choose an a; > 0 such that if

E! = {x|x € E;, S (f — g)(x) > aj},

thenfE,._E,-'g du < €;, where ¢; > 0and X7 -16; < e
Now, for every 2 = 1,..., N, there exists an integer Q;, such that ¢; = Q;
implies that

7 «! i
; kzo TTi/Qik(f_g) — S (f— g)“ < ab(eq),
i i=
where, for every 8 > 0, 6(8) > 0 denotes a number with the property that
w(G) < 8(B) implies thatfgg du < B.
Let

Fi(gd) = {x gg Trisei"(f — 2) (%) > 0} NE/.

Then p(E£,/ — Fi(q:)) < 8(e;) for all g; = Q,. Now find a rational number
r > 0 such that 7, = rg;, 1 =1,..., N, and ¢; = Q.. It is then clear that

k N
sup 2, T,"(f—g)>0 ae. onF = E)l F.(q.),

0Zk=K n=0
where Kr < .
To complete the proof we will now recall a result from the discrete case.
Let T be a positive linear contraction on L;. For any f € L;* and for any
measurable set F define the following sequences { fo, f1, . . .}, {0, #1, ...} of
L+ functions:
fo '__XFf: ho =Xvay
fn—l—l = xrlh,, hn+1 = xrelhy, n = 0.

An induction argument shows that

(T*P)"f = fo+fi+ ...+ fo+ b, foraln =0.
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Now if g is another L;* function such that
k
sup 2, T"(f—g) >0 ae. onF,
0Sk=K  n=0

for some integer K = 0, then one can prove (cf. [1; 2]) that

f g Sedu = J; (TXF)deu = J;gdu.

Applying this result to our case with 7" = 7", we then obtain:

J ammtanz [ can
which implies that

€0Et°f§ W’t“fgj;gd# E‘Lgdﬂ—?’e»

and this completes the proof.
LemMa 3.2. If ¢ >%g, g € Lit, then So'g’ < So't%g a.e., for all t = 0.
The proof follows from a simple induction argument on #, where
g =T, ...T,vg.

LeEMMA 3.3. Let supo<i<i0So'(f — g) > 0 ae. on E € ¥, u(E) <oo. Then
given € > 0, there exists F C E, u(E — F) < ¢, and a number 5o > 0 such that
g <¥g and § < &y imply that supogi<105:'(f — g') > 0 a.e. on F.

Proof. As in the proof of Lemma 3.1, consider E;, a;, E/, 2 = 1, such that
M(Ei - Ell) < € Z;°=16i <e If g <6g,, then
So"i(f — g') 2 S (f — g) — SnTg.

But S;;"*% | 0 a.e. as 6 | 0. Hence, find §; > 0 such that .S,,"t%g < a; on
F; C E/ with u(E;/ — F;) < €;. Choosing N large enough so that

N
M<E —_ U E1> < €
i=1
and letting F = U;=1Fs, 6o = min(dy, ..., dy), we then have u(E — F) < 3e
and S¢"i(f — g’) > 0 a.e.on Fy, if g >%g, 6 < 8o. Therefore,

supoi<wSo’(f — g') > 0
a.e. on F, whenever g’ >?%g and § < §,.

LeEMMA 3.4. Let suposi<:0So'(f — g) > 0 a.e. on E, p(E) < oo. Then given
€ > 0, there exists F C E, u(E — F) < ¢, such that op'°f = org.

The proof follows directly from Lemmas 3.1 and 3.3.

LEMMA 3.5. Let supos <1050 (f — g) > 0a.e. on E for every t, >:0,u(E) < o0,
Then, given ¢ > 0, there exists F C E, u(E — F) < ¢, suchithat orf Z org.
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Proof. Let t,10, & > 0, > 716, < e. For every =, choose F, C E and
6, > 0 such that u(E — F,) < ¢ and supoz:;<,S0'(f — ¢g') > 0 a.e. on [,
whenever g’ >%g and 6 < §,. Let F = N, _1F,; hence p(E — F) < e. On F,
SUPo< <2, 50'(f — g’) > 0 a.e. whenever g’ >%g, 6 < §,. Choose £, such that

or'"f < orf + €, ¢ > 0.
Then ¢rf + ¢ = ¢rg for all € > 0.
Proof of Theorem 3.1. The ratio So*f/Sog is defined a.e. on K, for all ¢ > 0,
because of Lemma 2.3. We may assume that f € L;*. If the limit of this ratio

fails to exist as ¢ | 0 on a set of positive measure, then there exist two real
numbers e, 8,0 < @ < B,and aset E C K, 0 < u(E) < o, such that

12
Sof <a<pB<lim sup—j—c a.e. on E.
140 So 14,0 So

Hence,
sup So'(f—Bg) >0 and sup So'(ecg —f) >0 ae.onkE,

0=t=10 0=1=10

for all t > 0. Choose £, [0, ¢, > 0, X7_16, < 3u(E) and F, CE, F, C E,
6, > 0,8, > 0,7 = 1,suchthat u(E — F,) < €, u(E — F,) < €,

supos <50’ (f — Bg’) > 0
a.e. on F,, for all ¢’ >%¢g with § < §, and supo<<mSo‘(ag — f') > 0 a.e. on
F,, whenever f' >%f, 6 < §,. Let F = Ny_1(F,N F,). Then u(F) > 0 and

erf = Borg, aprg = ¢rf. This is a contradiction, since ¢rg = fpg dp >0
and o < B.

4. The initial continuity of 7'.. In [3], Krengel proved that if 7', ¢ = 0,
is a semigroup of positive linear contractions on L;, strongly continuous on
[0,c0), then for all f € Ly, Tof = lim,,0(1/£)So’f a.e. and also observed that,
in most cases a strongly continuous semigroup 7', £ > 0, on (0,00) can be
completed to a strongly continuous semigroup 7', ¢ = 0, on [0,0) by a
suitable choice of Ty, which, in view of his result and our Theorem 3.2, must
be defined as 7'of = lim,0(1/£)So'f. The following example shows that,
however, the resulting semigroup 7', ¢ = 0, in general is not continuous at
t = 0.

Example 4.1. Let X = R\U {P}, where R = (—o,0) and P ¢ R is
a single point. Let p be the measure on X, whose restriction to R is the
Lebesgue measure, and u({P}) = 1. For f € Li1(u) and ¢ > 0, define

(T @) = {f @) e+ [ e ) ay, forw e R,
0, forx = P.

It is clear that, if f = x(p), then Tof = lim,;¢(1/£)Se'f = 0 a.e. on X, but
IT.f |l = 1lforallt> 0.
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We may, however, give a sufficient condition for the possibility of completing
Tt > 0, to a strongly continuous semigroup on [0,00).

THEOREM 4.1. If u(D) = 0 and if Tof = lim,0(1/8)So'f a.e., f € Ly, then
T, t=0,1s a strongly continuous semigroup on [0, 0 ).

Proof. Clearly, Tg: Ly — L, is a positive linear contraction. Also, if g € L,
and g > 0 a.e., then & = S¢lg > 0 a.e. and Th = h.

Note that the existence of such an invariant function % implies that
|Tf]| = || f|| forany f € Li*. Infact, firstassume that f € Lyt and f < h a.e. Then
h = f + lfor somel € Li+. Hence ||k|| = || f|| + ||/|| and ||Th|| = || Tf|| + ||T7|.
Therefore || £l 4 [ltll = |ITf]| + [|7Y], or | f]| — HTfll HHTlII — [lf]]. But

Now, if we have an arbitrary f € L1+, let e > 0Obea glven number and choose
a real number 7 so that 7k = f a.e. except on a set G with [¢fdu < e Let
f1 = xe¢ef and fa = x¢f. Then, from the preceding paragraph, || fi|| = ||Tf1l,
since f; < rh a.e. and T7h = rh. Hence,

WZf1l = 1TH + Thll = ITAIl + 1Tl 2 ITAI = Al 2 171l — e
This shows that ||7f]] = || f]|-
We now return to the main proof. Since |[(1/£)So'f|| < ||fl], ¢ > 0, we
then have lim,yo(1/¢)So’f = T'of, in the norm topology of L;. Hence for every
T>0,f€ Ly,

T,Tof = Tolim 2 So'f = lim L So'Tof = TuT'of = lim L S, = Tof,
ot ot o b

where all the limits are in the norm topology of L;. Now let f € Ly and ¢ > 0
be given and choose ¢ > 0 small enough so that |[|Tof — (1/£)So'f]| < e
Hence, for all 7 > 0,

+ e = =+ ¢

ITof — Tofl] < |T,f—%so‘f T.Tf ~ 1 S

7.7 Sof = 3 S| + 2 2 211l + 26

This proves that lim,yo||7,f — Tof|| = 0. Also,
ToTof = lim To So'f = lim 2 So'f = Tf,
ty0 t 10 t

where, again, all the limits are in the norm topology of L;. This completes
the proof.

We may notice that the conclusion of Theorem 4.1 is true under the following
weaker condition. There exists a g € L+, g > 0 a.e. on D, and an f € L;*
such that T,g < fforall¢, 0 < ¢ = t, with some £y > 0. The proof is a modi-
fication of the proof of Theorem 4.1.
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