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OPTIMAL STOPPING WITH
RANK-DEPENDENT LOSS

ALEXANDER V. GNEDIN,∗ Utrecht University

Abstract

For τ , a stopping rule adapted to a sequence of n independent and identically distributed
observations, we define the loss to be E[q(Rτ )], whereRj is the rank of the j th observation
and q is a nondecreasing function of the rank. This setting covers both the best-choice
problem, with q(r) = 1(r > 1), and Robbins’ problem, with q(r) = r . As n tends
to ∞, the stopping problem acquires a limiting form which is associated with the planar
Poisson process. Inspecting the limit we establish bounds on the stopping value and
reveal qualitative features of the optimal rule. In particular, we show that the complete
history dependence persists in the limit; thus answering a question asked by Bruss (2005)
in the context of Robbins’ problem.
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1. Introduction

LetX1, . . . , Xn be a sequence of independent and identically distributed (i.i.d.) observations,
sampled from the uniform distribution on [0, 1] (in the setup of this paper this assumption covers
the general case of an arbitrary continuous distribution). For j ∈ [n] := {1, . . . , n}, define the
final ranks as

Rj =
n∑

k=1

1(Xk ≤ Xj),

so (R1, . . . , Rn) is an equiprobable permutation of [n]. Let q : N → R+ be a nondecreasing
loss function with q(1) < q(∞) := sup q(r). In ‘secretary problems’ [20] we are typically
interested in the large-n behaviour of the minimum risk,

Vn(Tn) = inf
τ∈Tn

E[q(Rτ )], (1)

where Tn is a given class of stopping rules with values in [n]. Two classical loss functions
are

(i) q(r) = 1(r > 1) for the best-choice problem of maximising the probability of stopping
at the minimum observation, Xn,1 := min(X1, . . . , Xn);

(ii) q(r) = r for the problem of minimising the expected rank.
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Many results are available for the case where Tn in (1) is the class Rn of rank rules, which
are the stopping rules adapted to the sequence of initial ranks,

Ij =
j∑

k=1

1(Xk ≤ Xj) =
j∑

k=1

1(Rk ≤ Rj ), j ∈ [n];

see [8], [9], and [10]. By independence of the initial ranks, the optimal decision to stop at
the j th observation depends only on Ij . The limiting risk V∞(R) := limn→∞ Vn(Rn) has
an interpretation in terms of a continuous-time stopping problem [10]. Explicit formulae for
V∞(R) are known in some cases, for bounded and unbounded q, including the two classical
loss functions and their generalisations [2], [7], [8], [17], [18].

Much less explored are the problems where Tn is the class Fn of all stopping rules adapted
to the natural filtration (σ (X1, . . . , Xj ), j ∈ [n]). The principal difficulty here is that, for
general q, the decision to stop on Xj must depend not only on Xj but also on the full vector
(Xj−1,1, . . . , Xj−1,j−1) of order statistics of X1, . . . , Xj−1. In this sense the optimal rule is
fully history dependent. Specifically, the Fn-optimal rule has the form

τn = min{j : Xj < hn,j (Xj−1,1, . . . , Xj−1,j−1)} (2)

(with hn,1 = constant and hn,n = 1), where (hn,j , j ∈ [n]) is a collection of functions with
certain monotonicity properties. The dependence on history is reducible to the first m − 1
order statistics if q is truncated at m, i.e. q(r) = q(m) for r ≥ m, but even then the analytical
difficulties are severe. The asymptotic value V∞(F ) := limn→∞ Vn(Fn) is known explicitly
only for the best-choice problem (hence, for any q truncated at m = 2); see [12] for the formula
and history. Robbins’ problem is problem (1) with Tn = Fn and the linear loss function
q(r) = r; see [1], [3], [4], and [5].

The full history dependence makes explicit analysis of the Fn-optimal rule hardly possible;
thus, it is natural to seek for tractable smaller classes of rules, with some kind of reduced
dependence on the history. Of course, the rank rules is one of these such classes, and the optimal
rule in Rn is also of the form of (2), with the special feature that hn,j (x1, . . . , xj−1) = xιn(j)

(for x0 := 0 ≤ x1 ≤ · · · ≤ xj−1 ≤ 1 and 1 < j ≤ n), where ιn(j) ∈ {0, . . . , j − 1} is some
threshold value of Ij , and hn,1 = 0. Another interesting possibility is to consider the class Mn

of memoryless rules of the form

τ = min{j : Xj < fn,j },
where (fn,j , j ∈ [n]) is an increasing sequence of thresholds. These rules are again of the
form of (2), where the functions hn,j are constant. By familiar monotonicity arguments (which
we recall in Section 4), the limiting value V∞(M) := limn→∞ Vn(M) (finite or infinite) exists
for arbitrary q. See [15] and [19] for other classes of stopping rules with restricted dependence
on history.

Memoryless rules were intensively studied in the context of Robbins’ problem, in which
case they were found to outperform, asymptotically, the rank rules, meaning that V∞(M) <

V∞(R) = 3.869 · · · ; see [1], [4], and [5]. In a recent survey of Robbins’ problem Bruss [3]
stressed that a further principal step would be to either prove or disprove that V∞(F ) < V∞(M).
Coincidence of the asymptotic values V∞(F ) = V∞(M) would imply that the full history
dependence of the overall optimal rule was negligible for large n, meaning that when deciding
about some Xj we should essentially focus only on the current observation.
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In this paper we extend the approach introduced in [11], [12], [13], and [14] by establishing
that the stopping problem in Fn has a limiting ‘n = ∞’ form based on the planar Poisson
process. The interpretation of limit risks in terms of the infinite model makes obvious the
inequality V∞(F ) < V∞(M) for any q, provided the values are finite, which is true for both
the best-choice problem and Robbins’ problem. Thus, the complexity does not disappear in
the limit, and the full history dependence persists. Finiteness of the limit risks is guaranteed if
q(r) does not grow too fast, e.g. q(r) < c exp(rβ), with 0 < β < 1 being sufficient.

In connection with Robbins’ problem, the limiting form was reported by the author at
the INFORMS Conference on Applied Probability (Atlanta, 14–16 June 1995), although the
Poisson embedding had been exploited earlier in the analysis of rank rules [6]. See [16] for a
similar development in the problem of minimising E[Xτ ].

2. A model based on the planar Poisson process

Throughout the paper, we shall use the notation N = N ∪ {∞} and R+ = [0, ∞] for the
compactified halfline.

Let P be the scatter of atoms of a homogeneous Poisson point process in the strip [0, 1]×R+,
with the intensity measure being the Lebesgue measure dt dx. The infinite collection of atoms
can be labelled (T1, X1,1), (T2, X1,2), . . . in the order of increase of the second component.
Thus, X1 := (X1,1, X1,2, . . . ) is the increasing sequence of points of a unit Poisson process
on R+, the Trs are i.i.d. uniform [0, 1], and X1 and (Tr , r = 1, 2, . . . ) are independent. An
atom (Tr , X1,r ) ∈ P will be understood to be an observation with value X1,r , arrival time Tr ,
and final rank r . We define the initial rank of (Tr , X1,r ) as one plus the number of atoms in
the open rectangle (0, Tr )× (0, X1,r ). Note that the coordinatewise ties among the atoms have
only probability 0.

It is convenient to treat X1 as a random element of the space X of all nondecreasing,
nonnegative sequences x = (x1, x2, . . . ), where xr ∈ R+ and xr → ∞ (as r → ∞). Our
convention is that a sequence with finitely many proper terms is always padded by infinitely
many terms ∞. In particular, the sequence ∅ := (∞, ∞, . . . ) is the sequence with no finite
terms. The space X is endowed with the product topology of componentwise convergence,
as inherited from R

∞
+ . We denote by x ∪ x the nondecreasing sequence obtained by inserting

x ∈ R+ in x, with the understanding that x ∪ ∞ = x. A strict partial order on X is defined by
setting x ≺ y if xr ≤ yr for r = 1, 2, . . . , with at least one of the inequalities strict. Clearly,
x ∪ x ≺ x for x < ∞, while x ∪ ∞ = x. The order ≺ has minimal and maximal elements
0 = (0, 0, . . . ) and ∅, respectively.

Let Xt be a random element of X derived from X1 by removing each entry X1,r if and only
if Tr > t . Clearly, Xt is an increasing sequence of atoms of a Poisson process on R+ with
mean measure t dx. The laws of the Xt s are mutually singular because, by the law of large
numbers,

Xt,r ∼ r

t
as r → ∞, (3)

with probability 1. We regard X1 as the terminal state of the X-valued process (Xt , t ∈ [0, 1]),
where the Xt s are intensifying as t increases, that is, Xt ≺ Xs for t > s. For t ∈ {Tr}, let
Xt , Rt , and It denote the value, the final rank, and the initial rank of the observation arrived at
time t , respectively, and, for t /∈ {Tr}, let Xt = Rt = It = ∞. We have Xt = Xt− ∪ Xt , so
Xt = Xt− unless t ∈ {Tr}.

The process (Xt , t ∈ [0, 1]) is Markovian, with right-continuous paths, initial state X0 = ∅,
and jump times {Tr} which comprise a dense subset of [0, 1]. Each component (Xt,i , t ∈ [0, 1])
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is a nondecreasing jump process which satisfies X0+,i = ∞ and changes its value at every
i-record (i.e. the observation of initial rank i). The jump times of (Xt,i , t ∈ [0, 1]) are
the arrival times of i-records; these occur according to a Poisson process of intensity t−1 dt

independently for distinct i ∈ N, as is known from the extreme-value theory.
Define a stopping rule τ to be a variable which may assume only one of the random values

{Tr} ∪ {1}, and satisfies the measurability condition {τ ≤ t} ∈ σ(Xs , s ≤ t) for t ∈ [0, 1].
The condition states that the decision to stop not later than t is determined by the atoms of
P ∩ ([0, t] × R+) that arrived within the time interval [0, t]. Such rules are called ‘canonical
stopping times’ in [16, Definition 2.1].

We fix a nondecreasing, nonnegative loss function q satisfying q(1) < q(∞). The risk
incurred by stopping rule τ is assumed to be

E[q(Rτ )] =
∞∑

r=1

q(r) P(τ = Tr) + q(∞) P(τ = 1), (4)

where the terminal component is nonzero if and only if P(τ = 1) > 0. Let F be the set of all
stopping rules, and let V (F ) = infτ∈F E[q(Rτ )] be the minimal risk.

The optimal stopping problem with criterion (4) would be exactly the same if we had chosen
to work with the homogeneous planar Poisson process in a strip [0, γ ]×R+, or in any other set
of the form A × B, with A ⊂ R being a set of finite Lebesgue measure and B ⊂ R being a set
of infinite Lebesgue measure, but such that the measure of B ∩ [−∞, 0] is finite. To see this,
observe that it is possible to map A × B on [0, 1] × R+ in such a way that preserves both the
coordinatewise order and the Lebesgue measure. In particular, for [0, γ ] × R+, the mapping
is just the linear transform ⎛

⎜⎝
1

γ
0

0 γ

⎞
⎟⎠ .

The invariance with respect to the choice of horizon γ is a feature which has no analogue in the
discrete-time i.i.d. setting, where we face distinct problems for various values of the horizon n.

We shall exploit a related scaling property of P , called here self-similarity, meaning that,
for every fixed t ∈ [0, 1], the affine mapping (s, x) �→ ((s − t)/t̄ , xt̄) preserves both the
coordinatewise order and the planar Lebesgue measure and, hence, transforms the restricted
point process P ∩([t, 1]×R+) into a distributional copy of P with the same ordering of atoms.

The class R of rank rules is defined by a more restrictive measurability condition {τ ≤ t} ∈
σ(Is, s ≤ t) for t ∈ [0, 1]. That is to say, by a rank rule, the information of the observer at
time t amounts to the collection of arrival times on [0, t] of i-records for all i ∈ N. The optimal
stopping problem in R is equivalent to ‘the infinite secretary problem’ of [10]. By Theorem 4.1
of [10] there exists an optimal rank rule of the form τ = inf{t : It ≤ ι(t)}, inf ∅ = 1, where
ι : [0, 1) → N ∪ {0} is a nondecreasing function. For instance, in the best-choice problem
ι(t) = 1(t ≥ e−1), while in the minimum expected rank problem

ι(t) =
∞∑
i=1

1(t ≥ ti ),

where ti = ∏∞
j=i (1 + 2/j)−1/(j+1) [18].

A memoryless rule is a stopping rule of the form

τ = inf{t : Xt ≤ f (t)}, inf ∅ = 1, (5)
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where f : [0, 1) → R is a nondecreasing function. Denote by M the class of memoryless
rules and denote by V (M) = infτ∈M E[q(Rτ )] its stopping value. We could consider a larger
class of stopping rules by which the decision to stop depends only on the current observation.
However, Lemma 1, below, analogous to [1, Lemma 2.1], shows that such an extension of M
does not reduce the risk.

Lemma 1. Let A ⊂ [0, 1] × R+ be a Borel set. For the stopping rule τ = inf{t : (t, Xt ) ∈ A}
there exists a memoryless rule whose expected loss is not larger than that of τ .

Proof. It is sufficient to consider sets A such that the area of A ∩ ([0, t] × R+) is finite for
every t < 1. Indeed, if the area of A ∩ ([0, t] × R+) is infinite for some s < 1 then τ < s

almost surely (a.s.); hence, letting A′ denote A ∩ ([0, s] × R+) shifted by 1 − s to the right, we
obtain a rule not worse than τ . Replace each vertical section of A by an interval adjacent to 0
of the same length; thus obtaining the subgraph of a function g. This preserves the distribution
of the stopping rule and does not increase the risk, by the monotonicity of q. Break [0, 1] into
intervals of equal size δ and approximate g (in L1) by a right-continuous function gδ , which is
constant on these intervals. Suppose that on some adjacent intervals [t, t +δ) and [t +δ, t +2δ)

we have gδ(t) > gδ(t + δ). Let g′
δ be another piecewise-constant function with values on these

intervals of gδ(t + δ) and gδ(t), but, outside [t, t + 2δ], g′
δ coincides with g. Let P ′ be the

scatter of atoms obtained by exchanging the strips [t, t + δ) × R+ and [t + δ, t + 2δ) × R+.
Obviously, P ′ d= P , where ‘

d=’ denotes equality in distribution. To compare the two stopping
rules τ and τ ′, defined as in (5), but with f replaced by gδ and g′

δ , respectively, we consider
the selected atom (τ, Xτ ) as a function of P and the selected atom (τ ′, Xτ ′) as a function of
P ′. It is easy to see that Xτ = Xτ ′ unless ([t + δ, t + 2δ) × [0, g(t + δ)]) ∩ P �= ∅, whereas
in the latter case Xτ ′ is stochastically smaller than Xτ . The advantage comes from the event
that each of the strips contains an atom below the graph of gδ . It follows that τ ′ performs better
than τ . Iterating this exchange argument, we see that the rule defined by gδ is improved by
a memoryless rule with a piecewise-constant function. Letting δ tend to 0 shows that we can
reduce A to a subgraph of a monotonic f : [0, 1) → R+.

Given the initial rank It = i and the value Xt = x of some observation at time t , the final
rank of the atom (t, x) is i plus the number of atoms southeast of (t, x), the latter being a
Poisson variable with parameter t̄x, where and henceforth

t̄ := 1 − t.

By independence properties of P , the adapted loss incurred by stopping at (t, x) is equal to
Q(t̄x, i), where

Q(ξ, i) :=
∞∑
r=i

q(r)e−ξ ξ r−i

(r − i)! . (6)

For instance, Q(t̄x, i) = 1 − e−t̄x 1(i = 1) in the best-choice problem, and Q(t̄x, i) = t̄x + i

in Robbins’ problem. The formula for Q is extended for infinite values of the arguments as
Q(·, ∞) = Q(∞, ·) = q(∞). It is seen, from the identity

d[eξQ(ξ, 1)]
dξ i−1 = eξQ(ξ, i),

that the series Q(·, i) has the same convergence radius for all i.
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Lemma 2. If q is not truncated then Q(ξ, i) is strictly increasing in both ξ and i. If q is
truncated at m and q(m − 1) < q(m) then the strict monotonicity is valid only for i ∈ [m],
while Q(ξ, i) = q(m) = q(∞) for i ≥ m.

Proof. This follows from the monotonicity of q and (6).

In terms of the adapted loss, the risk functional becomes

E[q(Rτ )] = E[Q((1 − τ)Xτ , Iτ )],
with the convention that the terminal component of (4) is included as

Q(0 · ∞, ∞) = q(∞) P(τ = 1).

3. Memoryless rules and finiteness of the risk

For τ , a memoryless rule (5) with monotone f , denote by L(f ) = E[q(Rτ )] the expected
loss. Introduce the integrals

F(t) =
∫ t

0
f (s) ds and S(x) =

∫ x

0
f −1(y) dy = xf −1(x) − F(f −1(x)),

where f −1 is the right-continuous inverse defined for x < f (0) as f −1(x) = 0. Note that
P(τ > t) = e−F(t) and that, given τ = t < 1, the law of Xτ is uniform on [0, f (t)]. The
formula for the risk follows by conditioning on the location of the leftmost atom below the
graph of f and using the fact that the configurations of the atoms above and below the graph
are independent:

L(f ) =
∫ 1

0
e−F(t) dt

∫ f (t)

0
Q(t̄x + S(x), 1) dx + e−F(1)q(∞). (7)

Computation of the first variation of L(f ) shows that an optimal f must satisfy the following
rather complicated functional equation:

Q(f (t) − F(t), 1)

=
∫ 1

t

exp(F (t) − F(s)) ds

(∫ f (t)

0
Q(S(x) + xs̄, 1) dx +

∫ f (s)

f (t)

Q(S(x) + xs̄, 2) dx

)
,

(8)

which should be complemented by a suitable boundary condition at t = 1. We did not succeed
in solving (8), even in the simplest case of the best-choice problem; hence, we turn to simpler
bounds.

A rough upper bound

L(f ) ≤
∫ 1

0
e−F(t) dt

∫ f (t)

0
Q(x, 1) dx + e−F(1)q(∞), (9)

follows from t̄x + S(x) ≤ x. Minimising the right-hand side of (9) amounts to solving an
optimal stopping problem E[Q(Xτ , 1)] → inf of the familiar type [16], with loss dependent
on the value of the stopped observation only. For � = 1, we face a variant of ‘Moser’s problem’
associated with P ; see [1], [3], [16], and the references therein.
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The auxiliary problem is easy for the falling factorial loss functions

q(r) = (r − 1)(r − 2) · · · (r − �), � ∈ N, (10)

in which case we have a very simple formula Q(ξ, 1) = ξ�; hence, (9) becomes

L(f ) ≤ (� + 1)−1
∫ 1

0
e−F(t)f (t)�+1 dt.

Substituting f (t) := (� + 1)/(1 − t), the right-hand side is evaluated as (� + 1)�. We can
arrive at the function f�+1 by solving the variational problem with Lagrangian e−F (F ′)�+1 and
boundary conditions F(0) = 0 and F(1) = ∞.

Notably, for the stopping problem E[(Xτ )
�] → inf (with any � > 0), the optimality of some

memoryless rule with hyperbolic threshold

fb(t) := b

1 − t
, b > 0,

can be concluded solely from the self-similarity of P and the homogeneity of the power function
x�. For such rules, (9) becomes

L(fb) ≤
∫ 1

0
(1 − t)b

∫ b/(1−t)

0
x� dx = b�+1

(� + 1)(b − �)
,

which indeed attains a minimum at b = � + 1.
For small �, it is not hard to compute L(fb) for the memoryless rules with threshold fb

and q as given in (10). We calculate e−F(t) = (1 − t)b and S(x) = (x − b − b log(x/b))

(for x > f (0) = b). For � = 1, integrating (7) by parts we obtain

L(fb) = b

2
+ 1

b2 − 1
, (11)

which is finite for all b > 1, with the minimum 1.3318 · · · attained at b = 1.9469 · · · (which
agrees with Example 4.2 of [1], where the minimum is 2.3318 · · · for the linear loss q(r) = r).
For � = 2,

L(fb) = b3

3
+ 2(b4 − 2b3 + 2b2 + 6b − 4)

(b − 2)(b − 1)2(b + 1)(b + 2)
, (12)

which is finite for all b > 2, with minimum 4.4716 · · · at b = 2.96439 · · · . The formulae
become more involved for larger �, a common feature being that L(fb) < ∞ for b > �. For
� = 3, the minimum is 24.8061 at b = 3.9734 · · · . For � = 4, the minimum is 194.756 · · · at
b = 4.979 · · · .

We see that (see also [1] and [3]), for the linear loss q(r) = r , we have V (M) = inf L(f ) <

V (R) = 3.8695 · · · , where the value of the rank rules is taken from [7] (it is the � = 1 instance
of (14), below). The minimiser of L(f ) (that is, the optimal M-rule) is not known explicitly,
but some approximations to it can be found in [1], where they appear in the course of the
asymptotic analysis of the finite-n problem.

In the best-choice problem the F -optimal rule is

τ ∗ = min{t : It = 1, Xt ≤ fb}, b = 0.804 · · · , (13)
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and V (F ) = 1 − 0.580 · · · (see, e.g. [11, p. 682]). Note that τ ∗ is not memoryless since only
stopping on 1-records is allowed! However, the most simple memoryless rule with constant
threshold f (t) = 1.503 · · · achieves L(f ) = 1 − 0.517 · · · , and hence beats the rank rules
V (M) < V (R) = 1 − 0.368 · · · . Evaluation of (7), which was carried out computationally,
shows that the best values of L(f ) that we can achieve with some parametric families of f s
are

(i) 1 − 0.547 · · · for f (t) = a 1(t ≤ s) + b 1(t > s), where 0 < a < b and 0 < s < 1;

(ii) 1 − 0.537 · · · for f (t) = b/(1 − t), where b > 0;

(iii) 1 − 0.556 · · · for f (t) = at + b, where a, b > 0.

The best-choice and minimum-rank instances suggest that it is more advantageous to learn
the value of the observation rather than its initial rank. It would be interesting to explore whether
this was true in general, and if not then it would be interesting to determine for which values
of q the memoryless rules outperform the rank rules.

For unbounded q, we also face the problem of distinguishing between the situations with
finite or infinite risk. We sketch some known and some new results in this direction. From the
above elementary estimates, V (M) < ∞ provided that q(r) < cr� for some constants c > 0
and � > 0. For such q, the risk of the rank rules is also finite. Moreover, Mucci [18, p. 426]
showed that, for the rising factorial loss function q(r) = r(r + 1) · · · (r + � − 1), � ∈ N, the
minimum risk of the rank rules is

V (R) = �!
∞∏

j=1

(
1 + � + 1

j

)�/(�+j)

(14)

(which extends the � = 1 result from [7]). For � = 2, the formula yields 33.260 · · · (while the
fb-rules do worse, with infb L(fb) = 38.068 · · · , as computed from (11) and (12) using the
linearity of L(f ) in q). In fact, V (M) < ∞ for many loss functions growing much faster than
polynomials.

Proposition 1. If q(r) < c exp(xβ) for some c > 0 and 0 < β < 1 then V (M) < ∞.

Proof. The risk is finite for the memoryless rule with f (t) = (1−t)−α for any α > (1−β)−1.
To see this, use the bound in (9) and the formulae

Q(x, 1) = O(exp(2xβ)), x → ∞,

e−F(t) = exp

(
− 1

(α − 1)(1 − t)α−1

)
,

which also imply that, for this rule, P(τ = 1) = 0. Then, E[exp((Xτ )
β)] is estimated from

asymptotics of the incomplete gamma function.

It is not known whether the risk of the rank rules is finite for q(r) = exp(xβ) with 0 < β < 1.
We shall now look for the growth conditions on q forcing infinite risks.

Proposition 2. If Q(b, 1) = ∞ for some b ∈ R+ then V (F ) = ∞, i.e. there is no stopping
rule τ ∈ F with finite risk.
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Proof. For such b, the conditional loss by stopping above fb is infinite; thus, we can only
consider stopping rules τ which never stop above fb and which satisfy P(τ = 1) = 0. Choose
any x with

S(x) = x − b − b log

(
x

b

)
> b.

On the nonzero event

A = {P ∩ {(t, y) : y < min(x, f (t))} = ∅},
stopping occurs at some atom (s, z) with s > 1 − b/x, z > x, and by averaging we see that
the expected loss is infinite.

In the sequel we shall assume that the convergence radius of Q(·, 1) is infinite (hence,
Q(x, i) < ∞ for all finite x, i). Without this assumption, the stopping problem is trivial.

See Proposition 5.3 of [10] for an analogue of Proposition 2 for the rank rules. By Section 5
of [10] we have V (R) = ∞ if

∑
r (log q(r))/r2 = ∞; hence, the risk of the rank rules is infinite

for the exponential loss function q(r) = ecr , c > 0. A sufficient condition for V (M) = ∞
follows by comparison with an auxiliary problem.

Proposition 3. Given 0 < c < 1, suppose that E[Q(cXτ , 1)] = ∞ for every stopping rule
τ < 1. Then V (M) = ∞ also.

Proof. For any increasing f , we have S(x)/x → 1 as x → ∞; thus, we can choose x0 large
enough to satisfy S(x) > cx for all x > x0. For A as given in the proof of Proposition 2, we
have

L(f ) = E[Q(S(Xτ ) + (1 − τ)Xτ , 1)]
≥ P(A) E[Q(cXτ , 1) | A]
≥ P(A) E[Q(cXτ , 1) | τ > f −1(x0)],

which is finite exactly when E[Q(cXτ , 1)] < ∞, as follows from the independence properties
of P and the definition of the memoryless rule.

As a corollary, we obtain V (M) = ∞ for q(r) = ecr , c > 0. Indeed, for this loss function,
Q(x, 1) > c1ecx ; hence,

E[Q(2−1Xτ , 1)] ≥ c1

∫ 1

0
e−F(t) dt

∫ F ′(t)

0
ecx/2 dx.

To show that the right-hand side is infinite for every F with f = F ′ > 0 and F(0) = 0,
F(1) = ∞, it is enough to check that, for every c2 > 0,

∫ 1

0
exp(F (t) − c2F

′(t)) dt = ∞,

which is achieved by solving the variational problem with fixed boundary value F(1) and then
letting F(1) tend to ∞.

In view of (3) we can expect that V (F ) = ∞ exactly when the risk in the problem with loss
Q(Xτ , 1) is infinite. This seems difficult to prove, even in the exponential case q(r) = ecr . In
contrast, however, the problem of minimising Q((1 − τ)Xτ , 1) is always trivial, i.e. the rules
with threshold fb approach the infimum q(1) as b tends to 0.
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4. Properties of the optimal rule

The optimal stopping problem in F is of Markovian type, associated with the time-homoge-
neous Markov process ((Xt , It ), t ∈ [0, 1]), with state-space X × N and time-dependent loss
Q(t̄Xt , It ) for stopping at time t . If It assumes some finite value i then t ∈ {Tr} and Xt,i = Xt ,
which combined with the fact that ranking of the arrivals after t depends on P ∩ ([0, t] × R+)

through Xt shows that (Xt , It ) indeed summarises all the relevant information up to time t . By
virtue of XIt ,t = Xt (where X∞,t := ∞), the data (Xt , It ) contains the same information as
(Xt−, Xt ).

Following a well-known approach, we will consider a family of conditional stopping prob-
lems parametrised by (t, x). This corresponds to the class of stopping rules τ > t measurable
with respect to P ∩ ([t, 1] × R+) that operate under the condition Xt = x. The effect
of conditioning is that each xr < Xτ contributes one unit to Rτ in the event τ < 1. The
dependence of conditional risk on t can be eliminated using the self-similarity of P .

Lemma 3. The optimal stopping problem from time t with history x is equivalent to the optimal
stopping problem starting with X0 = t̄x at time 0.

We denote by Ex the expected value given X0 = x, and we denote by

v(x) = inf
τ∈F

Ex[q(Rτ )]

the minimum risk given X0 = x. In the setting with varying initial configuration x, all stopping
rules and variables Xt , It , and Rt are considered to be functions of both x and P . In the search
for the optimality within F it is sufficient to consider stopping rules τ with the following
invariance property. Given τ ≥ t and that at time t the observed value is Xt = x and the history
is Xt− = x, the decision to stop at (t, x) depends on these data through (t̄x, t̄x). Note that a
memoryless rule with constant threshold does not fulfill this invariance condition, while a rule
with threshold fb does.

The function v, defined on the whole of X, satisfies a lower bound

v(x) ≥
∞∑

r=1

q(r)(exp(−xr−1) − exp(−xr)), x0 = 0 (15)

(strict if the series converges), which follows since X1,1 is exponentially distributed and
Xτ ≥ X1,1. The bound is a continuous-time analogue of the finite-n ‘half-prophet’ bounds
in Lemma 3.2 of [4]. From (15), v(x) → q(∞) as x → 0.

If q is truncated at m then clearly v depends only on the first m − 1 components of x and
satisfies v(x) < q(m). Obviously, from Lemma 2, if q is not truncated then x ≺ y implies that
v(x) < v(y), provided that these values are finite; if q is truncated at m with q(m− 1) < q(m)

then the analogous implication holds for the strict order defined on the first m− 1 components.
The monotonicity of v allows us to further restrict our consideration to the stopping rules

that satisfy
Ex[q(Rτ )] ≥ Ey[q(Rτ )] for x ≺ y,

and, by Lemma 4, below, we can further restrict our consideration to the stopping rules that
satisfy ess sup τ = 1.

Lemma 4. Every stopping rule τ with τ < 1 − ε a.s. can be improved by a stopping rule τ ′
with ess sup τ ′ = 1.
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Proof. Note that τ depends on the observations that arrive within the time interval [0, 1−ε].
Since P ∩ ([ε, 1] × R) is a copy of P ∩ ([0, 1 − ε] × R), defining τ ′′ to be a copy of τ acting
on P ∩ ([ε, 1]×R) we have E[q(Rτ )] = E[q(Rτ ′′)]. However, τ ′′ can be improved by the rule
which picks the first arrival (if any) on [0, ε] below some sufficiently small x, and coincides
with τ ′′ otherwise.

We will call the stopping rule τ admissible if it is invariant and satisfies the above two
conditions.

Lemma 5. If Ex[q(Rτ )] < ∞ for an admissible stopping rule τ then also Ex′ [q(Rτ )] < ∞
for x′ = x ∪ x, x > 0.

Proof. On the positive event τ > 1 − ε, the loss of τ is

P(τ > 1 − ε) Ey[q(Rτ )] < ∞,

where y ≺ εx. Thus, Eεx[q(Rτ )] < ∞. Conversely, εx ≺ x′ for small enough ε, so
Ex′ [q(Rτ )] ≤ Eεx[q(Rτ )] is finite.

With respect to the product topology in X, the continuity of v is a nontrivial issue. If
V (F ) = ∞ then, of course, v(x) = ∞ everywhere, but, for arbitrary unbounded q, there
exists a dense in X set of sequences x = (xr) for which xr ↑ ∞ so slowly that v(x) = ∞.
Thus, if q(∞) = ∞, the function v is discontinuous at every point where it is finite.

Proposition 4. If v(x) < ∞ then v(x ∪ x) is finite and continuous in x.

Proof. From Lemma 5 we see that v(x ∪ x) < ∞. Fix x and x, and suppose that a rule τ is
ε-optimal under X0 = x ∪ x, and is such that Xτ is the same for all x ∪ x′ as x′ varies. Then,
for all x′ sufficiently close to x, the stopped rank Rτ assumes the same value. It follows, by
dominated convergence, that Ex∪x′ [q(Rτ )] → Ex∪x[q(Rτ )] as x′ → x. Since ε is arbitrary
and the rule τ is suboptimal under x ∪ x′, we conclude that v(x ∪ x) + ε ≥ v(x ∪ x′). The
analogous inequality with x and x′ swapped is derived by considering a rule τ ′ ε-optimal under
x ∪ x′, so the continuity follows.

Let i(x, x) := #{r : xr ≤ x}, and suppose that x has x1 > 0. Applying Lemma 2, we see
that if q is not truncated then the function Q(x, i(x, x)) is strictly increasing in x from q(1) to
q(∞). If q is truncated at m and q(m−1) < q(m) then Q(x, i(x, x)) is strictly increasing as x

varies from 0 to xm−1, with Q(x, i(x, x)) = q(m) for x ≥ xm−1. Conversely, (x∪x) ≺ (x∪y)

for x < y; hence, v(x ∪ x) is nonincreasing in x. Thus, introducing

h(x) := sup{x : Q(x, i(x, x)) < v(x ∪ x)},
we have Q(x, i(x, x)) < v(x ∪ x) for x < h(x) and Q(x, i(x, x)) ≥ v(x ∪ x) for x ≥ h(x).
Subject to obvious adjustments, the definition of h(x) makes sense for every x �= 0 in the
untruncated case and for xm−1 > 0 in the truncated case.

We are ready to show that memoryless rules are not optimal.

Proposition 5. If V (F ) < ∞ then V (F ) < V (M).

Proof. For a memoryless rule with threshold function f to be optimal, we must have
v(t̄Xt ) < Q(t̄Xt , i(Xt−, Xt )) forXt > f (t) andv(t̄Xt ) > Q(t̄Xt , i(Xt−, Xt )) forXt < f (t),
because otherwise the rule can be improved. This forces f (t) = h(t̄x), which cannot hold since
h is not constant.
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To concretely demonstrate how a memoryless rule with threshold f can be improved, let us
apply the same approach as used in Section 5 of [4]. Assume that q(∞) = ∞. Suppose that
(t, x) is above the graph of f and, hence, should be skipped by the memoryless rule, irrespective
of the initial rank or history. Let i(x, x) = 1 under some history x. Keeping x fixed while
letting sufficiently many of the components xr decrease, but ensuring that they remain larger
than x, we can always show that, for the modified history x′, the bound in (15) is arbitrarily
close to q(∞) while the expected loss of stopping remains unaltered at Q(t̄x, 1). For such x′,
we have v(t̄(x′ ∪ x)) > Q(x̄, 1), from which it is easy to conclude that stopping at (t, x) will
strictly reduce the adapted loss and that this is an event of positive probability.

Based on the function h : X → R+, we construct a predictable process

Ht := h(Xt− \ {X1,r : Tr < t, X1,r < h(XTr−)}), t ∈ [0, 1].
Let Yt be a thinned sequence obtained by removing the terms in {. . . } from Xt−, so Ht = h(Yt ).
Intuitively, Ht is a history-dependent threshold which depends on the configuration of atoms
Xt− that arrived within the time interval [0, t) and are above the curve (Hs, s ∈ [0, t)). As t

starts increasing from 0, the process Ht coincides with h(Xt−) as long as there are no atoms
below the threshold, while at the first moment this occurs the atom is discarded and does not
affect the future path of the process.

The operation of thinning P allows us to introduce (Ht ) as a random function defined on
[0, 1), as opposed to considering h(Xt−) killed as soon as the threshold is undershot by some
Xt . Alternatively, (Ht ) could be defined as h(Xt−) conditioned on Xt ≥ Ht, t ∈ [0, 1).

We list some properties of (Ht ) which follow directly from the definition and Lemmas 4 and 2
(under X0 = ∅).

Lemma 6. (i) The function (Ht ) is nondecreasing on [0, 1).

(ii) If V (F ) < ∞ then H0 is the unique root of Q(x, 1) = v(x ∪ ∞).

(iii) We have H1− = Y1,m−1 if q is truncated at m and q(m − 1) < q(m).

(iv) We have H1− = ∞ unless q is truncated.

To reveal qualitative features of (Ht ) and to gain some intuition, we shall gradually increase
the complexity of the loss function. In the simplest instance of the best-choice problem, v

depends only on x1 and there is an explicit formula for the threshold:

Ht = min(fb(t), Yt,1), b = 0.804 · · · ;
cf. (13) and [12, Equations (8) and (13)]. That is to say, as t starts increasing from 0, Ht is a
deterministic drift process until it hits the level of the lowest atom above the graph. The drift is
hyperbolic due to the self-similarity of P (Lemma 3). After this random hitting time, Ht has a
flat, which appears because it is never optimal to stop at the observation with initial rank 2 or
larger. On the first part of the path, Ht satisfies Q(Ht , 1) = v(t̄(Yt ∪ Ht)), and on the second
part of the path, Ht satisfies Q(Ht , 1) < v(t̄(Yt ∪ Ht)).

If q is strictly truncated at m = 3, meaning that q(2) < q(3) = q(∞), a new effect appears.
For sufficiently small t , as long as Ht < Yt,1, each 1-record above the threshold causes a jump
because v(t̄Yt ) jumps and the threshold must go up to compensate. Thus, (Ht ) has both drift
and jump components. The jump locations are the 1-record times accumulating near 0 at rate
t−1 dt . As Ht hits Yt,1, there is a possible flat, then a period of deterministic drift, where
Q(Ht , 2) = v(t̄(Yt ∪ Ht)), and finally there is a flat at some level Yt,2 (then Yt,2 = Y1,2).
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For q strictly truncated at m > 3, the jump locations are included in m − 2 record-time
processes of atoms with initial rank at most m − 2, there are m − 1 potential flats, and a drift
component between the flats. We do not assert that the number of flats is always exactly m− 1,
because it is not at all clear if (Ht ) can break a level Yt,r for r < m − 1 by jumping through it;
hence sparing a flat.

Now suppose that q is not truncated and that Ht < ∞ everywhere on [0, 1) with probability 1.
Then, outside the union of flat intervals, every arrival above Ht causes a jump; thus, the set
of jump locations is dense there. The number of flats may be infinite, and outside the flats
Q(Ht , i(Yt , Ht )) = v(t̄(Yt ∪ Ht)). The durations of the flats are random variables, depending
on both the history before the flat starts and the observations as the flat unfolds.

In the case of Robbins’ problem we have, by linearity of the loss,

Q(x, i + 1) − Q(x, i) = 1 and v(x ∪ x) − v(x) < 1

(if v(x ∪ x) < ∞). Thus, Q(x, i(x, x)) = v(x ∪ x) implies that

Q(x, i(x, x) + 1) > v(x ∪ x ∪ x′)

for arbitrary x′. But this means that (Ht ) cannot cross any Yt,i by a jump. It follows that (Ht )

has infinitely many flats at all levels Y1,r , r ∈ N. The presence of all three effects (drift, jumps,
and flats) and the lack of independence of increments property all leave little hope for a kind
of analytic description of (Ht ).

The optimality principle requires stopping at atom (t, x) when the history Xt− = x satisfies
Q(t̄x, i(x, x)) < v(t̄x), whence we derive the following analogue of (2).

Proposition 6. If V (F ) < ∞ then Ht < ∞ for all t < 1 a.s. and the stopping rule

τ ∗ := inf{t : Xt < Ht }, inf ∅ = 1,

is optimal in F . (Note that Ht(Xt−) = Ht(Yt−) for t ≤ τ ∗.)

Proof. For bounded q, a general result [21, Theorem 3] is applicable since the function
Q(x, i(x, x)) is bounded and continuous on X × N.

Alternatively, for q truncated at some m, we can use results from the optimal stopping theory
for discrete-time processes. To fit exactly in this framework, focus on the sequences of i-records
(for i ≤ m − 1) that arrive within the time interval [ε, 1], and then let ε → 0. The general
bounded case follows in the limit m → ∞.

For unbounded q, we use another kind of truncation (analogous to that used in [3, Section 4]).
For m fixed, let

Q(m)(x, i) = Q(x, max(i, m)),

and consider the stopping problem with loss Q(m)(t̄x, i(x, x)) for stopping at (t, x) with history
x. This corresponds to ranking x relative to at most m atoms before t , but fully accounting for all
future observations below x. In this problem it is never optimal to stop at an atom with relative
rank m or higher. Indeed, stopping at (t, x) with such rank can be improved by continuing and
then exploiting any hyperbolic memoryless rule with b < t̄x (stopping is guaranteed before 1
since the subgraph of fb has infinite area). By discrete-time methods, optimality of the rule
τ (m) = inf{t : Xt < H

(m)
t } in the truncated problem is readily acquired, with a nondecreasing

predictable process (H
(m)
t ) defined through

h(m)(x) := sup{x : Q(m)(x, i(x, x)) < v(m)(x ∪ x)},
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where v(m) is the minimum loss analogous to v. Obviously, Q(m)(x, i(x, x)) and v(m)(x) are
nondecreasing in m.

A decisive property of this kind of truncation is that Q(m)(x, i) = Q(x, i) for m ≥ i.
This implies that H

(m)
t is eventually nondecreasing in m; hence, there exists a pointwise limit

H ′
t = limm→∞ H

(m)
t , which defines a legitimate stopping rule τ ′ as the time of the first arrival

under H ′. For notational convenience, let

L(τ) = E[Q(Xτ , Iτ )] and L(m)(τ ) = E[Q(m)(Xτ , Iτ )],

and let u and u(m) denote the minimum risks (so u = V (F )). Trivially, limm→∞ u(m) ≤ u.
Conversely, by monotone convergence L(m)(τ ′) ↑ L(τ) ≥ u. If follows that u(m) ≤ u and τ ′
is optimal. The convergence v(m)(x) ↑ v(x) is shown in the same way, from which H ′

t = Ht

and τ ′ = τ ∗ is optimal.

As a by-product, we have shown that the risk in the truncated problem with loss function
q(min(r, m)) converges to V (F ). Indeed, the loss is squeezed between the loss in the modified
truncated problem and the original untruncated loss.

From the formula for the distribution of the optimal rule,

P(τ ∗ > t) = E

[
exp

(
−

∫ s

0
Hs ds

)]
,

and arguing as in Lemma 1, we see that Ht cannot explode to ∞ at some t < 1 if V (F ) < ∞.
The risk can be bounded from below in the spirit of (7) as

E[q(Rτ∗)] ≥ E

[∫ 1

0
exp

(
−

∫ s

0
Hs ds

) ∫ Ht

0
Q(t̄x, φH (x)) dx

]
,

where φH (x) is the number of flats of (Ht ) below x. If the loss function q has the property
that the flats of (Ht ) occur at all levels X1,r , r ∈ N (like in Robbins’ problem), the equality
holds. The same kind of lower bound is valid for every stopping rule τ defined by means of an
arbitrary nondecreasing predictable process like (Ht ).

Remark. A small-time decomposition of the risk leads in the m-truncated case to the ‘dynamic
programming’ equation

m−1∑
i=1

xi

∂v(x)

∂xi

=
m−1∑
i=1

∫ xi

xi−1

(min{Q(x ∪ x, i), v(x ∪ x)} − v(x)) dx, x0 = 0,

in the (m − 1)-dimensional ‘Weyl chamber’ {(x1, . . . , xm−1) : x1 ≤ · · · ≤ xm−1} with the
initial condition v(0) = q(m). The equation is not completely trivial for the case in which
m = 2; see [12, Section 2.2], where t stands for our x1. Trying to justify this equation in the
case of unbounded q we need to overcome many conceptual difficulties like infinitely many
variables, the domain of definition of v, condition (3), and the fact that the initial condition
at 0 evaporates. We remind the reader that in the simpler setting of rank rules, the question
concerning the uniqueness of the solution to a similar equation (see [10, p. 432]) remains open.
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5. The infinite Poisson model as a limit of finite-n problems

To connect the finite-n problem with its Poisson counterpart it is convenient to realise an i.i.d.
sequence in the following way [9], [11], [14]. Divide the strip [0, 1]× R+ into n vertical strips
of the same width 1/n. Let Xj be the atom of P with the lowest x-value. By properties of the
Poisson process, X1, . . . , Xn are i.i.d. with exponential distribution of rate 1/n. Note that the
optimal stopping of X1, . . . , Xn is equivalent to the optimal stopping of P with the lookback
option that allows the observer to return to any atom within a given 1/n-strip (equivalently, at
time (j − 1)/n to foresee the configuration of atoms up to time j/n). This embedding in P
immediately implies that Vn(Fn) < V (F ). Moreover, as n tends to ∞, each i-record process
derived from X1, . . . , Xn converges almost surely to the i-record process derived from P . From
this it is easy to conclude, first for truncated then for any bounded q, that V∞(F ) = V (F ),
where V∞(F ) = limn→∞ Vn(Fn) is as defined in the introduction.

For the general q, the relations

V∞(F ) = V (F ), V∞(R) = V (R), and V∞(M) = V (M)

follow (as in [1], [2], [4], [7], [9], and [17]) from that in the truncated case, by combining
monotonicity of risks in the truncation parameter m with the monotonicity in n stated in
Lemma 7, below.

Lemma 7. Vn(Fn), Vn(Rn), and Vn(Mn) are increasing with n.

Proof. This all is standard; see the references above. We only add small details to The-
orem 2.4 of [1] for the M-case. Let τ be an optimal memoryless rule in the problem of
size n + 1, and let τ ′ be a modified memoryless strategy which always skips the worst value
Xn+1,n+1, but otherwise has the same thresholds as τ . (To apply τ ′, the observer must be able
to recognise Xn+1,n+1 as it arrives.) Then τ ′ strictly improves τ in the event that τ stops at
Xn+1,n+1. Conversely, strategy τ ′ performs as a mixture of memoryless rules in the problem
of size n, because given Xn+1,n+1 = x the other Xj s are i.i.d. uniform on [0, x]. Therefore,
Vn(Mn) < Vn+1(Mn+1).
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