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EMBEDDING INTO GROUPS WITH
WELL-DESCRIBED LATTICES OF SUBGROUPS

VIATCHESLAV N. OBRAZTSOV

A thrifty embedding scheme of an arbitrary set of groups in a simple infinite group
with a given outer automorphism group is presented. One of the applications of
this scheme is the existence (assuming CH) of an uncountable group G in which
all proper subgroups are countable such that G contains every countable group.

1. INTRODUCTION

By a famous embedding theorem of Higman, Neumann and Neumann [1], every
countable group can be embedded in a 2-generator group. But this embedding construc-
tion contains a lot of subgroups other than the embedding group and its conjugates,
and there is little information about the automorphism group of the resulting group.
On the other hand, the method of graded diagrams developed by Ol’shanskii has given
an approach to constructing of difficult examples of groups such as, for example, non-
abelian infinite groups all of whose proper subgroups are finite (see [8]). This technique
was extended in [3] to diagrams over free products and applied to quotient groups of
free products. As a result, a theorem was proved in [3] on embeddability of every
countable set {G,}uer of countable groups without involutions in a simple 2-generator
infinite group G in which every proper subgroup is either a cyclic group or contained
in a subgroup conjugate to one of the embedding groups G,, and the generalizations
of this theorem to the case of arbitrary sets {G,}.er of groups without involutions
were given in [4, 5, 6]. These constructions have given an opportunity to obtain min-
imal extensions of the subgroup lattices of the resulting groups G in comparison with
the subgroup lattices of the embedding groups which was used in [3, 4, 5, 6] and [8]
for solution of some famous problems, in particular, a well-known problem about the
existence of uncountable Artinian groups.

On the other hand, it is easy to see that these results can not be extended to the
case of groups {G,}.er with involutions, since any involution k € G, together with
any conjugate involution ghg™!, g € G\ G,, must generate in G a dihedral subgroup.
Ol’shanskii (7] proved that by making such exemptions, one might avoid mentioning the
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absence of involutions from G, in the statement of the theorem in {3]. (It also leads to
the loss of the property that the resulting group G may chosen to be torsion (of finite
exponent) if all embedding groups are torsion (of finite exponent).) By combining the
ideas from [6] and [7], we obtain the following embedding scheme of an arbitrary set of
groups into a simple infinite group with a “well-described” lattice of subgroups and a
given outer automorphism group.

Let {G:}ier be an arbitrary set of nontrivial groups. We denote by Q' the free
amalgam of the groups G, i € I, that is, the set |J G; with G; N G; = 1 whenever

el
i # j. We say that the mapping g : 2! — G is an embedding of Q' into G if g is
injective and its restriction to every G; is a homomorphism.

Let © = Q' \ {1} = {a;,5 € J}. Then a mapping f : 2\ {#} — 29 is called
generating on the set § if the following conditions hold:

1) if C C G; for some i € I, then f(C) = gp{C}\ {1};

2)if C € G; for each i € I and C = {a,b} C , where a and b are involutions
(such a subset C will be called dikedral), then f(C)= C;

3) if C is a finite non-dihedral subset of @ and C € G; for each i € I, then
f(C) = B, where B is an arbitrary countable subset of @ such that C C B and if D
is a finite subset of B, then f(D) C B; .

4) if C is an infinite subset of Q, then f(C)= [J f(A), where T is the set of all
finite subsets of C'. A€T

For example, a generating mapping f on {2 can be defined in the following way: if

C e 20\{(0} and C = |J C;, where C; = CNG;, 1 € I, then f(C) = (U gp{C,'})/{l}.
el el

We denote by G(1) the free product of groups G;,i € I. A group G having a

presentation
(1.1) G=(G(1)||IR=1;Re D)

is called (diagrammatically) aspherical ((diagrammatically) atoroidal) if every diagram
on the sphere (torus) over (1.1) is either non-reduced or consists entirely of 0-cells. (All
necessary information about diagrams can be found in [8].)

Let G = gp{Q}, f an arbitrary generating mapping on . We say that X is a
minimal word of the group G if it follows from X =Y in G that |X| < |Y|, where |Z]|
denotes the length of the word Z. Let W be the set of all non-empty words over the
alphabet Q written in the normal form, that is, every element X in W is written in the
form X, ...Xg, where each X;, 1 <1<k, is a nontrivial element of G, p(l) € I,
and p(l) # p(l+1) for I=1,... ,k—1. Then a mapping F : 2W \ {0} — 27 is defined
in the following way: if C C W and C # 0, then let V be the set of all letters occuring
in the expressions of words of C'. Then we set F(C)= f(V).
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The main result of this paper is the following embedding scheme.

THEOREM A. Let ¢g; : G; — H be a set of arbitrary homomorphisms of the
groups G; into a group H with kernels N;, 1 € I, such that a system of subgroups
{9i(G:)}icr generates H,let {N;}jer,, Iy C I, be the set of nontrivial groups of the set
{N:}ic1,3} the free amalgam of the groups N;, j € I, and also let f be an arbitrary
generating mapping on  such that f(C)NQI # 0 if C € G; for each i € I and C is
non-dihedral. If the set {N;};jc1, contains either three groups or two groups of which
one has order at least 3, then the free amalgam Q' of the groups G; can be embedded
in an aspherical atoroidal group G = gp{Q} with the following properties:

1) the free amalgam )} is embedded in a normal simple infinite subgroup L of G
such that G/L = H;

2)if X € G and X is not conjugate in G to an element of one of the groups
G;, 1 € I, then X is of infinite order;

3) every subgroup M of G is either a cyclic group or infinite dihedral (if one of the
groups Gy, i € I, has involutions), or M N L = 1 and the homomorphic image of M
in H = G/L has an element of infinite order, or if M is not cyclic or infinite dihedral,
then M is conjugate in G to an extension G¢ gy of a group H' by a normal subgroup
Lc (thatis, Gog'/Lc = H'), where H' < H and L¢ < L. In what follows, using
the notation L¢, we assume that every element of Lo is a minimal word of G, and
C =F(Lc\{1}) or C =0 in the case L¢c = {1};

4) Lc = Rc N L, where Rc = gp{C} if C € 2%\ {0} or Rc = {1} in the case
C=0,andif C € G; for each i € I, then Gouy» < Rc, Lc is a simple group,
Ne¢(Le) = Re and Cg{(Lc) = {1};

5)if C € G; for each t € I, then AutL¢ = Rc and Out L¢ = Re¢/Lc (in
particular, AutL & G and OutL = H ), and if g € (G;NC)\ N}, i € I, then the
mapping g : Lc — g~ 'L¢g is a regular automorphism of L¢ (that is, g(a) = a if and
only if a = 1) if and only if there is no ¢ € GiNC Ny, where Q; = Q1 \ {1}, such
that [g,c] =1;

6)if C € G; for each i € I, then for each a € C Ny, we have that L¢c =
gp{cbab='c7;b,c € C} (in particular, L = gp{cbab~'c™';b,c € 0}, where a is an
arbitrary element of , );

7) if X is a minimal nontrivial word of the group G, then X € R¢ if and only if
F({X}) € f(C);

8) if {Gj}jes, J C I, is a set of all groups having nontrivial intersections with a
subgroup Rc of G and X € Z7'R¢Z, where Z is of minimal length among all words
in RcZ and G;Z, then F({Z}) C F({X});

9)if C € G; for each i € I and M is a subgroup of G in which every element is
a minimal word in G, then gp{L¢c,M}N L = L¢,, where C; = F(CU (M \ {1}));
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10) if N, = {1} for some s € I and the homomorphism g; : G; — H is trivial for
each j € I\ {s}, then G is the semidirect product of H and L;

11) if a subgroup M of G is contained in some group G, i € I, then Ng(M) =
Ng,(M) and Ce(M) = Cg,(M);

12) if a subgroup M of G is infinite dihedral and not conjugate in G to a subgroup
of some group G;, 1 € I, then Ng(M) is infinite dihedral and Ca(M) = {1};

13) if a cyclic subgroup M = gp{A} of G is not conjugate in G to a subgroup of
some group Gy, i € I, and A is not a product of two involutions in G, then Ng(M)
is cyclic and Ng(M) = Ce(M).

Now we have the following strengthenings of Theorems B and D [6].

THEOREM B. Let {G;}ier be an arbitrary set of nontrivial groups containing
either three groups or two groups of which one has order at least 3, H an arbitrary
(for example, trivial) group, Q' the free amalgam of the groups H and G;, i € I, and
let f be an arbitrary generating mapping on Q = Q! \ {1}. Then the free amalgam 2}
can be embedded in an aspherical atoroidal group G = gp{Q} such that

1) the free amalgam of the groups G; is embedded in a simple normal infinite
subgroup L of G and G is the semidirect product of H and L;

2) every nontrivial subgroup of L is infinite cyclic or infinite dihedral (if one of the
groups Gy, 1 € I, or H has involutions), or conjugate in G to a subgroup Lc = RcNL,
where Rc = gp{C}, C € 2%\ 2H  and if C € G; for each i € I, then L¢ is simple
and Lo = gp{cbab~ c1;b,c € f(C)} foreach a € f(C)\ H;

3)if C € G; for each © € I, then Aut L¢ = R¢ and OutL¢ = R¢/L¢ (in
particular, AutL = G and OutL = H), and for each g € HN C, g is a regular
automorphism of L¢ . .

PRrRoOOF: Let g; : G; — H be the trivial homomorphism for each = € I, gy :
H — H the natural isomorphism. Then the system {N;}icsr of nontrivial kernels of
the homomorphisms gy and g;, ¢ € I, is the same as the set of the groups G;, 1€ I,
and hence Theorem A applies to Q! and f and yields the required G. 0

For countable groups we have the following important result.

THEOREM C. Let {G:}icr be a countable set of nontrivial countable groups con-
taining either three groups or two groups of which one has order at least 3, H an arbi-
trary countable (for example, trivial) group. Then the free amalgam Q! of the groups
H and G;, i € I, can be embedded in a group G = gp{Q1}, where @ = Q! \ {1}, with
the following properties:

1) the free amalgam of the groups G; is embedded in a simple normal infinite
subgroup L = gp{Q\ H} of G and G is the semidirect product of H and L;

2) Aut L = G (and Out L = H ) and for each g € H\ {1}, g is a regular automor-
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phism of L;

3)if X,)Y € L with X € G;\ {1},Y ¢ G; for some i € I, then either L
is generated by the pair (X,Y) or X and Y are involutions, or X and XY are
involutions in G;

4) every proper subgroup of L is either infinite cyclic or infinite dihedral (if one of
the groups G, 1 € I, or H has involutions), or contained in a subgroup conjugate in
G tosome Gy, i€ 1.

PROOF: We define a generating mapping f on §2 in the following way: if C C Q
such that C € G; for each i € I, C € H and C is not dihedral (it follows from the
statement of the theorem that such a subset C exists), then f(C) = . Then Theorem
B applies to Q! and this mapping f and yields the group G satisfying properties 1, 2
and 4 in the statement of the theorem. Assertion 3 of the theorem can be proved in the

same way as in [7, Theorem 2]. 1|

The last application of Theorem A is devoted to construction of a “universal”
uncountable group. It is easy to see that there i1s no countable groups containing every
countable group, since any countable group has a countable set of finitely generated
subgroups, but by [2], there exists a continuum of pairwise non-isomorphic finitely
generated groups. On the other hand, Shelah [9] constructed an uncountable group
with all proper subgroups countable, and the existence of such a group with some
additional properties (such as Artinian and of finite exponent) follows immediately
from [3, Corollary 5]. But there were no examples of uncountable groups G with all
proper subgroups countable such that every countable group is contained in G. It is
obvious that such groups can not be obtained without assuming CH (that is, 2% = ;).

THEOREM D. Let H be an arbitrary group with 1 < |H| < 2%¢. Then assuming
CH, there exists a simple uncountable group L in which all proper subgroups are
countable such that L contains every countable group and OutL = H .

ProOOF: Let {G;}icsr be the set of all pairwise non-isomorphic countable groups,
Q! = {a;;1 < j < w1} U {1} the free amalgam of the groups G;, i € I, and also let
H = {h,;1 < s < x} U {1} for some ordinal number x € w; or H = {1}, where w; is
the first uncountable ordinal number. A generating mapping f on Q = (0] UH) \ {1}
is defined in the following way: if C is a finite non-dihedral subset of  such that
C L G; foreach i € I and C € H, then let u be the maximal ordinal number such
that either a, or h, is contained in C, and we set

£(C) = f(Up) n H)U | £(Up) N Gy),

iel

where Q(u) = {a;;1 <7 < p}U {hs;1 < 8 < p} (p) = {aj;1 < j € p} in the case
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H = {1}). It is easy to see that this mapping f satisfies all conditions in the definition
of a generating mapping on 2.

Theorem B applied to 2 U {1} and f and yields a group G with a simple un-
countable normal subgroup L such that every countable group is contained in L
and OutL = H. Let M be a non-cyclic and non-dihedral proper subgroup of L.
Then by Theorem B, M is conjugate in G to a subgroup Lc = R¢ N L, where
Rc = gp{C}, C € 27\ 2H. We may assume that C € G; for each ¢ € I, hence
the set C is countable, since otherwise it follows from the definition of the mapping
f that f(C) = and M = L, and we arrive at a contradiction to the choice of M.
Therefore, the subgroup M is countable, which completes the proof of the theorem. [

The proof of Theorem A will be heavily based on the results from [6] and [7].
Unless otherwise stated, all definitions and notation may be found in [7] and [8].

2. CONSTRUCTION OF THE GRoOUP G

As in [8], we introduce the positive parameters

a’ﬂ77767€a<v777",

where all the parameters are arranged according to “height”, that is, each constant is
chosen after its predecessor. Our proofs and some definitions are based on a system of
inequalities involving these parameters. The value of the parameters can be chosen in

such a way that all the inequalities hold. We then use the following notation:
o' =1/24a,8 =1-8,¥=1—v, h=6",d=9", n="1.

We may assume that n is an integer. We also use the notation introduced in Section 1.

We may assume that I is a well-ordered set. We also may assume that ' is a
well-ordered set such that 1 is the maximal element of Q' and if @ € G; \ {1} and
b€ Gj\ {1}, where i < j, then a < b. On the set 2, = {ab|a € N, b€ Q andif
{a,b} C G; for some ¢ € I, then a = 1} we introduce an order in the following way:
ab < cd if and only if either d < d or b=d and e < ¢ (with respect to the ordering of
Q).

By the statement of Theorem A, there is a homomorphism of the free product G(1)
of the groups G;, i € I, onto H such that its restriction to every group G; is equal to
g;. Suppose that the kernel of this homomorphismis N.

Let D; = 0, and suppose, by induction, that we have defined the set of relators
D;_1 CN,12>2, and set

G(i —1) = (G(1)||[R =1; R € D;-1).
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A word X is called free in rank 7 — 1 if X is not conjugate in rank z — 1 to an
element of Q! that is, to an image in G(: — 1) of an element of one of the free factors
G;. A non-empty word Y is said to be simple in rank i — 1 if it is free in rank 7 — 1,
not conjugate in rank 7 —1 (that is, in G(i — 1)) to a power of a shorter word and not
conjugate in rank 7 — 1 to a power of a period of rank k < 7.

Now let P; denote a maximal set of words of length ¢ which are simple in rank 7—1
with the property that A, B € P; and A # B (“=” means letter-for-letter equality of
words of the same length) implies that A is not conjugate in rank ¢ —1 to B or B!,
The words in P; are called periods of rank i. A special role in the construction of the
group G will be played by the sets P! of all periods of rank 7 which are not equal in
rank 7 — 1 to a product of two involutions (of G(i —1)). (For short, a product of two
involutions of a group will be called a dikedral element of a group.) We may assume
(see Lemma 3.1 below) that if a,c € 1, b,e,g €  and d,f € Q! such that a is of
infinite order (if such an a exists), {a,b} Z Gi, {c,e} € G; and {c,g} € G, for each
i,7,8 € I, fg,de € Qy, fg # de and fge~1d™! # ¢ in the case ¢ = 1, then the words
Ao = ala, b]ka[a,b]“a[a,blak, Am = aAy, By = (cf_q)_l[[c,de]",[c,fg]](cfg), Bm =
(cfg)_l[c, de]*(cfg)BJ* are non-dihedral periods of some ranks for each £k > 1 and
m, |m| > nt.

For each period A € P/ N N, we fix a maximal subset Y4 such that:

1Yif T € Ya, then 1 < |T} < d]A];

2) each double coset of the pair gp{A},gp{A} of subgroups of G(i) contains at
most one word in Y4 and this word is of minimal length among the words representing
this double coset;

3)if T € Y4, then T € N and F({T}) C F({4}).

We may assume (see Lemma 3.1 below) that if a power F* of a period F of some
rank is conjugate to a word BC™ for some m > n, where C is a non-dihedral period
of rank i not equal to 4y or By, |B| < 1.(m|C'|)1/3 and BCB™! # C*! in G(i — 1),
then t =1.

For each period A € P!NN , we introduce the ordering of the set of natural numbers
(or a finite segment of it) on the set Y4 such that the first element of the set Y4 belongs
to 2 (it follows from the statement of Theorem A that Y, Ny #0) and if 4 = 4,
or A = B,,, where m = 0 or |m| > n®, then the first element of the set Y4 is a or
min(c,h) (with respect to the ordering of Q'), respectively, where h = d if d € 4,
otherwise h = 1. We denote this order by <4.

For each period A € P{NN, i > 7, we now define somerelations. If A = A,,, |m|>
n8, for some a € ; and b € Q such that {a,b} € G; for each i € I and a is of infinite
order, then for each k, 5 < k < 15, we introduce a relation

(2.1) a TAT AT RqAn0HE | g pnt30(h-2)tE g
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If A= B, |m| > n®, for some c € O, e,9 € N and d,f € Q! such that {c,e} €
Gi,{c,9} € G; for each i,j € I, fg,de € Q,, fg # de and fge~'d™! # ¢ in the case
¢2 =1, then for each k, 16 < £ < 25,and T = (cfg)_l[c, de]™(cfg), we consider the
relation

(22) T—lAnTAn+kTAn+30+k L. TAn+30(h—2)+k =1,

and if by = min(c,e), by = min(de, fg) (with respect to the ordering of ;) and
T; = (cfg) ™ *[e,deli(cfg), i € {1,2}, then we set

(2.3) (cfg) ™ bich (cfg)A™T; AT BT, A™SS || T AnH30(h=2)+25 ¢

foreach i, 1 <1< 2. Let T€ Y4 and T # a in the case A = A, [m| > nb. If a is
the minimal element of the set Y4 and T # a, then we introduce the relation

(2.4) aATMT AT AN+ | T gnt30(h-2)+10 _ 1

and if T = a, then it follows from the definition of the set P; that there exists b €
F({A}) such that {e,b} Z G; for each i € I, and we consider the relation

(2.5) bab~! APTATIOT AnH40 | T An+30(h=2)+10 _ 1

If a is the first element of the set Y4, T € Y4 \ {a} and T # (cfg) '[c, de]*(cfg) in

the case A = By, |m| > n®, then we introduce a relation

(2.6) aAPTA™FOT A0 | pAnES0h-2+20 _
and if T = a, then, as above, we set

(2.7) bab~! APTAPTIOTAMS0 | T ArtI(h=2)+20

for some b € F({A}) such that {a,b} € G; foreach i € I. Andif T € Y4, then let T}
be the minimal element of the set Y4 \ {a*!} such that T <4 Ty (if such an element

T, exists). Then we consider the relation
(2.8) Ty APT AT A0 || pgntsoi-1) —

The left-hand sides of the relations (2.1)-(2.8) form the set S; of relators of rank
i. For each i > 2, we set D; = D;_, U S;, and the group G(i) is defined by its
presentation:
(2.9) G(i) =(G(1)||R=1; R € D,).
Finally, we define

G=(G()||R=1;Re D= | Dy).
i>1

By a diagram of rank i, where 1 > 2, we mean a diagram over the presentation

(2.9). Contours of cells II in the diagrams under considerations split to words of the

form (2.1)-(2.8). Those sections of II with labels (A"’*"):i:1 are called long sections
while the others are called short sections of the contour.
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3. PROOF oF THEOREM A

We start our proof of the theorem with
LEMMA 3.1. The choice of the set of periods of the group G is correct.

PROOF: Let a,c € O, b,e,g € Q and d, f € Q! such that a is of infinite order
(if such an a exists), {e,b} € Gi, {c,e} € G; and {c,g} € G, for each i,j,5s € I,
fg,de € Qy, fg # de and fge'd™! # c in the case ¢2 = 1. Also let C = A4y =
a[a, b]*a[a, b]** afa, b]** for some k> 1 or C = By = (cfg) '[[c, de]™, [c, Fgll(cfg), and
suppose that C is conjugate in some rank 7 2> 1 to V, where V is either an element of
Q or a power of a period of rank < 7, or a power of a simple word in rank 7. Then it
follows from [8, Lemma 26.5], (8, Corollary 22.2], {8, Lemma 21.7] and the definition
of the relations in G that C and V are also conjugate in G(1). Hence by the choice
of C, we may assume that C is a period of some rank. Moreover, if C is a dihedral
element in G, then there is X € G such that XCX~! = C~! in some rank 7. Then
as above, we may assume that ¢« = 0, and we arrive at a contradiction to the choice of
C. Thus we may assume that 4y and By are non-dihedral periods.

If C; is a non-dihedral period of some rank 7 and B; is a word such that
B,C1B7! # CE! inrank i—1 and | By < ¢(|m| |C'1|)l/3 for some m such that |m| > n,
then by the proof of {7, Lemma 7] and [8, Lemma 34.7], a word B;C[* is conjugate
in G to a power F* of a non-dihedral period F of some rank. Repeating the proof of
(8, Lemma 27.3] with a reference to [8, Lemma 23.15] replaced by a reference to (7,
Lemma 8], we obtain that |t| = 1. (In particular, it is true for A4,, and B,,, where
|m| > nS.)

If F~* is conjugate to a product B,C;"? of the same type, then there is a reduced
annular diagram A with contours z;p; and z;p,, where ¢(z;) = B; and ¢(pi) =
C™, i = 1,2. Repeating the argument of [7, Lemma 8], we have that there exists a
contiguity submap I' of p; to p» such that the sum of lengths of its contiguity arcs
is greater than B'(|p1]|+ |p2|). Then by [8, Lemma 25.10] (with the correction from
[7]), we have that C; = C; and either mim; > 0, p, and p; are C;-anticompatible
in A and C; is dihedral, which contradicts the choice of the words C, and C,, or
mimy < 0 and p; and p; are C;-compatible in A. In the second case, we have that
B, € gp{C1}B;'gp{C1}, and in order to complete the proof of the lemma, it remains
to consider the cases when either 1) By = B, =a and C; =C, = A, forsome a € O3
and b € Q such that {a,b} € G; for each i € I and a is of infinite order in G, or 2)
By = B, = (cfg) '[e,de]™(cfg) and C; = C, = By for some c € O, e,g €  and
d,f € O such that {c,e}  Gj, {c,9} € G, for each j,s € I, fg,de € 3, fg # de
and fge~'d~! # c in the case ¢ = 1.

It follows from the proof of {8, Lemma 25.18] that in any case, either B, € gp{C,},
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which is impossible, or (C#B;)’ =1 in G for some integer s. We note that s #0,
since B, is of infinite order in G. Then by [8, Lemma 34.7], C{ B, is conjugate in G
to an element v of 2, and it follows from [8, Corollary 22.2] and [8, Lemma 21.7] that
C{B;, and v are conjugate in G(1). We arrive at a contradiction to the choice of the
words C; and B;. Thus we may assume that ¢ = 1, and the proof of the lemma is

complete. 1|

Immediate verification shows that the presentations (2.9) of the groups G(z) satisfy
condition R (see 8, Sections 25 and 34]). So we can apply to the diagrams under
considerations all the results from [7} and also [6, Lemmas 1-4] if in the definition (from
[6]) of an I-diagram we demand that condition I3 holds for all contiguity submaps of
gi, to gf,, where i1, € {1,2}. We also need the following analogue of (6, Lemma 5].

LEMMA 3.2. Let C be a period of the group G, k an integer such that
|k| > 100¢~!, and also let W be a word which does not commute with C* in G
and whose length is minimal among all words in the double coset gp{C*}W gp{C*}.
Then [C*,W]= ZA'Z~! in G, where A is a period and Z is a minimal word in G,

and
(3.1) F({A}) = F({C,W}), F({Z}) C F({A}).

Moreover, if WC*W ! £ C** in G, then also BA'B™! # A*' in G for B=Z"1C*Z.

PROOF: By [8, Lemma 34.7), the word [C*, W] is conjugate in G to a word V,
where either |[V| = 1 or V = A! for someperiod A and an integer {. Let A be a reduced
annular diagram with contours p and g such that ¢(q) = V™2, p = p1p2psps, ¢(p1) =
¢(p3_1) = C*, ¢(p2) = ¢(p4_1) = W. By pasting together the paths p; and p;!, we
obtain a diagram A’ on a sphere with three holes whose reduced form (that is, with
j-pairs removed) is denoted by A,. The cyclic sections p; and p; can be assumed
smooth in Ay.

We note that there is no contiguity submap I' of p;, to pi,, where 11,23 € {1,3}
and 17; # iz, such that (p;,I,pi;) = 1/100, since otherwise it follows from [8, Lemma
25.10] that p;, and p;, are C-compatiblein A¢, and using [8, Lemma 24.9], we arrive
at a contradiction to the choice of the word W. Suppose now that for some i € {1,3},
there is a contiguity submap I' of p; to p; such that (p;,T',p:) > 1/100. Then by
[8, Lemma 25.8] (with the correction from [7]), p; is C-anticompatible, and for a
compatible path ¢ (see the definition of C-anticompatibility from [7]) and a word X
we have that C = X¢(t) in G, where X and ¢(t) are involutions in G. Hence there
exists an annular subdiagram Aj of A, with contours p}t® and ps_i, where p} is a
subpath of p; with label equal to a power of C and |e| = 1. Therefore, a power of C
is conjugate in G to an involution, which contradicts [8, Lemma 34.7]. Thus we obtain
that Ay satisfies conditions I1-I3 from the definition (from [6]) of an I-diagram.
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If |V| = 1, then as in the proof of [8, Lemma 24.6], we obtain that there is a
contiguity submap I of p;, to p;, for some 7y, € {1,3} such that (p;,,T,pi,) > 1/10,
and we arrive at a contradiction to I3. Thus V = A! in G for some period A and an
integer 1.

The second assertion of the lemma can be proved in the same way as in [6, Lemma
5].

In order to prove the last assertion of the lemma, we note that the inequality
BA'B~! # A*! is equivalent to the inequality C*[C*, W]C~* # [C*,W]*! which
is true, since otherwise we have that either C"(WC_"W'I) = (WC'“"W'I)C"c or
C*W = WC?F in G, and it follows from [8, Lemma 34.9] and (8, Lemma 25.15] (with
the correction from [7]) that WC*W~! = C**, which contradicts our assumption
about W.

The proof of the lemma is complete. 1

By an H-map we understand a circular or annular B-map A with contours p (in
the case of a circular map) or p and ¢ (in the annular case), where p = 318 ...8t;, [ <
3, 81,.-.,8; are called long sections of the first kind, t;,... ,t1 short sections, and ¢
a long section of the second kind; all sections are assumed (cyclically) reduced and, for
some j > 1, the following conditions hold.

H1. Every section of the first kind is a smooth section of rank j and |s1| > nj.

H2. The section g of the second kind is either smooth or geodesic.

H3. The short sections are geodesic and the length of any short section is less than
maz (dj, ¢ |31|1/3).

LEMMA 3.3. The assertion of (8, Lemma 23.15] for C-maps is also true for H-

maps.

PROOF: The lemma can be proved in the same way as [8, Lemma 23.15] taking
into account the remark made in the proof of [7, Lemma 5]. a

LEMMA 3.4. If TA*T-! = A°* in G for some period A and an integer k, where
le] = 1, then TAT™! = A® in G and either e =1 and T € gp{A} or e = —1 and A
is a dihedral element of G.

ProOF: If ¢ = 1, then by [8, Lemma 34.9], T € gp{A}. Suppose now that
€ = —1. Then A*™T~1A*"T =1 in G, where m is chosen in such a way that m >n
and |T| < «(m |A|)1/3, and let A be a reduced circular diagram (of some rank) with
contour s1t;syta, where ¢(t;) = ¢(t;l) =T and ¢(s1) = ¢(s2) = A*™. It follows
from [8, Lemma 26.5] and the choice of m that A is an H-map. Then by Lemma
3.3, there exists a contiguity submap T' of s; to s3 such that |I'As;| > |s1]/2, and
it follows from [8, Lemma 25.8] (with the correction from [7]) that s; and s, are A-
anticompatible in A and A is a dihedral element. Hence by [7, Lemma 3], we have
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that TAT ! = A7, which completes the proof of the lemma. 0

LEMMA 3.5. Let A be a period and T a word such that TAT™* # A*! in G
and F({T}) C F({A}), and also let m be an integer with |T| < (i(}m||A])*/* and
|m| > n. Then APTA*™TA™T = ZC'Z™! and T\C'T{' # C* in G, where C is a
non-dihedral period, Z is a minimal wordin G and Ty = Z~'A™Z, and
(3:2) F({A}) = F({C}), F({2}) € F({A}).

ProoF: By [7, Lemma 6], it remains to prove only (3.2) and the inequality
T\C'T]* # CH.

It follows from [6, Lemma 1] and [6, Lemma 3] and the statement of the lemma
that

F({Z,C}) C FUT, 4}) = F({A}).
So it is sufficient to show that F({4}) C F({C}).

Let A be a reduced annular diagram (of some rank) with contours p and ¢, where
#(p) = AmTA™ T A*™T and ¢(g) = C~'. It follows from the statement of the lemma
and [8, Lemma 26.5] that A is an H-map. Among contiguity submaps I';,I2,...
given by Lemma 3.3, the submaps in which at least one of the contiguity arcs has
length greater than ¢~!|A| are called long while the others are called short.

IfT is a contiguity submap of a long section of the first kind to a distinct long
section of the first kind, say of s; to s;, such that its connecting line s homotopic in
A to a subpath of p not containing s3, then by {8, Lemma 26.5], {8, Lemma 21.1] and
[8, Lemma 25.8], T' is a short contiguity submap, since otherwise it follows from (8,
Lemma 23.17] and [7, Lemma 3] that TAT~! = A~ in rank |A|—1, which contradicts
the choice of T. But by the statement of the lemma, |sg| > (|s1] + |s2| + |s3])/6 for
each k € {1,2,3}, then it follows from the definition of H-maps and Lemma 3.3 that
there exists a contiguity submap I'; of a long section s; to ¢ for each i € {1,2,3} such
that |T'; A s;| > |s;| /2, and by [6, Lemma 2], F({A}) C F({C}).

The period C is non-dihedral, so if 1 C'T; = C*, where |¢| = 1, then by Lemma
3.4, e = 1 and we have that A™ = (A™TA?™TA*"T)A™(A™TA>™TA*"T) " in G.
Again it follows from Lemma 3.4 that A>™TA™TA'T =1 in G for some integer .
Let A be a reduced circular diagram (of some rank) with contour s,¢;s5¢253t3, where
#(s1) = A%™, ¢(s2) = A®™, ¢(s3) = A, ¢(t;) = T for each i € {1,2,3}. It follows
from the statement of the lemma and [8, Lemma 26.5] that A is an H-map (even if
t = 0). Then using [7, Lemma 3 and Lemma 3.3], we obtain that TAT™! = A~! in
G, which contradicts the choice of T'.

The proof of the lemma is complete. a

LEMMA 3.6. Let A be a non-dihedral period and T' a word such that TAT ! #
A*! in G and F({T}) C F({A}), and also let m be an integer with |T| < ¢(|m| |A|)1/3
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and |m| > n. Then TA™ = 2C*Z7', |T1],|Z| < 3|C|, (8')*m|A| < |C| and
TiCT[' # C*! in G, where C is a non-dihedral period of some rank, |¢| = 1, Z
is a minimal word in G and Ty = Z7'TZ, and

(3:3) F({C}) = F({4}), F({Z}) € F({C}).

ProoF: The assertion of the lemma follows immediately from the proofs of |7,
Lemma 9}, {6, Lemma 6 and Lemma 3.1}. 0

Now everything is ready to prove an anolog of [6, Lemma 6].

LEMMA 3.7. Let R = gp{C*, W}, where C is a period, C*¥ € N \ {1} and
W is a minimal word in G such that WC*W ™! # C** in G. Then R contains a
non-dihedral period Cy € N such that F({C1}) = F({C,W}) and n|C| < |Ci].

ProOF: By [8, Lemma 34.7], C is of infinite order in G, so there exists p > 100¢™?
such that C? € NN R. By [6, Lemma 1], we may assume that W has the minimal
length among all words in the double coset gp{C?}W gp{CP}, and by |6, Lemma 3 and
Lemma 3.2], [CP,W) = Z;A!Z", where A is a period, Z; is a minimal word in G,
and for a word B which is minimal in G and equal in G to a word Zl_lcpzl , we have
that

F({B}) = F({Z\,C}) € F({A}),
BA'B~! # A*! and (3.1) holds. It is obvious that A, B € N and BAB™! # A*!' in
G.

Let ¢ be an integer such that |B| < {¢({t|A|)"’" and {t > n. Then by Lemma 3.5,
A®BABAMB = Z,V/Z;! and TVIT~! # V*/ in G, where V is a non-dihedral
peried, Z; and T = Z;'A"Z, are minimal words in G, and (3.2) holds. It follows
from (3.2) and [6, Lemma 3] that

1/3

(3:4) F({T}) = F({Z,,A}) = F({A}) = F({V}).
Moreover, V/,T € N, since A',B € N and N is a normal subgroup, and TVT ™! #
V+lin G.

Now we choose an integer m such that |T| < L(mf|V|)1/3, |Z1],122],IC| <
2mf|V| and mf > n. By Lemma 3.6, TV™f = Z5;CfZ;"' and |Ti|,|Zs| < 3]Cil,
where C; is a non-dihedral period, |¢| =1, Z3 and Ty = Z; 'TZ3 are minimal words
in G, and (3.3) holds. Moreover, it follows from Lemma 3.6 that

(3.5) 1Z1],122],1C| < 2(8")*|C1| < ¢|Ca).
We also have that C; € N, and by (3.1)-(3.3),

F{C,W}) = F({4}) = F{V}) = F({C1}).
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The words C; and T) are contained in By = Z~'RZ, where Z = Z,2,2;. It
follows from [6, Lemma 1], Lemma 3.6 and (3.1)-(3.5) that F({T1}), F({Z}) C F({C:})
and |Z| < 4|C,|. Hence there are Z',T{ € Y¢, such that Z € gp{C,}Z'gp{C,} and
Ty € gp{C1}Tygp{C1}. By the definition of the relation (2.6) for C; and T} (or for C,
and (T!)? if C, = B, |m| >n®, and T! = (cfg) 'lc,de]™(cfg)), the minimal element
a of the set Yg, is contained in R;. Now using the defining relation (2.8) for C; and
a, we obtain that a; € Ry, where a; is the minimal element of the set Yo, \ {a®*'},
and so on. Thus we have that Z' is contained in R;, hence Z € R; and R = R;,
which completes the proof of the lemma. 0

Now we may obtain all the assertions of Theorem A, except assertion 5 about the
automorphism groups of the groups L¢c, where C € G; for each 1 € I, if we repeat
the proof of [6, Theorem A] replacing references to [6, Lemma 5 and Lemma 6], by
references to Lemmas 3.2 and 3.7. We also need to make the following amendments.

1) In order to prove that the homomorphic image L of the subgroup N is an
infinite subgroup of G, we can use the argument in the proof of [8, Theorem 26.1], with
[8, Lemma 34.1] used in place of [8, Theorem 4.6].

2) Let M be an arbitrary non-cyclic subgroup of G containing a free element X .
(An element X is called free in G if it is free in rank i for each ¢ > 1.) By [8, Lemma
34.7], X is conjugate in G to a power of a period A. If M NL = 1, then the image
A in H has infinite order, since by [8, Lemma 34.7], A is of infinite order in G. In
the opposite case, as in the proof of [6, Theorem A}, we obtain that M is conjugate in
G to a subgroup M; = gp{C',{W;};ecs}, where C is a period, C' € L and for each
j € J, W; is a minimal word in G such that Wj is not contained in gp{C}.

Now we assume that the group M (and therefore also M) is not infinite dihedral.
Let Y be an arbitrary element of Lx = Rk N L, where K = F({C} U {W;};es). We
note that if A* € M,, where A is a period and |t| > 1, then there exists a word Z € M,
such that ZA*Z~! # A*'| since otherwise it follows from [8, Lemma 34.9] that the
group M, is either infinite cyclic or infinite dihedral.

By Lemma 3.7, a subgroup gp{C',Z}, where Z is an element of M, such that
ZC'Z~ # C*!, contains a non-dihedral period A such that F({C}) C F({4}). Then
by the definition of a generating mapping on 2, either F({Y}) C F({A}) or there are
Wi y... ,Wi, t 21, such that F({Y}) C F({A,W,,,... ,W,}). In the second case,
we may assume that W;, AW,-':l # A*! foreach s, 1 < s < t, since otherwise by Lemma
3.4, W;, € gp{A} and F({W;,}) = F({A}). Consider a subgroup R; = gp{A4,W;,}.
By Lemma 3.7, the group R, contains a period A4; such that F({A4,}) = F({4,W;}).
Similarly, a group R, = gp{A1,W;,} contains a period A, such that F({4,}) =
F({A,W; ,W,}), and so on.

As a result, we obtain a period E € L' = M, N L such that F({Y}) C F({E}).
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Now if |Y| > d|F]|, then by Lemma 3.7, a subgroup gp{E,Z}, where Z is an element
of M, such that ZEZ~! # E*!| contains a period E; such that F({Y}) C F({E:})
and n|E| < |E;|. Repeating the same trick several times, we have that L' contains a
period B such that F({Y}) C F({B}) and |Y| < d|B|. Then, as in the proof of [6,
Theorem A], we obtain that Y € L' and L' = Lk .

3)If C € G for each i € I, then by the statement of Theorem A, f(C)N§,; #0.
Let a € f(C)NQ; and L, = gp{cbab™'c™!; b,c € C}. It is obvious that Ly, < L¢.
Now we prove that Lo < Li;. For this purpose, we may repeat the proof of assertion
6 of [6, Theorem A] if we show that the group Ly is not infinite dihedral. It follows
from the statement of the theorem, the definition of the relations of G' and [8, Lemma
34.11] that there is b € C such that A = [a,b] is a free element. So it is sufficient to
find a word T € L}, such that TAT ™! # A*!.

By definition, L¢ is a normal subgroup of a subgroup M and M is not cyclic or
infinite dihedral. Moreover, it follows from assertion 4 of the theorem that M < Rc¢.
Hence the group R¢ is not infinite dihedral and there exists ¢ € C such that ¢ # a
and ¢ # b~!. Now we put T = cbab~'c™! and assume that TAT~' = A* in G. It
follows from {8, Lemma 23.16] that this equation is also true in the group G(1), and
we arrive at a contradiction to the choice of ¢.

4) Let C € 29\ {0} and C € G; for each i € I. Then, as in 2), the group L¢
contains two distinct non-dihedral periods A and B. By [8, Lemma 34.9], Cg(4) =
gp{A} and Cg(B) = gp{B}, and by (8, Lemma 34.7], gp{A} N gp{B} = {1}. Hence
Ce(Le) = {1}.

It is obvious that Ng(Lc) 2 R¢c. Let X € Ng(Lc). Then XAX ™! € L¢, where
A is a non-dihedral period from L¢, and by [6, Lemma 3] and assertion 7 of Theorem
A, X € Re¢. Thus Ng(Lc) = R¢o.

5) In order to prove that a subgroup L¢ is simple if C ¢ G; for each 7 € I, we
repeat the argument in the proof of the simplicity of the subgroup L in (6, Theorem A]
and consider the additional case when M is a normal subgroup of Lo, M is infinite
dihedral and not contained in G; for each ¢ € I. Then by the proofs of [8, Theorem
35.1] and assertion 4 of Theorem A, M contains a power A* of a period 4 and it
follows from Lemma 3.7 that gp{A'} is a normal subgroup of R¢, since otherwise M
contains two infinite cyclic subgroups having the trivial intersection, which contradicts
the choice of M. Hence it follows from [8, Lemma 34.9] that the group R¢ is infinite
dihedral, and we arrive at a contradiction to the fact that if B and E are distinct
periods of some ranks such that B,E € Rc, then by [8, Lemma 34.7], the groups
gp{B} and gp{E} are infinite cyclic subgroups of Rc and gp{B} ngp{C} = {1}.

6) Assertion 11 of Theorem A follows immediately from {8, Lemma 34.10].

7) If a subgroup M of G is infinite dihedral and not conjugate in G to a subgroup
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of some group G;, ¢+ € I, then we may assume that M contains a power A of a
period A and A* is a product in G of involutions X and Y. By [8, Lemma 34.9],
Cc(A*) = gp{A} and it follows from [8, Lemma 34.10] that Cg(M) = {1}.

Let Z € Ng(M). Then by [8, Lemma 34.7), ZA'Z~! = A! for some integer I,
since every element of M is either a power of A or an involution. It follows from [8,
Lemma 25.17] (with the correction from [7]) that ¢ = I, and by Lemma 3.4, we have
that either Z € gp{A} or ZAZ~! = A™! in G. In the second case, it follows from |8,
Lemma 34.9] that ZX ! € gp{A}, hence Ng(M) is an infinite dihedral group.

8) If a cyclic subgroup M = gp{A} of G is not conjugate in G to a subgroup of
some group G;, 1 € I, and A is not a product of two involutions in G, then we may
assume that A is a power B* of a non-dihedral period B. Then by [8, Lemma 34.9
and Lemma 34.7], Ng(M) = Ce(M) = gp{B}.

It remains to prove assertion 5 of the theorem. Let ¢ be an automorphism of a
subgroup L¢, where C € G; foreach t € I.

LEMMA 3.8. The element 3(a) is not free in G for each a € ;N C..

PROOF: Assuming the contrary (and multiplying 4 by an inner automorphism
of Rc), we have that ¥(a) = A* for some period A. Then by [8, Lemma 34.7)], a
is. of infinite order in G. Let b be an arbitrary element of C such that {a,b} € G;
for each i € I, and also let (b) = T. By raising a to a suitable power, we may
assume that ¢ > 100¢~!. It follows from [8, Lemma 34.10] that bab~! # a*!, hence
TAT~! # A*'. By Lemma 3.2 and (6, Lemma 3|, we obtain (after multiplying ¥ by
an inner automorphism of R¢) that 4([e,5]) = S' and ¥(a) = B, where § is a period,
BS'B~! # §*! and F({B}) C F({S}).

There is k 2.1 such that k|l| > n and |B| < («(k |l |S|)1/3, and by Lemma 3.5
and [6, Lemma 3], we have (after multiplying 4 by an inner automorphism of R¢ ) that
Y (a~ Aga = [a,b]*a[a, b]?* a[a,b]**a) = ST and ¥(a) = Ty, where S is a non-dihedral
period, Ty STT, # SE and F({T1}) C F({5:1}).

Now we may choose m such that mr > 0, |m| > n® and |T3| < «(mr |Sl|)1/3. Then
it follows from Lemma 3.6, [6, Lemma 3} and the proof of Lemma 3.1 (after multiplying
1 by an inner automorphism of R¢) that zl:(a,‘lAma) = '(,b(a(a'lea.)m) = FE and
¥(a) = T, where E is a non-dihedral period, E € L¢, |T2| < 3|E| and F({T3}) C
F({E}). It follows from [6, Lemma 1] and [8, Theorem 22.4] that (after multiplying
1 by an inner automorphism of R¢) there is T3 € Yg such that T = T3 EP, where
|p| < 4. Applying the automorphism % to both sides of the defining relation (2.1) for
Ap, a and k = 10 — p, we obtain that

T2—1 E"TgEn+10 . T3En+30(h_2)+10 — 1,

and it follows from the definition of the relations (2.1), (2.4) and (2.5) for E and T3
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that T, is not a free element of G. But T, is conjugate in G to a power of 4, and
this contradiction completes the proof of the lemma. 0

LEMMA 3.9. There exists X € Rc with the property that ¢¥(G;NLg) =
X(GyyNLc)X™, k(i) € I, foreach i € I andif c € @, NC, e € C and
d € C U {1} such that {c,e} € G; for each i € I, then ¥(c) = Xe1 X' and
1/:(dece_1d‘1) = Xdiercie]'d7' X! for some ¢; € 2 NC, e1 € C and d; € CU{1}.

PROOF: We may assume that in the statement of the lemma de € Q; and d ¢
gp{c}. It follows from assertion 4 of Theorem A that for each ¢,d and e from the
statement of the lemma, there exist f € C U {1} and g € C such that {c,g} € G; for
eachi€ I, fg € Oy, de # fg and fge~1d™! # c in the case ¢? = 1. By Lemma 3.8, we
have (after multiplying % by an inner automorphism of R¢) that ¥([c,de]™) = §* and
¥([c, fg]) = W, where S is a period, |k| > 100¢~! and W is a minimal word in G such
that WS*W 1 #£ §** since [c, fg][c, de]™[¢c, fg] ™! # [c,de]*™ in G. Then by Lemma
3.2 and [6, Lemma 3], we obtain (after multiplying i by an inner automorphism of
Rc) that ¢((cfg)Bo(cfg)_1) = A! and 9¥([c,de]”) = B, where A is a non-dihedral
period, BA'B~! # A*! and F({B}) C F({A}), since By is a non-dihedral period of
G.

We choose an integer m such that ml > 0, |m| > nf and |B| < ¢(ml |A|)1/3. Then
it follows from Lemma 3.6, [6, Lemma 3] and the proof of Lemma 3.1 (after multiplying
¥ by an inner automorphism of R¢) that either ¥([c,de]™) = [u,vy]™ in G for some
v €U NC,ye C and v € CU {1} such that {u,y} € G, for each s € I and
vy € 3, or 1/)((cfg)Bm(cfg)_1) = E and +([c,de]*) = T', where E is a non-dihedral
period, E € L¢g, |T| < 3|E| and F({T}) C F({E}). It follows from [6, Lemma 1]
and [8, Theorem 22.4] that (after multiplying % by an inner automorphism of R¢)
there is T} € Yg such that T = T E?, where |p| < 4. Applying the automorphism
¥ to both sides of the defining relation (2.2) (conjugated by the element cfg) for
(cfg)Bm(cfg)™",[ c,de]™ and k = 10 — p, we obtain that

T-1 EnTlEn+20 L TlEn+3O(h—2)+20 =1,

and it follows from the definition of the relations (2.2}, (2.6) and (2.7) for E and T}
that again ¥([c,de]™) = [u,vy]™ for some u € @3 NC, y € C and v € C U {1} such
that {u,y} € G, for each s € I and vy € §,.

By Lemma 3.8 [8, Lemma 34.7], we have that ¢([c,de]) = [u,vy]. It follows from
Lemma 3.8 that (after multiplying 4 by an inner automorphism of R¢) ¥(c) = ¢1 and
1/)(dece_1d_l) =Uec U™ ! for some ¢; € 2 NC and U € Rc. Then there is a reduced
circular diagram A (of some rank) for the conjugacy of [¢1,U] to [u,vy]. Pasting
together the subpaths with labels U and U~!, we arrive at a diagram A’ on a sphere
with three holes with contour labels equal to ¢;, ¢;! and [u,vy]"!. The removal of
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j-pairs from A’ gives a reduced diagram Ag. By (8, Theorem 22.1}, 7(A,) = 0. Hence
we obtain that ¢; = 4% and U = Zl(vy)éZz, where |6| =1, Z; € G and [¢;,2Z;] =1 for
1 = 1,2. Therefore, we have that (c) = ¢; and ¢(dece—1d_1) = Zdyejcie; dy 27!
for some e; € C and d; € C U {1} such that die; € Q;, where Z € G, [¢1,2] =1
and Z = Zg,. depends, in general, on the choice of e and d. Moreover, by 8, Lemma
34.10], {c1,Z4,.} C G, for some s € I. )

Suppose that Zg. # Zy,, for some f € CU {1} and g € C such that fg € Q,
and f ¢ gp{c}. Then we may assume that fge~1d™! ¢ gp{c}, and by the pre-
vious considerations, ¥([c,de]™{[c,de]™[c, fg]]™), |m| > n®, is conjugate in G to
[e1,die1]™[[c1,d1e1]™, [c1, kl]]™ , where |mi| > n®, ke CU{1}, l € C, {e;,I} € G,
for each s € I and kl € ;. It follows from the proof of Lemma 3.1 and the choice
of defining relations in G that [Zd,e[cl,dlel]"Zd_,;,Zf,g[cl,flgl]Zf_,;] is conjugate to
[[e1,d1€e1])™, [e1,kl]] in the group G(1), which is impossible in our case. Thus we have
that Zg. = Z. for each d € CU{1} and e € C such that de € Q,, where {Z.,c;} C G,
for some s € I and [¢1,Z:]=1.

We note that if @ € Gi N Lc and ¥(a) € Gy N Lo for some 7,k(i) € I, then
¥(GiN Lc) = Gy N Le, since by Lemma 3.8 and the proof of 8, Theorem 35.1]
if b€ GiNLc and %(b) ¢ Gi(i), then 9(ab) is not conjugate to an element of 2,
contradicting Lemma 3.8.

We may assume (after multiplying ¥ by an inner automorphism of R¢) that
¥(c) = ¢1 and Z, = 1. It remains to prove that 1(e) € 9 NC and Z, =1 for each
e€ Qi NC. Let e € 2 NC such that {¢,e} C G, for some s € I and e # ¢, and also
let d be an arbitrary element of C' with {e,d} € G; for each ¢ € I. By the previous
considerations, ¥(e) = e; € 2 N C. Then

P(dced™) = ¢ (ded™')ep(ded™!) = dic1d] ' Zedrerd; ' Z7?

for some d;,d; € C, hence Z. = 1, since otherwise 1/)(dced'1) is a free element of G
and we arrive at a contradiction to Lemma 3.8.

Now we consider the case when e is an arbitrary element of ©; N C such that
{c,e} € G; for each i € I (if such an e exists). Repeating the considerations from the
beginning of the proof of the lemma for an element [c, €], we obtain that ¥(e) = e, Z
for some e; € 2, NC and Z € G such that [c;,Z] = 1. By [8, Lemma 34.10],
{Z,c1} C G, for some s € I, hence Z =1, since otherwise 3(e) is a free element of
G, which contradicts Lemma 3.8. Similary, we have that ¥(c) = Z.c2Z = ¢, where
{Ze,Z,e1} C G; for some j € I and ¢; € C, which is possible only if Z, = Z =1 and
c1 =ca.

The proof of the lemma is complete. 0

LEMMA 3.10. There exists X € Rc such that ¥(a) = XaX ™! for each a €
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ancC.

ProOF: By Lemma 3.9, we have (after multiplying ¥ by an inner automorphism
of R¢) that ¥(GiN Lg) = Gry N Lo, k(i) € I, for each i € I. Let s be the minimal
element of I such that G; N L¢ # {1} and s # k(s). Hence s < k(s) and there exists
p € I such that k(p) = s with p > 5. Let ¢ and e be arbitrary nontrivial elements
of G, N Lc and G, N L¢, respectively. By assertion 4 of Theorem A, the group Lc¢
is not dihedral and there are f € C U {1} and g € C such that {c,g} ¢ G; for each
jeI, fge N, e# fg and fge™! # c in the case ¢ = 1. Let ¥(c) = c1, ¥(e) = &1
and ¢(fgcg_1f_l) = fig1c197 f{'. Then ¢ < e and ¢; > e;, and applying the
automorphism % to both sides of the defining relation (2.3) (conjugated by the element
cfg) for (cfg)Bm(cfg) ! = [e,e]™[[c,e]™, [c, fg]]™ and T = [c, €], where m > n®, we
obtain that

e1(Bip)"[e1, e1)(Bin)™ . fer, 1) (Bly) T 2,

where B! = dx((cfg)Bm(cfg)—l), and it follows from the definition of the relation
(2.3) for (c1fig1) "Bl (e1fig1) and T = (e1f191) [e1,e1)(c1frg1) that ¢; = ercief?,
which contradicts [8, Lemma 34.10]. Thus ¢¥(G; N Lg) = G;N Lc foreach i € I.

Let ¢ be the minimal element of ©; N C such that (c) # ¢. Hence ¢ < 9¥(c) =
1, €1 € 29 NC, and there exists d € 2, NC such that 4(d) = ¢ and ¢ < d. By assertion
4 of Theorem A, there is e € C such that {c,e} € G; for each i € I. Applying the
automorphism 1 to both sides of the defining relation (2.4) (conjugated by the element
ce) for (ce)Bm(ce)™" = [c,de]™[[c,de]™, [c,€e]]™ and T = ¢, where m > n®, we have
that

(c1e1)e1(eq el)_l(B:n)"cl(Bin)n-Ho e cl(B:n)"+3o(h_2)+m =1,
where ejcie]! = i(ece™!) and B, = 1,b((ce)Bm(ce)—1) . It follows from the definition
of the relation (2.4) for (clel)_lBLn(clel) and T = (c; el)_lcl(clel) that ¢ = ¢;, and
this contradiction completes the proof of the lemma.

LEMMA 3.11. Thereexists X € Rc such that ¢(dece_1d—1) = Xdece™id1X?
foreach c€ Q3 NC, e € C with {c,e} L G; foreach i € I and d € C U {1}.

PRrOOF: By Lemmas 3.9 and 3.10, we have (after multiplying 3 by an inner auto-
morphism of R¢) that ¢(dece_1d‘1) = dyejce; 'd; !, where e; € C, {e1,¢c} € G; for
each i € I and d; € C U {1}. We may assume that de,d;e; € Q5.

Let de be the minimal element of §}; such that dece 'd~! € L and 1/:(dece_1d_1)
= diesce]'d;! # dece™'d™!. Hence de < dje; and there exists fg € Q, such
that fgeg™'f' € Lc, de < fg and ¥(fgcg™'f~') = dece™'d™'. We have that
fge~1d~! # ¢, since otherwise

dece 'd™1 = ¢(fgcg_1f_1) = c1,/‘)(de¢:e_1d_1)c_1 = cdlelcel_ldl_lc_l,
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and by (8, Lemma 34.10), {e"'d~cd,e;,c} C G, for some s € I, which is impossible.
By applying the automorphism % to both sides of the defining relation (2.3) (con-
jugated by the element cfg) for T = [c,de]? and

(c£9)Bm(cfg)™" = le,de]"([c, de]™, [c, fg]|™,

where m > n%, we obtain that
dlelcel_ldl_l(Bin)n[c,dlel]z(B;n)n+25 ... ey dlel]z(Bin)’wso(h_szs =1,

where B, = 1/:((cfg)Bm(cfg)—1) , and it follows from the definition of the relation (2.3)
for (cde)™'B!,(cde) and T = (cde) [c,d1e;1]%(cde) that dieice; ' dy! = dece™'d?,
which contradicts our assumption.

The proof of the lemma is complete. 0

Now assertion 5 of Theorem A about Aut Lo follows from Lemma 3.11 and as-
sertion 6 of Theorem A. The assertion about regular automorphisms of Lo follows
immediately from [8, Lemma 34.10].

The proof of Theorem A is complete. 0
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