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EMBEDDING INTO GROUPS WITH
WELL-DESCRIBED LATTICES OF SUBGROUPS

VlATCHESLAV N. OBRAZTSOV

A thrifty embedding scheme of an arbitrary set of groups in a simple infinite group
with a given outer automorphism group is presented. One of the applications of
this scheme is the existence (assuming CH) of an uncountable group G in which
all proper subgroups are countable such that G contains every countable group.

1. INTRODUCTION

By a famous embedding theorem of Higman, Neumann and Neumann [1], every
countable group can be embedded in a 2-generator group. But this embedding construc-
tion contains a lot of subgroups other than the embedding group and its conjugates,
and there is little information about the automorphism group of the resulting group.
On the other hand, the method of graded diagrams developed by Ol'shanskii has given
an approach to constructing of difficult examples of groups such as, for example, non-
abelian infinite groups all of whose proper subgroups are finite (see [8]). This technique
was extended in [3] to diagrams over free products and applied to quotient groups of
free products. As a result, a theorem was proved in [3] on embeddability of every
countable set {Gfl}^£/ of countable groups without involutions in a simple 2-generator
infinite group G in which every proper subgroup is either a cyclic group or contained
in a subgroup conjugate to one of the embedding groups G^, and the generalizations
of this theorem to the case of arbitrary sets {G^}^6/ of groups without involutions
were given in [4, 5, 6]. These constructions have given an opportunity to obtain min-
imal extensions of the subgroup lattices of the resulting groups G in comparison with
the subgroup lattices of the embedding groups which was used in [3, 4, 5, 6] and [8]
for solution of some famous problems, in particular, a well-known problem about the
existence of uncountable Artinian groups.

On the other hand, it is easy to see that these results can not be extended to the
case of groups {G^}/igj with involutions, since any involution h £ G^ together with
any conjugate involution ghg~x, g £ G\ GM, must generate in G a dihedral subgroup.
Ol'shanskii [7] proved that by making such exemptions, one might avoid mentioning the
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222 V.N. Obraztsov [2]

absence of involutions from G^ in the statement of the theorem in [3]. (It also leads to
the loss of the property that the resulting group G may chosen to be torsion (of finite
exponent) if all embedding groups are torsion (of finite exponent).) By combining the
ideas from [6] and [7], we obtain the following embedding scheme of an arbitrary set of
groups into a simple infinite group with a "well-described" lattice of subgroups and a
given outer automorphism group.

Let {Gi}i£i be an arbitrary set of nontrivial groups. We denote by fi1 the free

amalgam of the groups G», i £ / , that is, the set \J Gi with Gi (~l Gj = 1 whenever

* 7̂  3 • We say that the mapping g : Cl1 —> G is an embedding of Cl1 into G if g is

injective and its restriction to every Gi is a homomorphism.

Let Cl = Cl1 \ {1} = {aj,i £ J}. Then a mapping / : 2n \ {0} -> 2" is called

generating on the set Cl if the following conditions hold:

1) if C C Gi for some i £ / , then f(C) = gp{C} \ {1};

2) if C % Gi for each i £ / and C = {a, b} C Cl, where a and b are involutions

(such a subset C will be called dihedral), then f(C) = C;

3) if C is a finite non-dihedral subset of Cl and C ^ Gi for each i £ I, then

f(C) = B, where B is an arbitrary countable subset of Cl such that C C. B and if D

is a finite subset of B, then /(D) C 5 ;

4) if C is an infinite subset of Cl, then f(C) = U /(A), where T is the set of all

finite subsets of C.

For example, a generating mapping / on Cl can be defined in the following way: if

C £ 2n\{0} and C = U d, where d = CnGi, i £ J, then f(C) = (U 9P{Ci})/{l}.

We denote by G(l) the free product of groups Gi,i £ / . A group G having a

presentation

(1.1) G={G{1)\\R = 1;R£D)

is called (diagrammatically) aspherical ((diagrammatically) atoroidal) if every diagram
on the sphere (torus) over (1.1) is either non-reduced or consists entirely of 0-cells. (All
necessary information about diagrams can be found in [8].)

Let G = gp{Cl},f an arbitrary generating mapping on Cl. We say that X is a
minimal word of the group G if it follows from X = Y in G that |X| ̂  \Y\, where \Z\

denotes the length of the word Z. Let W be the set of all non-empty words over the
alphabet Cl written in the normal form, that is, every element X in If is written in the
form Xi .. .Xk, where each Xi, 1 ^ I $J k, is a nontrivial element of G^i), fi(l) £ J,
and n{l) ^ fi{l + 1) for / = 1, . . . , k - 1. Then a mapping F : 2W \ {0} -> 2n is defined
in the following way: if C C W and ( 7 ^ 0 , then let V be the set of all letters occuring
in the expressions of words of C. Then we set F(C) = f(V).
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The main result of this paper is the following embedding scheme.

THEOREM A. Let gi : G,- —» H be a set of arbitrary homomorphisms of the
groups Gi into a group H with kernels Ni, i £ I, such that a system of subgroups
{flr»(Gfi)}ig/ generates H, let {Nj}j^ilt I\ Q I, be the set of nontrivial groups of the set
{Ni}i£i, fij the free amalgam of the groups Nj, j £ I\, and also let f be an arbitrary
generating mapping on fi such that f(C) l"l Cl\ ^ 0 if C $2 Gi for each i £ / and C is
non-dihedral. If the set {iV^jgjj contains either three groups or two groups of which
one has order at least 3, then the free amalgam fi1 of the groups Gi can be embedded
in an aspherical atoroidal group G = gp{fl} with the following properties:

1) the free amalgam f2j is embedded in a normal simple infinite subgroup L of G
such that G/L^H;

2) if X £ G and X is not conjugate in G to an element of one of the groups
Gi, i G I, then X is of infinite order;

3) every subgroup M of G is either a cyclic group or infinite dihedral (if one of the
groups Gi, i £ / , has involutions), or M (1 L — 1 and tie homomorphic image of M
in H = G/L has an element of infinite order, or if M is not cyclic or infinite dihedral,
then M is conjugate in G to an extension Gctw of a group H' by a normal subgroup
Lc (that is, GC,H'/LC — H'), where W ^ H and Lc ^ L. In what follows, using
the notation Lc, we assume that every element of Lc is a minimal word of G, and
C = F(LC \ {1}) or C = 0 in the case Lc = {1};

4) Lc = Re n L, where Rc = gp{C} if C £ 2n \ {0} or Rc = {1} in the case
C = 0, and if C <^ Gi for each i £ I, then GC,H' ^ Rc, Lc is a simple group,
NG(LC) = Rc and CG(LC) = {1};

5) if C % Gi for each i £ / , then Aut Lc = Rc and Ou t£ c = Rc/Lc (in
particular, AutL = G and OutL S H), and if g £ (Gi n C) \ fij, i £ / , then the
mapping g : Lc —* g~xLcg is a regular automorphism of Lc (that is, g(a) = a if and
only if a — 1) if and only if there is no c £ Gi D C D fii, where fii = fij \ {1}, such
that [g,c} = l;

6) if C <£ Gi for each i £ / , then for each a £ C Dili, we have that Lc =
gp{cbab~1c~1\b,c £ G} (in particular, L = gp{cbab~1c~1;b, c £ fi}, where a is an
arbitrary element of fli);

7) if X is a minimal nontrivial word of the group G, then X £ Rc if and only if
F({X})Cf(C);

8) if {Gj}j£j, J C / , is a set of all groups having nontrivial intersections with a
subgroup Rc of G and X £ Z~1RcZ, where Z is of minimal length among all words
in RCZ and GjZ, then F({Z}) C F({X});

9) if C % Gi for each i £ / and M is a subgroup of G in which every element is
a minimal word in G, then gp{Lc,M} f~) L = Lcx, where C\ = F(C U (M \ {1}));
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10) if N, = {1} for some s G I and the homomorphism gj : Gj —» H is trivial for
each j (E I \ {a}, then G is the semidirect product of H and L;

11) if a subgroup M of G is contained in some group Gi, i G / , then Na(M) —
NGi{M) and CG{M) = CGi{M);

12) if a subgroup M of G is infinite dihedral and not conjugate in G to a subgroup
of some group Gi, i G / , then NQ{M) is infinite dihedral and CG{M) = {1};

13) if a cych'c subgroup M = gp{A} of G is not conjugate in G to a subgroup of
some group Gi, i £ I, and A is not a product of two involutions in G, then NG(M)
is cyclic and NG(M) = CG(M).

Now we have the following strengthenings of Theorems B and D [6].

THEOREM B. Let {G<},g/ be an arbitrary set of nontrivial groups containing
either three groups or two groups of which one has order at least 3, H an arbitrary
(for example, trivial) group, fi1 the free amalgam of the groups H and Gi, i G I, and
let f be an arbitrary generating mapping on Cl — fi1 \ {1}. Then the free amalgam fi1

can be embedded in an aspherical atoroidal group G — gp{£l} such that
1) the free amalgam of the groups Gi is embedded in a simple normal infinite

subgroup L of G and G is the semidirect product of H and L;
2) every nontrivial subgroup of L is infinite cyclic or infinite dihedral (if one of the

groups Gi, i G I , or H has involutions), or conjugate in G to a subgroup LG = Rc<^L,
where Rc = gp{C}, C G 2n \ 2H, and it C %Gi for each i G / , then Lc is simple
and Lc = gpicbab^c^-^c G f(C)} for each a G f{C)\H;

3) if C % Gi for each i £ I, then Aut Lc = Rc and Out Lc = Rc/Lc (in
particular, AutL = G and O u t i = H), and for each g G H fl C, g is a regular
automorphism of LG • .

PROOF: Let gi : Gi —> H be the trivial homomorphism for each i G / , gn '•
H —> H the natural isomorphism. Then the system {^Vi}ie/ of nontrivial kernels of
the homomorphisms gjj and gi, i G / , is the same as the set of the groups Gi, i E I,
and hence Theorem A applies to O1 and / and yields the required G. D

For countable groups we have the following important result.

THEOREM C. Let {Gi}teJ be a counta ble set of nontrivial countable groups con-
taining either three groups or two groups of which one has order at least 3, H an arbi-
trary countable (for example, trivial) group. Then the free amalgam fi1 of the groups
H and Gi, i G I, can be embedded in a group G — gp{tl}, where f2 = Q1 \ {I}, with
the following properties:

1) the free amalgam of the groups Gi is embedded in a simple normal infinite
subgroup L = 5p{n \ H} of G and G is the semidirect product of H and L;

2) Aut L S G (and Out L = H ) and for each g G H \ {!}, g is a regular automor-
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phism of L;

3) if X,Y £ L with X £ Gi\ {1}, Y £ G{ for some i £ I, then either L

is generated by the pair (X, Y) or X and Y axe involutions, or X and XY are

involutions in G;

4) every proper subgroup of L is either infinite cyclic or infinite dihedral (if one of

the groups Gi, i £ I, or H has involutions), or contained in a subgroup conjugate in

G to some Gi, i £ I.

PROOF: We define a generating mapping / on 0 in the following way: if C C H
such that C % Gi for each i £ I, C % H and C is not dihedral (it follows from the
statement of the theorem that such a subset C exists), then f(C) = fi. Then Theorem
B applies to Cl1 and this mapping / and yields the group G satisfying properties 1, 2
and 4 in the statement of the theorem. Assertion 3 of the theorem can be proved in the
same way as in [7, Theorem 2]. D

The last application of Theorem A is devoted to construction of a "universal"
uncountable group. It is easy to see that there is no countable groups containing every
countable group, since any countable group has a countable set of finitely generated
subgroups, but by [2], there exists a continuum of pairwise non-isomorphic finitely
generated groups. On the other hand, Shelah [9] constructed an uncountable group
with all proper subgroups countable, and the existence of such a group with some
additional properties (such as Artinian and of finite exponent) follows immediately
from [3, Corollary 5]. But there were no examples of uncountable groups G with all
proper subgroups countable such that every countable group is contained in G. It is
obvious that such groups can not be obtained without assuming CH (that is, 2N° = Ni).

THEOREM D. Let H be an arbitrary group with 1 ^ |ff| < 2N° . Tien assuming
CH, there exists a simple uncountable group L in which all proper subgroups are
countable such that L contains every countable group and Out L = H.

PROOF: Let {Gi}i$i be the set of all pairwise non-isomorphic countable groups,
Q,\ — {ay, 1 ^ j < wi} U {1} the free amalgam of the groups Gi, i £ I, and also let
H = {h,\ 1 ^ s < x} U {1} for some ordinal number % ^ w i or H = {1}, where u>i is
the first uncountable ordinal number. A generating mapping / on fi = (fij U 27) \{1}
is defined in the following way: if C is a finite non-dihedral subset of fi such that
C <£ Gi for each i £ I and C <£ H, then let (i be the maximal ordinal number such
that either oM or h^ is contained in C, and we set

f{C) = /(n(/i) n H) u U /(n(/i) n <?<),

where fi(/i) = {ay, 1 ^ j ^ y.} U {h,\ 1 < s < fi} (fi(/x) = {a;; 1 ^ j ^ /i} in the case
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H = {1}). It is easy to see that this mapping / satisfies all conditions in the definition
of a generating mapping on Q.

Theorem B applied to £1 U {1} and / and yields a group G with a simple un-
countable normal subgroup L such that every countable group is contained in L

and Out L = H. Let M be a non-cyclic and non-dihedral proper subgroup of L.

Then by Theorem B, M is conjugate in G to a subgroup Lc = -Re <"l L, where
Re = gp{C}, C £ 2 n \ 2H. We may assume that C g d for each i £ I, hence
the set C is countable, since otherwise it follows from the definition of the mapping
/ that / ( C ) = f2 and M — L, and we arrive at a contradiction to the choice of M.

Therefore, the subgroup M is countable, which completes the proof of the theorem. D

The proof of Theorem A will be heavily based on the results from [6] and [7].
Unless otherwise stated, all definitions and notation may be found in [7] and [8].

2. CONSTRUCTION OF THE GROUP G

As in [8], we introduce the positive parameters

where all the parameters are arranged according to "height", that is, each constant is
chosen after its predecessor. Our proofs and some definitions are based on a system of
inequalities involving these parameters. The value of the parameters can be chosen in
such a way that all the inequalities hold. We then use the following notation:

a' = 1/2 + a, /?' = 1 - (3, 7' = 1 - 7, h = S~\ d = 17-1, n = r1.

We may assume that n is an integer. We also use the notation introduced in Section 1.

We may assume that / is a well-ordered set. We also may assume that ft1 is a

well-ordered set such that 1 is the maximal element of fi1 and if a £ Gi \ {1} and

b £ Gj\ {1}, where i < j , then a < b. On the set fi2 = {ab | o £ 01, b £ fl and if

{a,b} C Gi for some i £ I, then o = 1} we introduce an order in the following way:

ab ^ cd if and only if either b < d or 6 = d and a ^ c (with respect to the ordering of

n1).
By the statement of Theorem A, there is a homomorphism of the free product G(l)

of the groups Gi, i £ I, onto H such that its restriction to every group Gi is equal to

gi. Suppose that the kernel of this homomorphism is N.

Let D\ = 0, and suppose, by induction, that we have defined the set of relators

Di-i C JV, i^2, and set
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A word X is called free in rank i — 1 if X is not conjugate in rank i — 1 to an
element of Ct1, that is, to an image in G(i — 1) of an element of one of the free factors
Gj. A non-empty word Y is said to be simple in rank i — 1 if it is free in rank i — 1,
not conjugate in rank i — 1 (that is, in G(i — 1)) to a power of a shorter word and not
conjugate in rank i — 1 to a power of a period of rank k < i.

Now let Pi denote a maximal set of words of length i which are simple in rank i — 1
with the property that A,BE Pi and A ^ B (" = " means letter-for-letter equality of
words of the same length) implies that A is not conjugate in rank i — 1 to B or B~l.
The words in Pi are called periods of rank i. A special role in the construction of the
group G will be played by the sets P[ of all periods of rank i which are not equal in
rank i — 1 to a product of two involutions (of G(i — 1)). (For short, a product of two
involutions of a group will be called a dihedral element of a group.) We may assume
(see Lemma 3.1 below) that if a, c £ fli, b, e,g £ f2 and d, f £ fi1 such that a is of
infinite order (if such an a exists), {a,b} $Z Gi, {c, e} £ Gj and {c,g} <£ G, for each
i,j, s £ / , fg,de £ Q2, fg^de and fge~1d~1 ^ c in the case c2 = 1, then the words
Ao = a[a,b]ka[a,b]2ka[a,b}3k, Am = aA?, Bo = (cfgy'^der, [c,fg]}(cfg), Bm =
(cfg)~ [c,de]n(cfg)B™ are non-dihedral periods of some ranks for each k ^ 1 and
m, \m\ > n6 .

For each period A £ P- D N, we fix a maximal subset YA such that:
1) if T £YA, then 1 ̂  \T\ < d\A\;
2) each double coset of the pair gp{A},gp{A} of subgroups of G(i) contains at

most one word in YA and this word is of minimal length among the words representing
this double coset;

3)ifTeYA, then T £ N and F{{T}) C F({A}).
We may assume (see Lemma 3.1 below) that if a power Fl of a period F of some

rank is conjugate to a word BCm for some m ^ n, where C is a non-dihedral period
of rank i not equal to Ao or Bo, \B\ < t(m|C|)1/3 and BCB~X ± C ± 1 in G{i - 1 ) ,
then t = 1.

For each period A £ P[C\N, we introduce the ordering of the set of natural numbers
(or a finite segment of it) on the set YA such that the first element of the set YA belongs
to fii (it follows from the statement of Theorem A that YA n fli ^ 0) and if A — Am

or A = Bm, where m = 0 or \m\ > n8, then the first element of the set YA is a or
min(c, h) (with respect to the ordering of fi1 ), respectively, where h = d if d £ fJi,
otherwise h = 1. We denote this order by ^ A •

For each period A £ P[C\N, i ^ 7, we now define some relations. If A = Am, \m\ >
n6, for some a £ fii and b £ 0 such that {a, i} £ Gi for each i £ 7 and a is of infinite
order, then for each k, 5 ̂  k ^ 15, we introduce a relation

(2.1) a-1
J4

navln+*a4"+30+fc...aA"+30(' '-2)+* = 1.
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If A = Bm, \m\ > na, for some c £ f2i, e,g £ fi and d,f £ S71 such that {c, e} £
Gi,{c,g} £ Gj for each i,j E / , fg,de E fi2, fg^de and fge~1d~1 ^ c in the case
c2 = 1, then for each k, 16 ^ Jfe < 25, and T = (cfgy1[c,de]n(cfg), we consider the
relation

(2 2} rp—l j^nrpj^n+krp^n+30+k rp^n+30(h-2)+k _ j

and if &i = min(c, e), 62 = min(de, fg) (with respect to the ordering of fi2) and
Ti = (cfgy^^deYicfg), i £ {1,2}, then we set

(2.3) (cfg)-1bicb7l(cfg)AnTiA
n+25TiA

n+5!i • • • TiAn+30{h~2)+25 = 1

for each t, 1 < i < 2. Let T £ YA and T ^ a in the case yl = A m , |m| > n6 . If a is

the minimal element of the set YA and T ̂  a, then we introduce the relation

(2.4) aAnTAn+10TAn+M ... TAn+30(-h-2)+10 = 1,

and if T = a, then it follows from the definition of the set Pi that there exists 6 €

F({Ay) such that {a, 6} 2 C?i f° r each i £ / , and we consider the relation

(2.5) 6a6- 1
J 4 n TA n + 1 0 T^ n + 4 ° . . . 21

J4"+30('l-2)+10 = 1.

If a is the first element of the set YA, T £ YA \ {a} and T ^ ( c / ^ ) " 1 ^ , rfe]n(c/^) in

the case A = Bm, \m\ > n6, then we introduce a relation

(2.6) aAnTAJl+20TAn+5'>... yJ4"+3o(fc-2)+2o = ^

and if T = a, then, as above, we set

(2.7) ftaft-14»T.4n+20T,4n+50 . . . TAn+30(ll-2)+20 = 1

for some b £ F({^4}) such that {a,b} % G; for each i £ / . And if T £ YA, then let I \

be the minimal element of the set YA \ {a^1} such that T <A T\ (if such an element

T\ exists). Then we consider the relation

(2.8) Tj AnTAn+30TAn+6° ... TAn+3°ih~1) = 1.

The left-hand sides of the relations (2.1)-(2.8) form the set 5j of relators of rank

i. For each i ^ 2, we set D{ = £>,_i U Si, and the group G(i) is defined by its

presentation:

(2.9) G{i)

Finally, we define

By a diagram of rank i, where i ^ 2, we mean a diagram over the presentation

(2.9). Contours of cells II in the diagrams under considerations split to words of the

form (2.1)-(2.8). Those sections of II with labels ( j l " + ' ) ± 1 are called long sections

while the others are called short sections of the contour.
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3. P R O O F OF T H E O R E M A

We start our proof of the theorem with

LEMMA 3 . 1 . Tie choice of the set of periods of the group G is correct.

PROOF: Let a, c G fix, b, e,g G Q, and d, f G fi1 such that a is of infinite order
(if such an a exists), {a,6} £ G{, {c,e} £ Gj and {c,g} % G, for each i,j,s G / ,
fg,de G f̂ 2 , fg ^ de and fge~1d"1 ^ c in the case c2 = 1. Also let C = Ao =
a[a,b]ka[a,b]2ka[a,b}3k for some k ^ 1 or C = Bo = {cfg^^de^, [c,fg]]{cfg), and
suppose that C is conjugate in some rank i ^ 1 to V, where V is either an element of
0 or a power of a period of rank ^ i, or a power of a simple word in rank i. Then it
follows from [8, Lemma 26.5], [8, Corollary 22.2], [8, Lemma 21.7] and the definition
of the relations in G that C and V are also conjugate in G(l). Hence by the choice
of C, we may assume that C is a period of some rank. Moreover, if C is a dihedral
element in G, then there is X G G such that XCX~X = C~1 in some rank i. Then
as above, we may assume that i = 0, and we arrive at a contradiction to the choice of
C. Thus we may assume that Ao and Bo are non-dihedral periods.

If Ci is a non-dihedral period of some rank i and B\ is a word such that
BidB^1 ^ Cfx in rank i - 1 and |Bi| < t(|m| |Ci|)1/3 for some m such that \m\ ^ n,
then by the proof of [7, Lemma 7] and [8, Lemma 34.7], a word BiC™ is conjugate
in G to a power -F1 of a non-dihedral period F of some rank. Repeating the proof of
[8, Lemma 27.3] with a reference to [8, Lemma 23.15] replaced by a reference to [7,
Lemma 8], we obtain that \t\ — 1. (In particular, it is true for Am and Bm, where
\m\ >n 6 . )

If F * is conjugate to a product .B2C™2 of the same type, then there is a reduced
annular diagram A with contours zipi and 22P2, where <t>{zi) = Bi and <f>(pi) =
Cf1*, i = 1,2. Repeating the argument of [7, Lemma 8], we have that there exists a
contiguity submap F of pi to P2 such that the sum of lengths of its contiguity arcs
is greater than /?'(|pi| + \pz\)- Then by [8, Lemma 25.10] (with the correction from
[7]), we have that C\ = C2 and either mim.2 > 0, pi and P2 are Ci-anticompatible
in A and C\ is dihedral, which contradicts the choice of the words G\ and C2, or
mim2 < 0 and p\ and P2 are Ci-compatible in A. In the second case, we have that
B\ G <7p{Cri}I?2~1<7p{C':i}, aQd m order to complete the proof of the lemma, it remains
to consider the cases when either 1) B\ = B2 = a and C\ = C2 = Ao for some a G £li
and 6 G fi such that {a, 6} £ Gi for each i G / and a is of infinite order in G, or 2)
Bi = B2 = {.cfg)~l[c,de)n{cfg) and C\ = Ci = Bo for some c G fli, e,g G £1 and
d j e ! ) 1 such that {c,e} % Gj, {c,g} £ G, for each j,s E I, fg,de € il2, fg^de
and fge~1d~1 ^ c in the case c2 = 1.

It follows from the proof of [8, Lemma 25.18] that in any case, either J5i G gp{Ci},
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which is impossible, or (C'Bi) = 1 in G for some integer a. We note that a ^ 0,
since B\ is of infinite order in G. Then by [8, Lemma 34.7], C'Bi is conjugate in G

to an element v of fi, and it follows from [8, Corollary 22.2] and [8, Lemma 21.7] that
C'Bi and v are conjugate in G(l). We arrive at a contradiction to the choice of the
words C\ and B\. Thus we may assume that t = 1, and the proof of the lemma is
complete. D

Immediate verification shows that the presentations (2.9) of the groups G(i) satisfy
condition R (see [8, Sections 25 and 34]). So we can apply to the diagrams under
considerations all the results from [7] and also [6, Lemmas 1-4] if in the definition (from
[6]) of an /-diagram we demand that condition 13 holds for all contiguity submaps of
9?! *° 9i2 i where ii,i2 £ {1,2}. We also need the following analogue of [6, Lemma 5].

LEMMA 3 . 2 . Let C be a period oi the group G, k an integer such that

\k\ > lOO^"1, and also let W be a word which does not commute with Ck in G

and whose length is minimal among all words in the double coset gp{Ck}Wgp{Ck}.

Then [Ck,W] = ZAlZ~x in G, where A is a period and Z is a minimal word in G,

and

(3.1) F({A}) = F({C, W}),

Moreover, if ^ C ' l f " 1 ^ C±k in G, then also BAlB~l £ A±l in G for B = Z~1CkZ.

PROOF: By [8, Lemma 34.7], the word [Ck,W] is conjugate in G to a word V,

where either |V| = 1 or V = A' for some period A and an integer I. Let A be a reduced
annular diagram with contours p and q such that </>(q) = V"1, p = P1P2P3P4, 4>{Pi) =
^(P3~a) = Ck, <j>(p2) = ^(p^1) = W. By pasting together the paths pi and p^1, we
obtain a diagram A' on a sphere with three holes whose reduced form (that is, with
j'-pairs removed) is denoted by A<>. The cyclic sections pi and pz can be assumed
smooth in Ao.

We note that there is no contiguity submap T of p^ to pi2, where ii,i2 £ {1>3}
and i\ ^12, such that (j>il,T,pi2) ^ 1/100, since otherwise it follows from [8, Lemma
25.10] that pij and p;2 are C-compatible in Ao, and using [8, Lemma 24.9], we arrive
at a contradiction to the choice of the word W. Suppose now that for some i £ {1)3},
there is a contiguity submap F of p< to p< such that (pi,I\p;) ^ 1/100. Then by
[8, Lemma 25.8] (with the correction from [7]), p; is C-anticompatible, and for a
compatible path t (see the definition of (7-anticompatibility from [7]) and a word X

we have that C = X<j>(t) in G, where X and <j>(t) are involutions in G. Hence there
exists an annular subdiagram A'o of Ao with contours p\tc and p^-i, where p\ is a
subpath of pi with label equal to a power of C and |e| = 1. Therefore, a power of C

is conjugate in G to an involution, which contradicts [8, Lemma 34.7]. Thus we obtain
that Ao satisfies conditions 11-13 from the definition (from [6]) of an /-diagram.
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If |V| = 1, then as in the proof of [8, Lemma 24.6], we obtain that there is a
contiguity submap F of p;x to p,-2 for some ii,t2 € {1,3} such that {pit,T,pia) > 1/10,
and we arrive at a contradiction to 13. Thus V = A1 in G for some period A and an
integer /.

The second assertion of the lemma can be proved in the same way as in [6, Lemma
5].

In order to prove the last assertion of the lemma, we note that the inequality
BA'B'1 ^ A±l is equivalent to the inequality Ck[Ck,W}C-k ^ [Ck,W}±1 which
is true, since otherwise we have that either Ck(WC~kW~1) = (WC~kW'1)Ck or
C2kW = WC2k in G, and it follows from [8, Lemma 34.9] and [8, Lemma 25.15] (with
the correction from [7]) that WCkW~1 = C , which contradicts our assumption
about W.

The proof of the lemma is complete. D

By an H-map we understand a circular or annular .B-map A with contours p (in
the case of a circular map) or p and q (in the annular case), where p = siti . . . s;tj, I ^
3 , Si,... ,si are called long sections of the first kind, t\,... ,ti short sections, and q

a long section of the second kind; all sections are assumed (cyclically) reduced and, for
some j > 1, the following conditions hold.

HI. Every section of the first kind is a smooth section of rank _; and |si | ^ nj.

H2. The section q of the second kind is either smooth or geodesic.

H3. The short sections are geodesic and the length of any short section is less than

•max(dj,L \s\\ ' ) .

LEMMA 3 . 3 . T ie assertion of [8, Lemma 23.15] for C-maps is also true for H-

maps.

PROOF: The lemma can be proved in the same way as [8, Lemma 23.15] taking

into account the remark made in the proof of [7, Lemma 5]. D

LEMMA 3 . 4 . If TAkT~l = Ack in G for some period A and an integer k, where

\e\ = 1, then TAT'1 = Ae in G and either e = 1 and T £ gp{A} or e = - 1 and A

is a dihedral element of G.

PROOF: If e = 1, then by [8, Lemma 34.9], T 6 gp{A}. Suppose now that
e = - 1 . Then AkmT~1AkmT = 1 in G, where m is chosen in such a way that m ^ n

and \T\ < t(m \A\) ' , and let A be a reduced circular diagram (of some rank) with
contour ai^1S2<2, where <j>{t\) = $(^2~1) — -^~1 an(^ ^ ( s i ) = 0(S2) = Akm. It follows
from [8, Lemma 26.5] and the choice of m that A is an 27-map. Then by Lemma
3.3, there exists a contiguity submap T of si to S2 such that |FA.si| > | s i | / 2 , and
it follows from [8, Lemma 25.8] (with the correction from [7]) that si and S2 are A-

anticompatible in A and A is a dihedral element. Hence by [7, Lemma 3], we have
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that TAT'1 — A'1, which completes the proof of the lemma. U

LEMMA 3 . 5 . Let A be a period and T a word such that TAT'1 ^ A±x in G

and F({T}) C F({A}), and also let m be an integer with \T\ < <t(|m| \A\)1/3 and

\m\ > n. Then AmTA2mTA3mT = ZC'Z'1 and TjC'T"1 ^ C±l in G, where C is a

non-dihedral period, Z is a minimal word in G and 7i = Z~1AmZ, and

(3.2) F({A}) = F({C}), F({Z}) C F({A}).

PROOF: By [7, Lemma 6], it remains to prove only (3.2) and the inequality

It follows from [6, Lemma 1] and [6, Lemma 3] and the statement of the lemma
that

F({Z,C})QF({T,A}) = F({A}).

So it is sufficient to show that F({A}) C F({C}).

Let A be a reduced annular diagram (of some rank) with contours p and q, where
<£(p) = AmTA2mTA3mT and <j>{q) = C~l. It follows from the statement of the lemma
and [8, Lemma 26.5] that A is an 27-map. Among contiguity submaps F i , ] ^ , . . .
given by Lemma 3.3, the submaps in which at least one of the contiguity arcs has
length greater than £ - 1 |.A| are called long while the others are called short.

If F is a contiguity submap of a long section of the first kind to a distinct long
section of the first kind, say of si to s2, such that its connecting line is homotopic in
A to a subpath of p not containing S3 , then by [8, Lemma 26.5], [8, Lemma 21.1] and
[8, Lemma 25.8], T is a short contiguity submap, since otherwise it follows from [8,
Lemma 23.17] and [7, Lemma 3] that TAT'1 = A~x in rank |>1| - 1 , which contradicts
the choice of T. But by the statement of the lemma, \sk\ ^ (|si| + |s2| + ls3|)/6 for
each k £ {1,2,3}, then it follows from the definition of .ff-maps and Lemma 3.3 that
there exists a contiguity submap I\ of a long section Si to q for each i £ {1,2,3} such
that | I \ A si\ > \si\ /2 , and by [6, Lemma 2], F({A}) C F({C}).

The period C is non-dihedral, so if TiC'T^1 = Ccl, where |e| = 1, then by Lemma

3.4, e = 1 and we have that Am = (AmTA2mTA3mT)Am(AmTA2mTA3mT)''1 in G.

Again it follows from Lemma 3.4 that A2mTA3mTAfT = 1 in G for some integer t.

Let A be a reduced circular diagram (of some rank) with contour si<1s2<2'S3<3, where

0 ( S l ) = A2m, <t>(s2) = A3m, <f>(s3) = A\ <t>(U) = T for each i £ {1,2,3}. It follows

from the statement of the lemma and [8, Lemma 26.5] that A is an ff-map (even if

t = 0). Then using [7, Lemma 3 and Lemma 3.3], we obtain that TAT'1 = A'1 in

G, which contradicts the choice of T.

The proof of the lemma is complete. LJ

LEMMA 3 . 6 . Let A be a non-dihedral period and T a word such that TAT'1 ^
in G and F({T}) C F({A}), and also let m be an integer with \T\ < t(|m| |A|)1/S
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and \m\ > n. Then TAm = ZC'Z'1, |T i | , |Z | < 3 |C | , {(3'fm\A\ ^ \C\ and
TiCTj"1 ^ C±1 in G, where C is a non-dihedral period of some rank, \e\ = 1, Z
is a minimal word in G and 2\ = Z~XTZ, and

(3.3) F({C}) = F({A}),F({Z}) C F({C}).

PROOF: The assertion of the lemma follows immediately from the proofs of [7,

Lemma 9], [6, Lemma 6 and Lemma 3.1]. Q

Now everything is ready to prove an anolog of [6, Lemma 6].

LEMMA 3 . 7 . Let R = gp{Ck,W}, where C is a period, Ck € N \ {1} and
W is a minimal word in G such that WCkW~x ^ C±k in G. Then R contains a
non-diiedral period d 6 N such that F({d}) = F({C,W}) and n\C\ <\d\.

PROOF: By [8, Lemma 34.7], C is of infinite order in G, so there exists p > 100^- 1

such that Cp 6 N D JR. By [6, Lemma 1], we may assume that W has the minimal
length among all words in the double coset gp{Cp}Wgp{Cp}, and by [6, Lemma 3 and
Lemma 3.2], [Cp, W] = ZiA'Z^1, where A is a period, Z\ is a minimal word in G,

and for a word B which is minimal in G and equal in G to a word Z^1CpZi, we have
that

F({B}) = F({Z1,C})CF({A}),

BA'B'1 T* A±l and (3.1) holds. It is obvious that Al,B 6 N and BAB'1 # A ± 1 in

G.

Let t be an integer such that |B| < (t(U \A\)1/3 and It > n. Then by Lemma 3.5,

AltBA2ltBA3ltB = Z2V
fZ^ and TV^T'1 ^ V±} in G, where V is a non-dihedral

period, Z2 and T — Z^1 AHZz are minimal words in G, and (3.2) holds. It follows

from (3.2) and [6, Lemma 3] that

(3.4) F({T}) = F({Z2,A}) = F({A}) = F({V}).

Moreover, Vf,T G N, since Al,B £ N and N is a normal subgroup, and T V T " 1 ^
F ± J in G.

Now we choose an integer m such tha t \T\ < t(mf \V\)1/3, \Zi\,\Z2\,\C\ <

i2mf\V\ and mf > n. By Lemma 3.6, TVmf = Z%C\Z^ and | 1 \ | , | Z 3 | < Z\CX\,

where C\ is a non-dihedral period, |e| = 1, Z3 and Ti = Z^TZ% are minimal words
in G, and (3.3) holds. Moreover, it follows from Lemma 3.6 that

(3.5) \Z1\,\Za\

We also have that d E N, and by (3.1)-(3.3),

F({C, W}) =
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The words Ci and 2\ are contained in Ri = Z-1RZ, where Z = Z1Z2Z3. It
follows from [6, Lemma 1], Lemma3.6 and (3.1)-(3.5) that F({Ti}) ,F({^}) C F({d})

and \Z\ < 4 |Ci |. Hence there are Z',T[ G YCl such that Z G gp{C\}Z'gp{C{\ and
2i G Sp{Ci}Ti5p{Ci}. By the definition of the relation (2.6) for Cx and T[ (or for d
and (T{)2 if Cx= Bm, \m\ > n6 , and T| = {cfg)'1 [c, de]n(cfg)), the minimal element
a of the set Ycx is contained in R\. Now using the defining relation (2.8) for C\ and
a, we obtain that a\ G R\, where oi is the minimal element of the set Ycx \ {a^ 1 } ,
and so on. Thus we have that Z' is contained in Rx, hence Z G R\ and R = Rx,

which completes the proof of the lemma. U

Now we may obtain all the assertions of Theorem A, except assertion 5 about the
automorphism groups of the groups Lc, where C % G< for each t £ J , if we repeat
the proof of [6, Theorem A] replacing references to [6, Lemma 5 and Lemma 6], by
references to Lemmas 3.2 and 3.7. We also need to make the following amendments.

1) In order to prove that the homomorphic image L of the subgroup N is an
infinite subgroup of G, we can use the argument in the proof of [8, Theorem 26.1], with
[8, Lemma 34.1] used in place of [8, Theorem 4.6].

2) Let M be an arbitrary non-cyclic subgroup of G containing a free element X.

(An element X is called free in G if it is free in rank i for each i ^ 1.) By [8, Lemma
34.7], X is conjugate in G to a power of a period A. If M H L = 1, then the image
A in H has infinite order, since by [8, Lemma 34.7], A is of infinite order in G. In
the opposite case, as in the proof of [6, Theorem A], we obtain that M is conjugate in
G to a subgroup Mi — gp{Cl,{Wj}j£j}, where C is a period, C' £ L and for each
j G J, Wj is a minimal word in G such that Wj is not contained in gp{C}.

Now we assume that the group M (and therefore also M.%) is not infinite dihedral.
Let Y be an arbitrary element of LK = RK n L, where K = F({C} U {Wj}j€j). We
note that if A1 £ Mi, where A is a period and |i| ^ 1, then there exists a word Z £ Mi

such that ZAtZ~1 ^ A^1, since otherwise it follows from [8, Lemma 34.9] that the
group Mi is either infinite cyclic or infinite dihedral.

By Lemma 3.7, a subgroup gp{Cl,Z}, where Z is an element of Mi such that
ZC'Z'1 ^ C±l, contains a non-dihedral period A such that F({C}) C F({A}). Then
by the definition of a generating mapping on Q, either F({Y}) C F({A}) or there are
Wtl,... ,Wit, t ^ l , such that F{{Y}) C F{{A,Wh,... ,Wit}). In the second case,
we may assume that WitAW^~l ^ A±x for each s, 1 ^ s ^ t, since otherwise by Lemma
3.4, Wi, G gp{A} and F({Wi.}) = F({A}). Consider a subgroup .Ri = gp{A,Wil}.
By Lemma 3.7, the group Rx contains a period Ai such that F({A\}) — F({A, Wi^}).
Similarly, a group R2 = gp{Ai,Wii) contains a period A2 such that ^({^2}) =
F({A,WiltWia}), and so on.

As a result, we obtain a period E £ V = M2 D L such that F{{Y}) C F({E}).
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Now if \Y\ > d|jE7|, then by Lemma 3.7, a subgroup gp{E,Z}, where Z is an element
of M2 such that ZEZ'1 ^ E±x, contains a period Ex such that F({Y}) C F({£i})
and n\E\ < \E\\. Repeating the same trick several times, we have that V contains a
period B such that F({Y}) C F({B}) and \Y\ < d\B\. Then, as in the proof of [6,
Theorem A], we obtain that Y & L' and V = LK •

3) If C <£ Gi for each ie I, then by the statement of Theorem A, f(C) D ftx f 0.
Let a £ / ( C ) D fii and L'c = ^{c&aJr1*:"1; 6,c £ C } . It is obvious that L'c ^ Lc •

Now we prove that Lc ^ -£(?. For this purpose, we may repeat the proof of assertion
6 of [6, Theorem A] if we show that the group L'c is not infinite dihedral. It follows
from the statement of the theorem, the definition of the relations of G and [8, Lemma
34.11] that there is b £ C such that A = [a,b] is a free element. So it is sufficient to
find a word T £ L'c such that TAT'1 ^ A±x.

By definition, Lc is a normal subgroup of a subgroup M and M is not cyclic or
infinite dihedral. Moreover, it follows from assertion 4 of the theorem that M ^ Re.

Hence the group Re is not infinite dihedral and there exists c £ C such that c ^ a

and c^b-1. Now we put T = cbab'1^1 and assume that TAT'1 = A*1 in G. It
follows from [8, Lemma 23.16] that this equation is also true in the group G( l ) , and
we arrive at a contradiction to the choice of c.

4) Let C £ 2n \ {0} and C %Gi for each i £ I. Then, as in 2), the group Lc

contains two distinct non-dihedral periods A and B. By [8, Lemma 34.9], Ca{A) =

gp{A} and CG(B) = gp{B}, and by [8, Lemma 34.7], gp{A} n gp{B} = {1}. Hence
CG{LC) = {1}.

It is obvious that NG(LC) 2 Re- Let X £ NG{LC). Then XAX'1 £ Lc, where
A is a non-dihedral period from £ c , and by [6, Lemma 3] and assertion 7 of Theorem
A, X £RC. Thus J V G ^ C ) = Re-

5) In order to prove that a subgroup Lc is simple if C <£ Gi for each i £ I, we
repeat the argument in the proof of the simplicity of the subgroup L in [6, Theorem A]
and consider the additional case when M is a normal subgroup of Lc, M is infinite
dihedral and not contained in G; for each i £ 7. Then by the proofs of [8, Theorem
35.1] and assertion 4 of Theorem A, M contains a power A1 of a period A and it
follows from Lemma 3.7 that gp{A*} is a normal subgroup of Re, since otherwise M

contains two infinite cyclic subgroups having the trivial intersection, which contradicts
the choice of M. Hence it follows from [8, Lemma 34.9] that the group Re is infinite
dihedral, and we arrive at a contradiction to the fact that if B and E are distinct
periods of some ranks such that B,E £ Re, then by [8, Lemma 34.7], the groups
gp{B} and gp{E} are infinite cyclic subgroups of Re and gp{B} n gp{C} = {1}.

6) Assertion 11 of Theorem A follows immediately from [8, Lemma 34.10].

7) If a subgroup M of G is infinite dihedral and not conjugate in G to a subgroup
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of some group Gi, i 6 / , then we may assume that M contains a power A* of a
period A and A* is a product in G of involutions X and Y. By [8, Lemma 34.9],
CG(A*) = gp{A} and it follows from [8, Lemma 34.10] that CG(M) = {1}.

Let Z 6 Na(M). Then by [8, Lemma 34.7], ZAlZ~x = A1 for some integer /,

since every element of M is either a power of A or an involution. It follows from [8,

Lemma 25.17] (with the correction from [7]) that t = ±Z, and by Lemma 3.4, we have

that either Z € gp{A} or ZAZ~* = A~l in G. In the second case, it follows from [8,

Lemma 34.9] that ZX~X G gp{A}, hence NQ(M) is an infinite dihedral group.

8) If a cyclic subgroup M = gp{A} of G is not conjugate in G to a subgroup of

some group Gi, i £ I, and A is not a product of two involutions in G, then we may

assume that A is a power B* of a non-dihedral period B. Then by [8, Lemma 34.9

and Lemma 34.7], NG{M) = CG{M) = gp{B}.

It remains to prove assertion 5 of the theorem. Let rp be an automorphism of a

subgroup Lc, where C % Gi for each i £ I.

LEMMA 3 . 8 . The element ip(a) is not free in G tor each a g ^ n C .

PROOF: Assuming the contrary (and multiplying ip by an inner automorphism
of Re), we have that ip(a) = A* for some period A. Then by [8, Lemma 34.7], a
is of infinite order in G. Let b be an arbitrary element of C such that {a, 6} % Gi

for each i £ I, and also let ij){b) = T. By raising a to a suitable power, we may
assume that t > 100C"1 • It follows from [8, Lemma 34.10] that bab'1 ^ a± 1 , hence
TAT'1 ^ A*1. By Lemma 3.2 and [6, Lemma 3], we obtain (after multiplying if) by
an inner automorphism of Re) that ip([a,b]) = Sl and V"(°) = B, where 5 is a period,
BS'B'1 £ S±l and F{{B}) C F{{S}).

There is jfe >. 1 such that k \l\ > n and \B\ < (i(k \l\ \S\)1/3, and by Lemma 3.5

and [6, Lemma 3], we have (after multiplying ip by an inner automorphism of Re) that

tp(a-1Aoa = [a,b]ka[a,b]2ka[a,b]3ka) = SJ" and i>(a) = Ti, where Si is a non-dihedral

period, T.SlTr1 ? Str and F({Tx}) C F{{S1}).

Now we may choose m such that mr > 0, \m\ > n6 and |Ti | < i(mr |5iI)1'3 . Then
it follows from Lemma 3.6, [6, Lemma 3] and the proof of Lemma 3.1 (after multiplying
V> by an inner automorphism of Re) that ^{aT1 Ama) — •tl>{a{a~1

 AQCL) ) = E and
V>(a) = T2 , where E is a non-dihedral period, E £ Lc, \T2\ < 3\E\ and F({T2}) C
F({E}). It follows from [6, Lemma 1] and [8, Theorem 22.4] that (after multiplying
ip by an inner automorphism of Re) there is T3 £ YE such that T2 = T$EP, where
\p\ ^ 4 . Applying the automorphism ip to both sides of the defining relation (2.1) for
Am, a and k — 10 — p, we obtain that

rp—1 jpnrp pn+10 rp j£n+30(h-2)+10 _ j

and it follows from the definition of the relations (2.1), (2.4) and (2.5) for E and T3
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that T2 is not a free element of G. But T2 is conjugate in G to a power of A, and
this contradiction completes the proof of the lemma. D

LEMMA 3 . 9 . TAere exists X £ Re with the property that rj}{Gif\Lc) =
X{Gk^i)r\Lc)X~1, k(i) £ I, for each i £ I and if c £ fii n C , e £ C and
d £ C U {1} such that {c,e} % Gi for each i £ I, then ip(c) = X^X'1 and
ij}{dece-1d-1) = Xd1e1c1e~1d^1X-1 for some a £ f ^ D C , ex £ C and dx £ CU{1} .

PROOF: We may assume that in the statement of the lemma de £ fi2 and d $.

gp{c}. It follows from assertion 4 of Theorem A that for each c,d and e from the
statement of the lemma, there exist / £ C U {1} and g £ C such that {c,g} % Gi for
each i £ I, fg £ f22, de ^ fg and fge~1d^1 ^ c in the case c2 = 1. By Lemma 3.8, we
have (after multiplying if) by an inner automorphism of Re) that i>([c, de]n) = Sk and
V"([c)/ff]) = W\ where 5 is a period, |A:| > lOO^"1 and W is a minimal word in G such
that WShW~x ^ S±k, since \c,fg)[c,de)n[cjg)-1 ^ [c,de]±n in G. Then by Lemma
3.2 and [6, Lemma 3], we obtain (after multiplying ^ by an inner automorphism of
Re) that i>({cfg)B0{cfg)~1) = A1 and tp([c,de)n) = B, where A is a non-dihedral
period, BA'B"1 ^ A±l and F({B}) C F({A}), since Bo is a non-dihedral period of
G.

We choose an integer m such that ml > 0, |m| > n6 and \B\ < i(ml \A\) ' . Then
it follows from Lemma 3.6, [6, Lemma 3] and the proof of Lemma 3.1 (after multiplying
ij) by an inner automorphism of -Re) that either TJ)([c,de]n) = [u,vy]n in G for some
u£Q,lr\C,y£C and v £ C U {1} such that {u,y} % G, for each s £ I and
vy £(l2, or i>((cfg)Bm(cfg)~1) - E and ^>{[c,de)n) = T, where E is a non-dihedral
period, E £ Lc, \T\ < 3\E\ and F({T}) C F({E}). It follows from [6, Lemma 1]
and [8, Theorem 22.4] that (after multiplying ij> by an inner automorphism of Re)
there is T\ £ YE such that T = T\EV, where |p| ^ 4 . Applying the automorphism
ij) to both sides of the defining relation (2.2) (conjugated by the element cfg) for
(cfg)Bm(cfg)~1, [ c, de]n and k = 10 - p, we obtain that

j i - l t inj i pn+20 rp rin+30(A—2)+20 _ •.

and it follows from the definition of the relations (2.2), (2.6) and (2.7) for E and T\
that again rf)([c,de]n) = [u,vy]n for some u £ fii !~l C, y £ C and v £ C \J {1} such
that {u, y} % G, for each s £ I and vy £ fi2 •

By Lemma 3.8 [8, Lemma 34.7], we have that rl>([c,de\) = [u,vy]. It follows from
Lemma 3.8 that (after multiplying ij) by an inner automorphism of Re) ip{c) = c\ and
i(>(dece~1d~1) — UciU'1 for some ci £ fii D C and U £ Rc • Then there is a reduced
circular diagram A (of some rank) for the conjugacy of [ci,J7] to [u,t;y]. Pasting
together the subpaths with labels U and U~1, we arrive at a diagram A' on a sphere
with three holes with contour labels equal to c\, c^1 and [ujvy]'1. The removal of
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j-pairs from A' gives a reduced diagram Ao • By [8, Theorem 22.1], r(Ao) = 0. Hence
we obtain that ci = us and U = Z1(vy)6Z2, where \S\ = 1, Zi E G and [a, Zt] = 1 for
i = 1,2. Therefore, we have that ip(c) = cx and ^){dece~ld'1) - Zd^cxe^d^1 Z~*
for some e\ E C and di G C U {1} such that diei G n 2 , where Z G G, [ci,Z] = 1
and Z = Z<f)e depends, in general, on the choice of e and d. Moreover, by [8, Lemma
34.10], {ci,Zd,e} C G. for some s £ / .

Suppose that Zd,<- ^ Zjt9 for some / G C U {1} and g E C such that /</ G fi2

and / £ 5P{C}- Then we may assume that fge~1d~1 (fc gp{c}, and by the pre-
vious considerations, •0([c><Ze]"'[[cJ<^e]n>[c!/<7]]m)) \m\ > n61 is conjugate in G to
[ci .diejHIc^dje^Md.fcZlpi , where |rm| > n\ k G G U {1}, Z G G, {Cl,Z} % G.

for each s E I and A:Z £ fi2 • It follows from the proof of Lemma 3.1 and the choice
of defining relations in G that [Zd,e[c\,d-i.e\\nZ^\,Zftg\c\,f\g\\Zj\\ is conjugate to
[[ci,diei]n, [ci,fcZ]] in the group G(l), which is impossible in our case. Thus we have
that Zd,e = Zc for each d E GU{1} and e G G such that de ECl2, where {Zc,Ci} C G,

for some s £ I and [ci, Zc] = 1.

We note that if a £ G,- D Lc and V"(a) £ Ĵfc(i) ^ i c for some i,k(i) £ / , then
ip(Gi n i c ) — ̂ fc(i) l~l i c i since by Lemma 3.8 and the proof of [8, Theorem 35.1]
if 6 £ Gi n Lc and V'(̂ ) ^ ^*(«) i then xl>[ab) is not conjugate to an element of fi,
contradicting Lemma 3.8.

We may assume (after multiplying ij) by an inner automorphism of Re) that
•0(c) = Ci and Zc = 1. It remains to prove that ip(e) £ fii PI G and Ze — 1 for each
e £ fii n G. Let e £ fii l~l G such that {c,e} C G, for some 5 £ I and e ^ c, and also
let d be an arbitrary element of C with {e,d} £ Gj for each i £ I. By the previous
considerations, V"(e) = ei G fii fl G. Then

TJ>(dced~ ) = TJ)\dcd~ )ip(ded~ ) = d\c\d~[lZed2e\d^ Z~^

for some di,d2 £ C, hence Ze = 1, since otherwise ^(dcetf"1) is a free element of G

and we arrive at a contradiction to Lemma 3.8.

Now we consider the case when e is an arbitrary element of fii D G such that
{c, e} ^ G; for each i E I (if such an e exists). Repeating the considerations from the
beginning of the proof of the lemma for an element [c, e], we obtain that V'(e) = e.\Z

for some ei G fii n G and Z G G such that [ci,Z] = 1. By [8, Lemma 34.10],
{Z,ci} C G, for some s E I, hence Z = 1, since otherwise V"(e) is a free element of
G, which contradicts Lemma 3.8. Similary, we have that ip(c) = Zec2Z = c\, where
{Ze,Z,ei} C Gj for some j E I and c2 G G, which is possible only if Ze — Z = 1 and

Ci = C2 .

The proof of the lemma is complete. U

LEMMA 3 . 1 0 . There exists X £ Rc such that ip(a) = XaX'1 for each a £
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fijDG.

PROOF: By Lemma 3.9, we have (after multiplying ifr by an inner automorphism
of i?c) that i)}{Gi fl Lc) = Gk(i) H Lc,k(i) G / , for each i G I. Let s be the minimal
element of / such that Gi fl Lc ^ {1} and s ^ k(s). Hence s < k(s) and there exists
p £ I such that k(p) = s with p > s. Let c and e be arbitrary nontrivial elements
of Ga ("1 £c and Gp D £ c , respectively. By assertion 4 of Theorem A, the group Lc
is not dihedral and there are / G C U {1} and g £ C such that {c, 5} £ Gj for each
J £ J] / } E O2, e ^ fg and fge-1 7̂  c in the case c2 = 1. Let V"(c) = ci, V*(e) = ei
and i>{fgcg~1f~1) = figicig^1 f^1. Then c < e and ci > ei, and applying the
automorphism i\) to both sides of the defining relation (2.3) (conjugated by the element
cfg) for (cfg)Bm(cfg)-1 = [c,e]n[[c,e]n,[c,fg]]m and T = [c,e], where m > n 6 , we

obtain that

R / >n+30(fc-2)+25

where 5 ^ — tp^(cfg)Bm(cfg)~ ) , and it follows from the definition of the relation

(2.3) for {c1flgly
1B'm{c1f1g1) and T = ( c i / u i ) " 1 ^ , e i ] ( c i / i f l n ) that Cl ^ e j c j e " 1 ,

which contradicts [8, Lemma 34.10]. Thus ij){Gi (~l Lc) = Gid Lc for each i G J .

Let c be the minimal element of fix ("I C such that V"(c) ŷ  c. Hence c < ^(c) —

ci, ci G flinC, and there exists d G fiiflC such that V'(< )̂ = c a n ( i c < d. By assertion

4 of Theorem A, there is e G C such that {c, e} ^ G» for each i £ I. Applying the

automorphism -0 to both sides of the defining relation (2.4) (conjugated by the element

ce) for (ce)Bm{ce)~1 = [c,de]n[[c,de]n, [c, e]]m and T = c, where m > n 6 , we have

that

(c i e i ) c i ( c i e i ) {Bm) d{Bm) ...ci{Bm) = 1,

where eicie^"1 = ^(ece"1) and JBJ,, = -0((ce)5m(ce)~ ) . It follows from the definition

of the relation (2.4) for (ciei)~ .B^Ciei) and T — (ciei)~ ci(ciei) that c = ci , and
this contradiction completes the proof of the lemma. U

LEMMA 3 . 1 1 . Tiere exists X G Re such that ipface^d'1) - Xdece'1 d~xX'1

lor each c G Ox ("I C, eEC with {c, e} % G,- tor each i e l and d G C U {1}.

PROOF: By Lemmas 3.9 and 3.10, we have (after multiplying if> by an inner auto-
morphism of Re) that tj}{dece~1 d~*) — d\e\ce^ 1d^1, where e\ G G, {ei,c} ^ G,- for
each i G / and d\ G C U {1}. We may assume that de.,d\e\ G f̂ 2 •

Let de be the minimal element of Q2 such that dece~1d~1 G Lc and ijj[dece"1d~1)

= dieice^1d^1 ^ dece~1d~1. Hence de < diei and there exists fg G JI2 such
that fgcg'1/-1 G Lc, <*e < fg and ^(fgcg-1/-1) = dece~xd~l. We have that
fge~1d~1 ^ c, since otherwise
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and by [8, Lemma 34.10], {e~1d~1cdiei,c} C G, for some s £ I, which is impossible.

By applying the automorphism %j) to both sides of the defining relation (2.3) (con-

jugated by the element cfg) for T = [c,de]2 and

(cfg)Bm(cfg)-1 = [c,de]n[[c,de]\ [cjg))m,

where m > n6, we obtain that

where B'm — %j>([cfg)Bm(cfg)~ ) , and it follows from the definition of the relation (2.3)

for (cde)'1 B'm{cde) and T = {cde)~1[c,dle1]
2{cde) that d1e1ce~1d~1 = dece'1 d~x,

which contradicts our assumption.

The proof of the lemma is complete. D

Now assertion 5 of Theorem A about Aut Lc follows from Lemma 3.11 and as-
sertion 6 of Theorem A. The assertion about regular automorphisms of Lc follows
immediately from [8, Lemma 34.10].

The proof of Theorem A is complete. D
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