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Abstract
Redox flow batteries (RFBs) are an emerging electrochemical technology envisioned towards storage of renewable
energy. A promising sub-class of RFBs utilizes single-flow membraneless architectures in an effort to minimize
system cost and complexity. To support multiple functions, including reactant separation and fast reactant transport
to electrode surfaces, electrolyte flow must be carefully designed and optimized. In this work, we propose adding a
secondary channel adjacent to a permeable battery electrode, solving for the flow field and analysing the effects on
the reactant concentration boundary layer at the electrode. We find that an adjacent channel with gradually changing
thickness leads to a desired nearly uniform flow through the electrode to the adjacent channel. Consequently, the
thickness of the concentration boundary layer is significantly reduced, increasing reactant transport to the electrode
surface to 140 % of the rate of a battery with a constant width adjacent channel, and 350 % of the rate with no
adjacent channel. Overall, this theory provides insight into the important role of flow physics for this promising
sub-class of flow batteries, and can pave the way to improved energy efficiency of such flow batteries.

Impact Statement
An important contemporary engineering challenge is the development of inexpensive and high-performance
renewable energy storage systems. Such systems support the penetration of intermittent sources, such as
solar and wind energy, reducing dependence on fossil fuels. Flow batteries are promising due to their use of
inexpensive, Earth-abundant reactants, and ability to readily upscale because of a spatial decoupling of energy
storage and power delivery. To reduce system capital costs, single-flow membraneless flow batteries are under
intense investigation, but require intricate flow engineering. In this work, we analytically and numerically
model the flow and chemical species transport for a novel single-flow geometry, and show enhancement
of reactant transport and separation. Thus, such geometries promise to increase battery performance and
efficiency while reducing cost.
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1. Introduction

Perhaps the most crucial engineering challenge of today is the switch from fossil fuel-based electricity
sources to renewable sources such as solar and wind (Edenhofer, Seyboth, Creutzig, & Schlomer, 2013).
While solar and wind energy technologies are mature and widely available, in order to build a grid
which relies heavily on intermittent renewables, cost-effective and scalable energy storage systems are
required (Kousksou, Bruel, Jamil, El Rhafiki, & Zeraouli, 2014; Weitemeyer, Kleinhans, Vogt, & Agert,
2015). Redox flow batteries (RFBs) are a highly promising candidate for such grid-scale energy storage
systems (Arenas, de León, & Walsh, 2019; Lourenssen, Williams, Ahmadpour, Clemmer, & Tasnim,
2019; Luo, Hu, Hu, Zhao, & Liu, 2019). In their most-utilized configuration, RFBs store an anolyte
containing a dissolved reductant and catholyte with a dissolved oxidant in separate external tanks, and
pump these fluids through the battery cell during battery charging and discharging (Ke et al., 2018).
An ion exchange membrane maintains separation between the flowing anolyte and catholyte in the
battery cell, preventing mixing and direct contact between the reductant and oxidant. This storage of
chemical-energy containing electrolytes external to the battery allows for convenient independent scaling
of system energy capacity and power output (Winsberg, Hagemann, Janoschka, Hager, & Schubert,
2017). However, the main bottleneck to widespread deployment of RFBs is their high system capital
cost per energy and power (Arenas, de León, & Walsh, 2017; Darling, Gallagher, Kowalski, Ha,
& Brushett, 2014).

In an effort to reduce battery capital costs, a fast-emerging sub-class is the single-flow RFBs. Such
systems operate with only a single electrolyte flow, enabling a significant system simplification and cost
reduction, as they require only a single tank, flow loop and are membraneless (Amit, Naar, Gloukhovski,
Ola, & Suss, 2021; Cheng et al., 2013; Xie, Liu, Lu, Zhang, & Li, 2019). Various types of batteries
have been utilized in the single-flow cell architecture, such as batteries with two metal reactants (e.g.
zinc–nickel) (Cheng et al., 2007; Xiao et al., 2016; Yao, Zhao, Sun, Zhao, & Cheng, 2019), cells
with a single multiphase flow (e.g. zinc–bromine) (Amit et al., 2021; Ronen, Gat, Bazant, & Suss,
2021) and cells with one metal electrode and a separator (e.g. lithium–sulphur or zinc–bromine) (Lai,
Zhang, Li, Zhang, & Cheng, 2013; Yang, Zheng, & Cui, 2013). In such cells, the electrolyte flow
must enable multiple functions simultaneously, including delivering reactant rapidly to both anode and
cathode surfaces, and maintaining adequate separation between reactants. For example, Amit et al.
(2021) showed that single-flow zinc–bromine cell with multiphase flow enables reduced architecture
and improved current capability, but at the cost of reduced coulombic efficiency due to zinc corrosion
by bromine present in the electrolyte’s aqueous phase. Typically, the flow channels of single-flow cells
are long and thin rectangles, with a length to height ratio of approximately ten or higher (Esan et al.,
2020). To balance the myriad requirements on the electrolyte flow, novel channel geometries should be
investigated to optimize flow and battery efficiency.

Understanding the internal flow field in single-flow batteries is crucial to the effective design of
such devices. Various previous studies examined the effect of cell geometry, which modifies the flow,
on the total efficiency of standard flow batteries (García-Salaberri, Gokoglan, Ibá nez, Agar, & Vera,
2020; Gurieff et al., 2020; Gurieff, Timchenko, & Menictas, 2018). Recently, cell geometry modifica-
tion has shown promise in efforts to address mass transport limitations which affect electrochemical
and overall system performance (Gurieff, Keogh, Timchenko, & Menictas, 2019b; Yue et al., 2018).
Studies regarding the contribution of adding various channel abstractions on the performance of RFBs
were performed by Akuzum, Alparslan, Robinson, Agar, and Kumbur (2019). The results showed an
improvement in peak power density and a drop in required pumping pressure due to gradual delivery of
the electrolyte to the electrode plane, ultimately improving the reactant mass transport. Additionally, a
design with decreasing cell width towards the outlet, where reactant concentration is reduced, improved
performance over existing designs (Gurieff, Cheung, Timchenko, & Menictas, 2019a).

In this work we propose and investigate the addition of an adjacent secondary channel in membrane-
less RFBs. The secondary channel is connected to the main channel via a permeable electrode. For the
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Figure 1. (a) Schematic illustration of a discharging single-flow membraneless flow battery system,
which consists of the electrolyte storage tank, a pump and the active cell unit where the redox reaction
takes place, bordered by the electrodes (red). (b) Schematic cross-sectional view of the cell, where the
coordinate system and the key parameters used for the analysis are indicated. The permeable electrode,
modelled as a thin porous plate, is marked by the dashed line delineating regions 1 and 2, alongside
the 95 % mass transport boundary layer, 𝛿 (dotted).

case of a single-phase flow with dissolved reactants, we show that the secondary channel induces a pres-
sure gradient which leads to reactant mass transfer to the adjacent channel through the electrode. We
study the effect of the electrolyte flow field, tailoring on the reactants’ concentration along the perme-
able electrode to optimize the battery’s efficiency. In § 2, we present our model problem and outline our
basic assumptions. Section 3 is devoted to analysis, while in § 3.1 we render our problem dimension-
less and in § 3.2 we perform an asymptotic expansion with respect to the permeability parameter and
find the leading-order solution in both regions 1 and 2, distinguishing between the two main areas in
the system (above and below the perforated electrode), and the first-order correction in region 1. Then,
we present and discuss our results regarding the pressure and the velocity field in § 4 where we focus
on mass transport at the limiting current to the cathode during discharge. Concluding remarks on our
findings in are shown in § 5.

2. Problem formulation

In figure 1(a) a schematic illustration of a single-flow membraneless flow battery system is presented.
Figure 1(b) focuses on the battery cell , which includes a main channel (region 1) bounded by upper and
bottom electrodes. The bottom electrode is perforated, and allows flow to a secondary channel (region 2).
We adopt the Cartesian system of coordinates, (x, y), as indicated in the figure, where the x axis denotes
the direction parallel to the bottom wall of region 1 and the y axis is perpendicular thereto. The velocity
of the fluid in these directions is denoted by u = u(x, y) and v = v(x, y), respectively. We here assume
the battery operates at the dilute solution limit, which enables decoupling of the hydrodynamic and mass
transfer problems. We hereafter denote dimensional variables by tildes, normalized variables without
tildes and characteristic values by an asterisk superscript.

The length of the cell is denoted by L. The line y = 0 corresponds to the boundary between the two
regions. The subscripts 1 and 2 denote variables and coordinates in regions 1 and 2, respectively. The
floor of the channel in region 2 is assumed to be inclined relatively to the x-axis, and is defined by
h̃2 (x̃) = −H2(1 + Sx̃/L), where S denotes the slope of the bottom wall and Hi are the nominal heights of
the channels.

We investigate slender channel geometries with aspect ratios Hi/L � 1. The characteristic scales for
length, channel height, mean downstream velocity and kinematic viscosity for such systems are given
by L ∼ 0.1 m, H1 ∼ 1 · 10−3 m, u ∼ 0.01 m s−1, 𝜈 = 10−6 m2 s−1, respectively, where 𝜈 is the kinematic
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viscosity, and therefore the Reynolds reduced number for the system is Rer = (Hi/L)(uHi/𝜈) ∼ 0.1 � 1,
for which inertial effects are negligible.

Assuming Newtonian incompressible flow, the fluid motion, with a dynamic viscosity, 𝜇, is governed
by the Stokes equations representing conservation of momentum alongside conservation of mass. The
governing fluid dynamic equations may be expressed as follows:

𝜇

(
𝜕2ũi

𝜕x̃2 +
𝜕2ũi

𝜕ỹ2
i

)
=

𝜕p̃i

𝜕x̃
, i = 1, 2, (2.1a)

𝜇

(
𝜕2ṽi

𝜕x̃2 +
𝜕2ṽi

𝜕ỹ2
i

)
=

𝜕p̃i

𝜕ỹi
, i = 1, 2, (2.1b)

𝜕ũi

𝜕x̃
+
𝜕ṽi

𝜕ỹi
= 0, i = 1, 2. (2.1c)

These equations are subject to no-slip boundary conditions at the top and bottom walls of each region
(ỹ1 = H1, ỹi = 0), as well as at the confining wall upstream the bottom region, i.e. ỹ2 = h̃2. In
addition, a no-penetration boundary condition is imposed at the top and bottom walls of the cell.
The pressure at the inlet and outlet is pin and pout, respectively, and there is a no-flux boundary
condition for the pressure at x̃ = 0 in the bottom region. To conclude this, the boundary conditions are
given by

ũ1 |ỹ1=H1 = ũ1 |ỹ1=0 = 0, ũ2 |ỹ2=0 = ũ2 |ỹ2=h̃2
= 0, p̃1 |x̃=0 = p̃in,

𝜕p̃2

𝜕x̃

����
x̃=0

= 0,

ṽ1 |ỹ1=H1 = 0, ṽ2 |ỹ2=h̃2
= 0, p̃1 |x̃=L = p̃2 |x̃=L = p̃out .

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(2.2)

The average fluid flux across the bottom electrode is given by

ṽ1 |ỹ1=0 = ṽ2 |ỹ2=0 =
k

w𝜇
(p̃2 |ỹ=0− − p̃1 |ỹ=0+ ), (2.3)

where k and w are the permeability and the width of the bottom electrode, respectively, and p̃i, i = 1, 2,
is the pressure in the corresponding region.

In the next section the approach for obtaining an approximate solution for the problem in (2.1)–(2.3)
is discussed.

3. Analysis

In this section we scale the governing equations and employ asymptotic expansions in order to obtain
solutions of the flow and pressure fields up to first order.

3.1. Scaling

To rewrite the problem in dimensionless form, let us define the characteristic pressure and velocity
parameters in each direction, which are assumed to be positive, as u∗i , v∗i , p∗ > 0, where some restrictions
and relations between the characteristic values will be discussed later in this section. Scaling by these
characteristic values, we define the non-dimensional variables as follows:

(x, yi) =

(
x̃
L
,

ỹi

Hi

)
, (ui, vi) =

(
ũi

u∗i
,

ṽi

v∗i

)
, pi =

p̃i − pout

p∗
, i = 1, 2. (3.1a–c)
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Next, let us define the slenderness ratios as

𝜀i =
Hi

L
� 1, i = 1, 2. (3.2)

Substituting the scaled values and 𝜀i in (3.1a–c) and (3.2) into the governing equations in (2.1) and the
boundary conditions in (2.3), results in the following set of the normalized governing equations:

u∗i 𝜇
L

(
𝜀2

i
𝜕2ui

𝜕x2 +
𝜕2ui

𝜕y2
i

)
= 𝜀2

i p∗
𝜕pi

𝜕x
, i = 1, 2, (3.3a)

u∗i 𝜇
L

(
𝜀2

i
𝜕2vi

𝜕x2 +
𝜕2vi

𝜕y2
i

)
= p∗

𝜕pi

𝜕yi
, i = 1, 2, (3.3b)

𝜀i
𝜕ui

𝜕x
+

v∗i
u∗i

𝜕vi

𝜕yi
= 0, i = 1, 2, (3.3c)

as well as the boundary conditions at the separator between the two regions

vi |yi=0 =
kp∗

w𝜇v∗i
( p2 |y=0− − p1 |y=0+ ), i = 1, 2. (3.4)

To obtain various relations between the characteristic values we employ the dominant balance
approach for these equations. More specifically, let us first require that terms on both sides of (3.3c) for
i = 1, 2 are of the same order of magnitude with respect to 𝜀i, respectively, yielding a relation for the
velocities and the slenderness ratio

v∗i
u∗i

= 𝜀i, i = 1, 2. (3.5)

Next, by requiring that terms on both sides of the equation in (3.3a) for i = 1, 2 will be of the same
order of magnitude with respect to 𝜀i, respectively, a pressure-dissipation scaling relation is obtained

u∗i =
𝜀2

i Lp∗

𝜇
, i = 1, 2. (3.6)

Note that the expressions in (3.6) yield a velocity scaling between the two regions

u∗1
u∗2

=

(
𝜀1

𝜀2

)2

. (3.7)

Substituting the expressions in (3.5) and (3.6) in (3.4), gives a relation for the pressure difference across
the separator and the vertical velocities

vi |yi=0 = Ki( p2 |y=0− − p1 |y=0+ ), i = 1, 2, (3.8)

where Ki denotes the dimensionless permeability parameters:

Ki =
k

wL𝜀3
i
, i = 1, 2. (3.9)

For brevity, let us further define K as the dimensionless permeability in region 1, namely K = K1. Thus,
K2 satisfies K2 = (H1/H2)

3 K.
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Substituting the expressions obtained in (3.5), (3.8) and (3.9) into the governing equations (3.3) and
the boundary conditions in (2.2) and (3.4) results in the following scaled governing equations:

𝜀2
i
𝜕2ui

𝜕x2 +
𝜕2ui

𝜕y2
i
=

𝜕pi

𝜕x
, i = 1, 2, (3.10a)

𝜀2
i

(
𝜀2

i
𝜕2vi

𝜕x2 +
𝜕2vi

𝜕y2
i

)
=

𝜕pi

𝜕yi
, i = 1, 2, (3.10b)

𝜕ui

𝜕x
+
𝜕vi

𝜕yi
= 0, i = 1, 2, (3.10c)

and the corresponding scaled boundary conditions

u1 |y1=1 = u1 |y1=0 = 0, u2 |y2=0 = u2 |y2=−(1+Sx) = 0, p1 |x=0 = pin,
𝜕p2

𝜕x

����
x=0

= 0,

v1 |y1=1 = 0, v2 |y2=−(1+Sx) = 0, p1 |x=1 = p2 |x=1 = 0,
vi |yi=0 = Ki ( p2 |y=0− − p1 |y=0+ ), i = 1, 2.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.11)

In this paper we concentrate only on the leading-order problems with respect to 𝜀i, i = 1, 2, so that
the terms of orders O(𝜀2

i ), i = 1, 2, are hereafter neglected. In the next section we will discuss our
approach for asymptotic solution of this problem.

3.2. Asymptotics for the limit of small permeability

We focus on configurations where

0 < K � 1 and 0 < 𝜀2 < 𝜀1. (3.12a,b)

For common configurations, the order of magnitude of the characteristic values for the length, width
and permeability of the bottom electrode are L, w ∼ 10−2 m, k ∼ 10−10 m2, respectively. As for the
slenderness ratio, the characteristic values are 𝜀1 ∼ 10−1, therefore justifying (3.12a,b).

Hence, an asymptotic expansion with respect to K is well defined. Expanding the velocities and the
pressures in regular asymptotic series with respect to the permeability parameter K, results in

ui (x, yi) = u(0)
i (x, yi) + Ku(1)

i (x, yi) + O(K2), i = 1, 2,

vi (x, yi) = v(0)i (x, yi) + Kv(1)i (x, yi) + O(K2), i = 1, 2,

pi (x, yi) = p(0)
i (x, yi) + Kp(1)

i (x, yi) + O(K2), i = 1, 2,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(3.13)

where the superscript indicates the order, zero denoting the leading order and one denoting the first order.
Our approach to this problem is outlined as follows. In § 3.2.1 we obtain the leading-order solution

with respect to K in region 1. We then use it to obtain the leading-order solution in region 2. Both lead-
ing-order solutions are then employed in § 3.2.2 in order to get the first-order solution with respect to K
in region 1. Note that this procedure may be continued in the same manner, thus allowing us to obtain
the solutions to the problems in regions 1 and 2, up to any desired order.

3.2.1. Leading-order solution with respect to permeability parameter in regions 1 and 2
Let us start with the leading-order problems. Substituting the expansions in (3.13) into the equations
and the boundary conditions in (3.10) and (3.11), we get that the leading-order equations with respect
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to K in regions 1 and 2, respectively, are given by

𝜕2u(0)
i

𝜕y2
i

=
𝜕p(0)

i
𝜕x

, i = 1, 2, (3.14a)

𝜕p(0)
i

𝜕yi
= 0, i = 1, 2, (3.14b)

𝜕u(0)
i

𝜕x
+
𝜕v(0)i
𝜕yi

= 0, i = 1, 2. (3.14c)

In region 1, (3.14) are solved subject to the corresponding boundary conditions

u(0)
1 |y1=1 = u(0)

1 |y1=0 = 0, v(0)1 |y1=1 = v(0)1 |y1=0 = 0, p(0)
1 |x=0 = pin, p(0)

1 |x=1 = 0. (3.15a–d)

It is easy to verify that the solution for this problem may be expressed as

u(0)
1 (x, y1) =

pin

2
( y1 − y2

1), v(0)1 (x, y1) = 0, p(0)
1 (x, y1) = pin (1 − x). (3.16a–c)

Note that, according to the solution, as shown in (3.16a–c), for the leading-order problem in region 1,
there is no mass transport to the lower region. As a result, the velocity is a Poiseuille flow velocity
profile, as expected for a channel flow.

Next, let us solve the leading-order problem in region 2 given in (3.14), which is solved subject to
the following boundary conditions:

u(0)
2 |y2=0 = u(0)

2 |y2=−(1+Sx) = 0, v(0)2 |y2=−(1+Sx) = 0, p(0)
2 |x=1 = 0,

𝜕p(0)
2

𝜕x

�����
x=0

= 0,

v(0)2 |y2=0 =

(
H1

H2

)3

K ( p(0)
2 |y=0− − p(0)

1 |y=0+ ),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.17)

where the last boundary condition in (3.17) is not homogeneous, since (H1/H2)
3 K is of order O(1)

with respect to K, but not O(K). In the same manner as for the leading-order problem in region 1, by
looking at (3.14b), one can see that in the bottom region the pressure is constant at each cross-section
along the channel, i.e. p(0)

2 (x, y2) =p(0)
2 (x), which simplifies the equations. Next, solving (3.14a) subject

to the no-slip boundary conditions at the top and bottom walls of region 2, gives

u(0)
2 (x, y2) =

y2

2
𝜕p(0)

2
𝜕x

(1 + Sx + y2). (3.18)

Substituting equation (3.18) into the governing equation for the mass conservation equation in (3.14c),
yields

y2

2

(
S
𝜕p(0)

2
𝜕x

+
𝜕2p(0)

2
𝜕x2 (1 + Sx + y2)

)
+
𝜕v(0)2
𝜕y2

= 0. (3.19)

Solving this equation subject to the no-penetration boundary condition at the top of the channel results
in the following expression for v(0)2 (x, y2):

v(0)2 (x, y2) =
1
12

(
3S

𝜕p(0)
2

𝜕x
((1 + Sx)2 − y2

2) +
𝜕2p(0)

2
𝜕x2 ((1 + Sx − 2y2)(1 + Sx + y2)

2)

)
. (3.20)
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Imposing on (3.20) the corresponding boundary condition in (3.17) at y2 = 0, gives

𝜕2p(0)
2

𝜕x2 (1 + Sx)3 + 3S
𝜕p(0)

2
𝜕x

(1 + Sx)2 = 12(H1/H2)
3 K ( p(0)

2 − p(0)
1 ), (3.21)

where we have used the independence of the pressures, p(0)
1 (x) and p(0)

2 (x), of y1 and y2, respectively.
Forming an asymptotic expansion with respect to the inclination parameter, |S| � 1 gives

p(0)
2 (x) = p(0,0)

2 (x) + Sp(0,1)
2 (x) + O(S2), (3.22)

where the second superscript index indicates the order of the term with respect to S, with zero denoting
the leading-order term. For further detail regarding the asymptotic approximation with respect to the
inclination parameter see Appendix A.

In (3.22)

p(0,0)
2 (x) =

pin

6(1 + e4Z)

(
6 −

3
Z
(e−2Z (x−2) − e2Zx) − 6e4Z (x − 1) − 6x

)
, (3.23)

and

p(0,1)
2 (x) = −

e2Z (2−3x)pin

16(1 + e4Z)2(H1/H2)3K
{8e6Zx − 4e2Z (2x−1) − 4e2Z (2x+1) + 4e2Z (3x−2) + 4e2Z (3x+2)

− 4e2Z (4x−1) − 4e2Z (4x+1) + e4Z (x+1) [12(H1/H2)
3 Kx2 − 2Zx − 1]

+ e4Z (2x−1) [12(H1/H2)
3Kx2 + 2Zx − 1]

+ e4Zx [1 − 2Zx + 12(H1/H2)
3K (x2 − 2)] + e8Zx [1 + 2Zx + 12(H1/H2)

3K (x2 − 2)]},
(3.24)

where we have defined for brevity, Z =
√

3(H1/H2)3K. Using this result in (3.18) and (3.20), we obtain
the approximate (up through order O(S2)) velocities u(0)

2 (x, y2) and v(0)2 (x, y2) in region 2.

3.2.2. First-order solution with respect to permeability parameter in region 1
Now, after we have found the leading-order solutions with respect to the permeability parameter, K, in
regions 1 and 2, let us solve the first-order problem in region 1. The first-order problem is composed of
the following equations:

𝜕2u(1)
1

𝜕y2
1

=
𝜕p(1)

1
𝜕x

, (3.25a)

𝜕p(1)
1

𝜕y1
= 0, (3.25b)

𝜕u(1)
1

𝜕x
+
𝜕v(1)1
𝜕y1

= 0, (3.25c)

which are subject to the boundary conditions

u(1)
1 |y1=1 = u(1)

1 |y1=0 = 0, v(1)1 |y1=1 = 0, p(1)
1 |x=0 = 0, p(1)

1 |x=1 = 0

v(1)1 |y1=0 = ( p(0)
1 − p(0)

2 )

}
, (3.26)

where p(0)
1 (x) and an approximation for p(0)

2 (x), up through order O(S2), are known from the previous
section.
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Figure 2. The flow field in the cell represented by streamlines obtained analytically (blue, solid)
alongside numerical computations (black, dotted) for K = k/wL𝜀2

1 = 0.1, H1/H2 = 1/5 and H1/L = 10,
and for (a) S = 0 and (b) S = 0.5.

As previously, solving the downstream momentum equation (3.25a) subject to the no-slip boundary
conditions at both walls gives

u(1)
1 (x, y1) =

y1

2
𝜕p(1)

1
𝜕x

( y1 − 1). (3.27)

Next, using (3.27) in the mass conservation equation (3.25c), and the no-penetration boundary condition
at the top wall of region 1 yields

v(1)1 (x, y1) =
1
12

𝜕2p(1)
1

𝜕x2 (−2y3
1 + 3y2

1 − 1). (3.28)

Finally, substituting equation (3.28) in (3.26) as well as the expressions for p(0)
1 (x) and p(0)

2 (x), which
are given in (3.16a–c) and (3.22), respectively, we may obtain, by solving the resulting second-order
ordinary differential equation (ODE), the expression for pressure p(1)

1 (x).

4. Results and discussion

4.1. Flow field and numerical validation

Let us first present the obtained flow field for two configurations with the inclinations of S = 0 and 0.5
and a dimensionless permeability of K = kwL𝜀2

1 = 0.1, where H2/H1 = 1/5 and H1/L = 1/10. The
flow fields are presented in figure 2. There is a good agreement between the analytic and numerical
results, thus verifying our asymptotic approximation. The effect of the inclination of the bottom wall on
the velocity near the bottom electrode is evident here, and velocity in the y-direction does not vanish
for S ≠ 0 in the bottom region. To further focus on the effect of the bottom channel, we visualize the
change of the velocity field in the following figures. For details regarding the numerical scheme, see
Appendix B; for a quantitative assessment of the accuracy of the analytical model see Appendix C.

4.2. Permeability and inclination effects on the pressure distribution

Figures 3(a) and 3(b) present the pressure distribution in the upper and lower channels as a function
of electrode permeability and inclination of the bottom wall. Figure 3(a) shows that, with increasing
permeability, the pressures at the bottom channel and at the top channel achieve synchronization
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Figure 3. The pressure at the top channel (dashed red), p1, and the pressure at the bottom channel for
(a) various permeability values and S = 0 and (b) for different slopes and K = 0.1. In (c) and (d), the first-
order asymptotic correction at the top channel, p(1)

1 , due to the adjacent channel is shown for K = 0.1
and for (c) H2/H1 = 1/5 and different inclination values, S, including the case without any inclination
(marked in red) and (d) S = −0.5 and different channel thicknesses ratios, H2/H1. The pressure at the
top channel is given by p = ( pin − pout)(1 − x) + Kp(1)

1 , and it is independent of the y coordinate.

closer to the inlet. Figure 3(b) illustrates the effect of channel slope S, which for S ≠ 0 prevents full
synchronization of the pressures at the main and adjacent channels. Figures 3(c) and 3(d) present the
correction to the pressure at the main channel, p(1)

1 . Figure 3(c) examines the effect of the slope of the
bottom wall, S, and figure 3(d) illustrates the effect the channel height ratio, H2/H1. The results indicate
that the pressure correction is negative throughout the channel for S ≥ 0. This reduction of the pressure
at the top channel is a result of fluid transfer to the bottom channel, which in turn reduces flux in the
upper channel. For the inclination of S = −0.25 a transition from negative to positive pressure can be
observed. Reducing the value of the ratio H2/H1 increases the effect of the bottom channel and shifts
the location of the maximum of p(1)

1 towards the outlet.

4.3. Flow through the bottom electrode

While having only a small effect on the speed in the streamwise direction, the bottom channel is the
only cause of flow in the direction perpendicular to the bottom electrode, v1 = v0

1 +Kv1
1, which is crucial

to the efficiency of flow batteries. Figure 4 depicts the velocity in the y-direction in the upper channel
v(1)1 for various configurations, where negative values represent velocity towards the bottom region. For
parallel channels, S = 0, the downward flow is fastest for x → 0 and decreases with increasing x until it
reaches a plateau of v1 ( y = 0) = v2( y = 0) → 0, i.e. no mass transport between the regions, as shown
in figure 4(a,b). The balance in mass transport can be attributed to the pressure synchronization of the
two channels. For higher permeability values, v(1)1 = 0 is reached for a smaller x due to a higher mass
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Figure 4. The first-order term in the asymptotic expansion of the vertical velocity with respect to K, v(1)1 ,
which is calculated as the sum of two first terms in the expansion with respect to S, versus x at the top
channel (region 1), visualizing the effect of the adjacent channel (region 2) for (a) and (b) parallel
channels, S = 0, with K = 0.01 and K = 0.1, respectively, and for (c) and (d) tapered bottom channel
with K = 0.1, where the slope of the channel in (c) and (d) is S = 0.5 and S = −0.5, respectively. Positive
and negative values of v(1)1 correspond to downward and upward velocity of the fluid, respectively.

transport between the regions. For an expanding channel, S = 0.5, the flow throughout the electrode is
negative, and decreases in amplitude with increasing x, as presented in figure 4(c). For S = −0.5, the
value of v(1)1 is negative similarly to other S values, but it changes sign at x ≈ 0.175, indicating a flow
from the bottom to the top channel, as depicted in figure 4(d).

4.4. Induced flow field and reactant boundary layer

In figure 5 we show the analytically calculated first order of the asymptotic expansion of the velocity with
respect to K (see equations, (3.27) and (3.28)), created due to the adjacent channel. Overlaid behind the
streamlines are the concentration profiles of a neutrally charged reactant which enters the main channel,
and which reacts at the permeable electrode. A detailed description of the calculations can be found in
the following section. Different columns in figure 5 correspond to different values of the slope S and the
different rows correspond to different values of electrode permeability K.

Flow fields with same slope value, S, exhibit similar characteristics, as shown in each column in
figure 5. For all slopes there is a focusing of the streamlines at a specific location directed towards
the bottom channel, occurring due to a change in the x-direction component of the velocity field.
The location of this focus point is shifted towards the outlet as S increases. For the non-negative slopes
(S = 0, 0.5), the y-component of the velocity field is negative or zero throughout the main channel.
In contrast, for the negative slope (S = −0.5) the value of the y-component of the velocity field becomes
positive between the focusing point and the outlet. Moreover, for these cases, the flow in the major
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Figure 5. The flow field in the cell where only the first order of the asymptotic expansion of the velocity
with respect to K in the top channel, (u(1)

1 , v(1)1 ), is presented along the total flow field in the bottom
channel (u2, v2). The flow fields are given for H1/H2 = 1/5 and for different permeability and slope
values. The orange regions represent normalized concentration of the electrolyte with scaled y-values,
which are shown on the right axis of the figure. The rows (top to bottom) stand for K = 0.01, 0.1, 0.35,
and the columns (left to right) represent S = −0.5, 0, 0.5.

part of the electrode is from the bottom channel to the main channel due to narrowing of the bottom
channel to satisfy mass conservation. For parallel channels, S = 0, in most of the electrode there is no
mass transport to the bottom channel. For such configurations, the velocity field in the bottom channel
becomes parallel to the x-axis. This phenomenon is observed only in the case of zero slope.

Next, let us discuss the impact of the permeability parameter, K. For non-positive values of S, a
higher permeability shifts the position of the focusing point of the streamlines, directed towards the
bottom channel, towards the inlet and for negative S also that of the upper stream. On the contrary, for
the positive value of S, we observe the opposite trend, and for increasing K the location of the focus
point of the flow to the bottom channel is shifted towards the outlet. Moreover, for S = 0 increasing
K causes a reduction of the surface area through which the mass transport from the top channel to the
bottom channel occurs.

4.5. Battery limiting current

We here consider a neutrally charged reactant present in the flow, as well as a dilute electrolyte. Neutrally
charged reactants can represent halides, for example bromine in a zinc–bromine (Braff, Buie, & Bazant,
2013; Mader & White, 1986; Ronen et al., 2021), quinone–bromine (Chen, Gerhardt, & Aziz, 2017) or
hydrogen–bromine flow battery (Cho et al., 2013; Ronen, Atlas, & Suss, 2018). For such batteries, when
using a planar bromine electrode and discharging the battery, the structure of the bromine boundary
layer forming along the electrode determines the maximum bromine flux to the electrode, and so the
battery’s limiting (maximum) current (Braff et al., 2013; Ronen et al., 2021). For this reason, strategies
which compress the bromine boundary layer, such as increasing the electrolyte flow rate, can improve
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the battery limiting current and reduce voltage losses for high current operation. We here consider a
perforated planar electrode between the two flow channels, as highly conductive planar electrodes are
often used in membraneless cells, largely due to the challenge in compressing adequately a porous
electrode in cells with open channels (Braff et al., 2013; Suss, Conforti, Gilson, Buie, & Bazant, 2016).
As described in previous works, the boundary layer along a planar bromine electrode can be determined
by solving the following balance equation for a neutrally charged reactant in a flowing, dilute electrolyte
solution (Braff et al., 2013; Ronen et al., 2021),

D∇2c + ∇ · (uc) = 0, (4.1)

where D is the reactant species diffusion coefficient, c is the concentration and ū is the velocity vector.
Variables are non-dimensionalized according to (2.2) with the addition of the normalized concentration
c = c̃/c0.

In order to explore the effect of the flow field and adjacent channel geometry on battery current
capability, we solve (4.1) at the limiting current, where the reactant is entirely depleted along the
permeable electrode during discharge. At the inlet and along the porous electrode plate, we impose fixed
concentration (Braff et al., 2013),

c|x=0 = 1, c|y1=0 = 0. (4.2a,b)

Assuming an impermeable anode and high Péclet number, Pe=UH1/D, and where U is the mean
axial velocity, allows us to write

∇c|x=1 · n̂ = ∇c|y1=1 · n̂ = 0, (4.3)

where n̂ is the surface normal vector. Equation (4.1) with the boundary conditions in (4.2a,b) and (4.3)
was solved using COMSOL Multiphysics 5.4 software.

At the limiting current, the reactant flux to the cathode is maximized and given by Nw =
(DC0/H1)(𝜕c/𝜕y1) |y1=0, where, c0 is unity. The current density, J, can be related to flux by multiplying
flux by nF, where n is the number of electrons per reactant molecule participating in the electrochem-
ical reaction, and F is Faraday’s constant. By applying Faraday’s law to obtain the current density at
the electrode, J, and defining the dimensionless local current density as J = H1j/nDFc0, we obtain
Jlim = 𝜕c/𝜕y1 |y1=0.

For the reference case of zero flow through the electrode, K = 0, our numerical model for limiting
current was benchmarked to the analytical solution provided by Braff et al. (2013). The latter solution is
for the limiting current in a planar electrode cell with a thin concentration boundary layer of a neutrally
charged reactant and linearized Poiseuille flow.

In figure 5, we presented the predicted concentration boundary layer of a neutrally charged reactant
along the permeable electrode, in addition to the flow streamlines for H2/H1 = 1/5, various electrode
permeabilities and bottom channel inclinations. The boundary layer thickness is affected by the bottom
channel slope, S, as illustrated in figure 5. As the slope increases, the concentration boundary layer
becomes thinner, resulting in faster diffusive reactant transport to the electrode, thus enhancing its
performance. For instance, for K = 0.01 and S = −0.5, the boundary layer becomes fully developed by
x = 1, whereas for S = 0.5 it is still developing.

The predicted non-dimensional current density, J, for a battery discharging at the limiting condition
is presented in figure 6 alongside the averaged current in the inset, calculated by integrating local
currents from x = 0 to x. The limiting conditions refer to the maximum possible discharge current,
where the reactant concentration at the surface is zero. Figure 6(a) shows the effect of varying electrode
permeability for a constant inclination, S = 0.5, compared with the reference configuration without
a bottom channel, i.e. with an impermeable bottom electrode K = 0. In all cases, the local current,
affected by the growth of the concentration boundary layer, decreases rapidly along the channel length.
Ultimately, we predict that, for S = 0.5, a permeable electrode outperforms the reference configuration
without an adjacent channel, for all values of permeability tested here. We also investigated the effect
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Figure 6. Exploring the current density at the electrode for various configurations. (a) Local current
along the channel for inclination S = 0.5 and varying permeability K = 0.01, 0.1 and 0.35. The
inset shows the cumulative current with x, which is significantly improved with a permeable electrode,
but is only slightly affected by permeability. (b) Local current for permeability K = 0.1 and varying
inclinations, S = −0.5, 0 and 0.5. Inset shows cumulative current at the electrode up to x, where a
positive inclination induces a twofold higher flux than a negative inclination.

of permeability, finding the accumulated current the electrode is 5 % lower for K = 0.01 than for
K = 0.1 and K = 0.35, for which the current is practically identical. Figure 6(a) illustrates that, at low
permeabilities, the cumulative current through the permeable electrode is slightly lower than at higher
permeabilities, and at high permeability, the flow is mainly restricted to the entrance region.

In figure 6(b), we examine the current density for varying inclinations of the bottom channel, S, at
constant electrode permeability, K = 0.1. It shows that, throughout the channel, the current obtained
increases with inclination S. At x ≥ 0.4, the current is slightly lower for inclination S = −0.5 than for an
impermeable electrode, K = 0. For the same combination of permeability and slope, figure 4(d) shows
that, for x ≥ 0.15, the vertical velocity in the upper channel becomes positive, so that the advective flux
is away from the electrode. There is an offset between the of the x location of the turn of the velocity
direction with respect to the current. Thus, the entire length of the channel is not used efficiently in the
case of S = −0.5. The inset of figure 6(b) shows that adding a second channel increases the reactant
transport when compared with the classic configuration of a single channel. In particular, adding a
parallel channel increases the reactant transport to 140 % of the reference case, whereas the highest
averaged current is obtained for positive inclination S = 0.5, resulting in an average current increase of
350 % over the case with no bottom channel, which is due in part to the thinner concentration boundary
layer for this case, as seen in figure 5.

5. Conclusions

In this work, we analyse modifications of the flow field to the concentration boundary layer of a neu-
trally charged reactant forming along single-flow membraneless RFB electrode, aiming to improve such
devices’ operation. Specifically, we model the effect of permeability of the perforated electrode and the
geometry of the adjacent channel.

Our results indicate that mass transport through the bottom electrode is maximal near the inlet, and
drops gradually. If the adjacent channel is of uniform thickness, the pressure fields in the main and
the adjacent channels synchronize, and the flow through the bottom electrode vanishes. The channel
length required to achieve synchronization decreases with increasing bottom electrode permeability. An
adjacent channel with gradually changing thickness prevents synchronization of the pressures, leading
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Figure 7. The magnitude of the v component of the velocity field (a,b) analytically calculated, |vanalytical |,
and (c,d) shown as the difference between the analytical and numerical calculations, |vanalytical−vnumerical |

for (a,c) a parallel channel, S = 0, and (b,d) a slanted channel, S = 0.5.

to a more uniform flow through the bottom electrode. This, in turn, creates a more uniform boundary
layer, and thus more effective reactant transport and distribution of the electrolytes over the porous
electrode surface. The flow field in both channels can be designed to achieve a desired mass transport
through the perforated electrode. Nevertheless, the effect on the flow field decreases with increasing the
thickness ratio of the adjacent channel to the main channel.

For system optimization, results show that, for improved discharge performance, the highest mass
transport to the permeable electrode serving as a cathode can be obtained by using scaled slope S = 0.5
and scaled electrode permeability K = 0.1, while improved coulombic efficiency can be achieved by
using K = 0.01 and S = −0.5. Future effort can extend the model provided here to the case of charged
reactant species or a three-dimensional porous permeable electrode between the two channels. Overall,
this theory provides an insight into the important role of flow physics on this promising sub-class of
flow batteries and will help to pave the way to create more efficient flow batteries with minimal balance
of plant.
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Appendix A. Asymptotic scheme with respect to the inclination parameter

Let us consider the (3.21), which holds for p(0)
2 . Note, that since p(0)

2 is independent of y2, (3.21) should
be satisfied for all y2 ∈ (−(1 + Sx), 0) and all x ∈ (0, 1). Hence, substituting the solution for p(0)

1 (x)
which was given in (3.16a–c), we get that p(0)

2 (x) should satisfy the following ODE:

𝜕2p(0)
2

𝜕x2 +
3S

(1 + Sx)
𝜕p(0)

2
𝜕x

−
12(H1/H2)

3K
(1 + Sx)3 p(0)

2 =
12(H1/H2)

3Kpin (x − 1)
(1 + Sx)3 , (A1)

which should be solved subject to the boundary conditions

𝜕p(0)
2

𝜕x

�����
x=0

= 0, p(0)
2 |x=1 = 0. (A2a,b)

Since by our assumption the inclination parameter, S, satisfies |S| � 1, in order to calculate the
pressure and the resulting velocities analytically, we assume an asymptotic expansion of p(0)

2 (x) with
respect to the inclination parameter, S, namely we use the expansion in (3.22), Substituting this expansion
into (A1), the resulting leading-order term satisfies

𝜕2p(0,0)
2

𝜕x2 − 12(H1/H2)
3Kp(0,0)

2 = 12(H1/H2)
3Kpin (x − 1). (A3)

It is easy to verify that the solution for this equation subject to the boundary conditions (A2a,b) is given
by the expression (3.23).

Next, let us solve the first-order problem, with respect to S, resulting from (A1) subject to the
boundary conditions given in (A2a,b), namely

𝜕2p(0,1)
2

𝜕x2 − 12(H1/H2)
3Kp(0,1)

2 = −3
𝜕p(0,0)

2
𝜕x

− 36(H1/H2)
3Kx[pin (x − 1) + p(0,0)

2 ],

𝜕p(0,1)
2
𝜕x

�����
x=0

= 0, p(0,1)
2 |x=1 = 0.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(A4)

It can be verified that the solution for this problem may be expressed as given in (3.24).

Appendix B. Flow field validation via numerical computations

Evaluation the theoretical model predictions for a straight and sloped channel was performed using
COMSOL 5.5 (COMSOL, Inc., Burlington, MA, USA) 2D Free and Porous Media Flow (fp) module.
We assume a Newtonian and incompressible flow with density 𝜌 = 1000 kg m−3, dynamic viscosity
𝜇 = 0.0001Pa · s and fully saturated porous media. We uphold continuity with the Stokes–Brinkman
formulation for both upper and lower fluid domains with a thin porous membrane, having permeability
K = 0.001 m2, separating the two domains along their entire length. Using this more generalized
formulation, we account for viscous transport (i.e. shear effects along walls not represented in the Darcy
flow formulation) on both sides of a thin membrane so as to permit both qualitative and quantitative
testing of our theoretical model.
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The fluid domain consists of two flow channels. The upper channel having length and height
L1 = 0.1 m and H1 = 0.01 m, respectively, and a lower channel of the same length L1 = L2 and
of height H2(x = 0) = H2(x = L) = 0.002 m, for the straight channel case, and H2(x = 0) = 0.002 m
and H2(x = L) = 0.00315 m for the case of an S = 0.5 inclined channel. A thin membrane
hmembrane = O(𝜀) = 0.1 mm separates the upper flow channel and the lower channels along their entire
length. The upper channel has an extended inlet section spanning −0.01 ≤ x ≤ 0 to allow for the fully
developed flow profile at the inlet of the channel starting at x ≥ 0 (see details below). The formulation
of the finite element method model is complete by setting the boundary conditions at the inlet for the
velocity u(−0.01, y, t) = ((ΔP/Δx)/(2𝜇))y(H1 − y), 0 m s−1, and the pressure, ΔP/Δx = 1 Pa m−1

as unit pressure per unit length. As well as the pressure at upper and lower channel outlet,
p(0.1, y, t) = 0 Pa, and a no-slip condition to all external fluid domain walls. Last, we set a quiescent
flow u(x, y, 0) = 0, p(x, y, t = 0) = 0 as the initial condition for the entire fluid domain.

Our discretization consists of linear Lagrange elements in the fluid and porous media domains, and
our mesh consists of O(2×104) domain elements and O(1×103) quad boundary elements along wetted
walls surfaces, corresponding to a total of O(6 × 104) degrees of freedom solved for.

Appendix C. Validity range of the flow model

To assess the quantitative accuracy of the model a comparison between the analytical and numerical flow
fields is used. Since the flow fields of the velocity component parallel to the channel, u, are very similar
in both the analytical and numerical calculations, only the vertical component of the velocity fields, v, is
further discussed. Figures 7(a) and 7(b) illustrate the analytically calculated |v| component of the flow
field where figure 7(c,d) shows the difference between the analytically and numerically obtained values
|vanalytical − vnumerical |. We show the results for two slopes of the bottom channel wall S = 0 and S = 0.5,
to be consistent with the parameters chosen in figure 2. In both cases, the differences are an order of
magnitude smaller than the values of the velocity, and most of the difference is concentrated in a small
region near the inlet between the channels, probably due to transition to Poiseuille flow. Accordingly,
for systems meeting the assumptions of the model, the analytical derivation shown in this work can be
used to obtain a good flow field approximation.

Next, let us address the range of values for which our analysis holds. Using scaling analysis we derive
meaningful non-dimensional parameters that allow us to assess the relation between competing effects:

(i) Parameter K = k/wL𝜀3
1 > 0 describes the ratio of the electrode permeability to an equivalent

permeability for flow in the upper channel. For K → 0 there is no flow of the electrolyte through
the bottom electrode and it therefore reduces the case to the classical design of a single channel
battery. For K > 1, most of the electrolyte flow downwards to the bottom channel. Both described
cases are not of interest in this study. For the asymptomatic scheme, we also require K � 1. In
figure 2 we therefore chose to present verification of the flow fields for K = 0.1, which was chosen
arbitrarily in the described range.

(ii) The parameter S describes the slope of the bottom channel bottom wall. To be able to calculate
analytically the pressure in the bottom channel, and the induced flow and pressure fields in the top
channel, we formed an asymptotic expansion with respect to this inclination parameter (described
in (3.22)) and therefore we require |S| � 1. On the other limit, for S � 1 the bottom channel
would act as an infinite drain, and mass transport from the bottom channel back to the top channel
would not occur. On the other hand, since h̃2 (x̃) = −H2(1 + Sx̃/L) (shown in figure 1 and
mentioned in § 2), and subsequently h2(x) = −H2(1 + Sx), for h2(x) > 0 → S > −1, or else the
system would be different, i.e. the bottom channel would have the same length of the top channel
L, the boundary condition of Pout at the bottom channel outlet would be irrelevant and all the
electrolyte that would reach the bottom channel would have to be pushed out to the top channel
eventually. The mentioned requirements define the range of relevant S values. Within this range,
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we chose arbitrarily the value of S = ±0.5 as the largest value which still fits the mentioned above
constraints, to show and investigate the effects of the slope on the flow fields.

To conclude, non-dimensional parameters allow us to express the range within which different physical
effects are dominant. We chose values within the relevant ranges of interest to verify our analytical model
by numerical solutions. We suggest that any other value within the range would yield similar results.
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