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ON POLYNOMIALS WITH RELATED LEVEL SETS

BY
M. ROSENFELD

If p is a polynomial in one real variable and p(x)=p(— x) then p has only even
powers of x and is thus a polynomial in x2. If p is a polynomial in » variables and
p(x1y ..y x)=p(¥1,...,¥n) When x3+-.-4+x2=p2+...+y2 then p is a poly-
nomial in g where g(xy, . .., X)) =x3+ .- +x2.

The problem considered in this note is this: For which polynomials ¢ is it true
that if p(x)=p(y) whenever g(x)=g(y) then p is a polynomial in ¢? Such poly-
nomials g will be said to satisfy (*). If the problem is posed for polynomials with
complex variables, the answer is simple: any polynomial in #» complex variables
satisfies (*) (Theorem 1). However the problem is not as simple for polynomials
with real variables. We give two classes of polynomials in one variable satisfying
(*), neither class containing the other: if ¢ is a polynomial of degree n and ¢ has a
level set containing » points, then ¢q satisfies (*) (Theorem 2). If g is a polynomial
such that the polynomial Q(x, y)=[g(x) —g(»)]/(x —y) isirreducible and gisnot 1:1,
then g satisfies (*) (Theorem 3). Of course, x2, being 1:1, doesn’t satisfy (*) and
more generally the composition of two polynomials g, o g, does not satisfy (*) if
qois 1:1 on the range of g, (of course g, not being a constant). Thus x®+3x%2+3x (=
(x+1)2—1) doesn’t satisfy (¥) yet x3+4x2+3x (=x(x+ 1)(x+3)) does satisfy (*¥).

THEOREM 1. Let q(z4,..., z,) be a polynomial in n complex variables. Let
p(z1, - . ., 2,) be another such that p is constant on the level sets of q. Then p is a
polynomial in q.

Proof. We may assume ¢ is not a constant. The function f from the range of ¢
to C (the complex plane) defined by f(g(zs, ..., z,)=p(z4, - . ., z,) is well defined
by hypothesis. We show that it is a polynomial. It is possible to specialize all but
one of the variables of ¢ so that g defines a nonconstant polynomial, say g,, in just
one variable. Its range is C. By the same specialization p defines a polynomial p,.
If gi(2)#0, then [ is differentiable at go(z) with derivative py(z)/qo(z). Since g, is
open and p, continuous, f=p, ° g5 ! is continuous on C and since fis analytic except
at a finite number of points, fis an entire function. Since fhas a pole at o0, (go(z)—o0
implies z — co implies po(z) — ), fis a polynomial.

THEOREM 2. Let q be a polynomial in one real variable and of degree n. If q has
some level set containing n points, then q satisfies (*).

Proof. The hypothesis guarantees that g has an infinite number of level sets with
n points. We show by induction on the degree of p that if p is constant on an in-
finite number of those level sets of g containing # points, then p is a polynomial in
g. It is clearly true if p has degree 0. Thus suppose the assertion is known to be true
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for any polynomial of degree less than the degree of p. Let S={rs, r3,..., r,} be a
level set of g on which p is constant. Then p— p(r;) is divisible by (x—r;) (x—rg)- - -
(x—r,) and therefore by g—q(ry). Thus p(x)—p(r)=pi(x) [g(x) —4q(r)], p. is of
lower degree than p, and p, is constant on all those level sets of ¢, other than S,
that p is constant on. By our inductive hypothesis p, is a polynomial in g and hence
S0 is p.

THEOREM 3. Let q be a polynomial in one real variable such that Q(x,y)=
[a(x)—q(»))/(x—y) is irreducible. If q is not 1:1 then q satisfies (*).

Proof. The hypotheses guarantee that S={y: g(x) —q(»)=0 has a solution other
than x=y} is infinite. Let p be a polynomial which is constant on an infinite number
of the level sets of ¢ which meet S. We show by induction on the degree of p that p
is a polynomial in g. It is clear if p has degree 0. Suppose p has degree k and that
if p, has degree less than k and is constant on an infinite number of level sets of g
meeting S, then p, is a polynomial in g. Let P(x, y)=[p(x)—p(3)]/(x—y). By an
application of the Euclidean algorithm one may, as follows, show that Q divides P.
(This argument is modeled after one appearing in [1, p. 291].) Define inductively
polynomials ry, s, Ry by:

ri(MP(x, ) = q1(x, ) O(x, ) + Ro(x, y)
"z(J") O(x, ») = qa(x, )Ra(x, y) + Ra(x, y)

rn-—l(y)Rn—l(xs y) = qn—l(xa y)Rn(xa y) +Rn+1(x9 y)

where d,, the degree of R,(x, y) considered as a polynomial in x over the field of
rational functions in y, becomes progressively smaller, d,,.,=0 and d,#0 (let
Q=R,). There are infinitely many numbers y such that g(x)=4(y) and p(x)=p(»)
have a common solution x(») not equal to y. Hence P(x(y), y) and Q(x(y), y) both
vanish for infinitely many y. This means R, ,,(») has an infinite number of zeros
and must be zero. Any irreducible factor of R,(x, y) which is of positive degree in
x must divide both Q(x, y) and P(x, y). Since Q is irreducible, this means Q divides
P. Thus p(x)—p(y)=R(x, y) [g(x)—q(»)] and letting p,(x)=R(x, 0), p(x)—p(0)
= p,(x)[g(x) —q(0)]. The degree of p, is less than k and p, is constant on those level
sets of ¢ on which p is constant (other than the level set containing 0) and therefore
p, is a polynomial in g and consequently p is a polynomial in q.

Let g(x)=(x2—1)(x2—4). Then g meets the hypotheses of Theorem 2, but not
Theorem 3, since g(x)—q(y) is divisible by x2—y? and so [g(x)—q(»)]/(x—y) is
divisible by x+y. Let g(x)=x*—x. Then g meets the hypotheses of Theorem 3 but
not Theorem 2. For a straightforward calculation shows that x®+ x2y+xy?+y°—1
is irreducible.
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