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Abstract. The interaction of rotation and turbulent convection gives rise to a latitude dependent 
turbulent energy transport. Energy conservation demands a slow meridional circulation in the solar 
outer convective zone. The transport of angular momentum by this circulation is balanced in a 
steady state by the turbulent viscous transport across an angular velocity gradient. Models are 
constructed which give equatorial acceleration as observed on the sun. 

Fundamental Equations 

In this paper we shall consider as simple a model as possible that still retains the 
fundamental points of the theory. We are, after all, interested primarily in understand­
ing the phenomenon of equatorial acceleration; the full quantitative treatment will 
be very complex and is postponed to a later date. We shall, for example, ignore the 
energy carried by radiation within the convective zone. This is satisfactory over most 
of it but obviously breaks down at the boundary where convective energy transport 
ceases and all the energy is carried by radiation. With this approximation we write the 
turbulent energy flux as 

F = feVS (1) 
where 

S = c ¥ l n ( i V ) (2) 

is the entropy, P the pressure and Q the density. We shall throughout ignore the effects 
of ionisation and take y = J-. The 'turbulent conduction' k varies from place to place, 
being a function both of depth and latitude. 

In the energy balance equation we neglect viscous dissipation; if we thought it 
worthwhile this effect could be included, but it would only alter the quantitative not 
the qualitative result, so we shall neglect it here. With the 'conductivity' k varying 
with latitude the divergence of the turbulent energy flux will not in general be zero 
and there will be a general circulation also carrying energy. Energy balance is then 
expressed by 

V-F + fPvVS = 0. (3) 

The convective zone is assumed to be a viscous layer so that in a steady state it 
satisfies the equation 

V2 VP 1 
V v curl v + — + V<P + R = 0 

2 Q Q 

where v is the total velocity, the sum of the circulation velocity vm and the rotation. 
<P is the gravitational potential and R the viscous force. 
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The turbulent viscous force in a convective layer is a notoriously difficult thing to 
estimate. We shall here assume that it has the same form as kinematic viscosity with 
the coefficient of viscosity r\ = gvj where g is the density, vt the mean turbulent velocity 
and / the mixing length. The azimuthal (0) component of the viscous force is then: 

1 8 ( , 8Q\ 1 8 ( , 8Q 
K, = - • 3- smO-[rAn — - 2 - - sin36n ~ 

v r J 8r\ 8r) r sin 6 86 \ 86 
In an axially symmetric situation this viscous force balances the convection of an­

gular momentum by the thermally driven circulation v, hence 

__Q 

r sinO 
vr -•- (Qr2 sin2 0) + - — (&r2 sin2 6) = R4 

8rK ' r 89 

If ve is known this equation determines Q(r, 9). 

EXAMPLE 

As an example we shall consider the case where 

k = k(r,9) = K0(r)(l + e(r) P2(cos0)) 

and e^ 1. Using a series expansion in e, gives 

k0 d f 2 dS0\ dk0 dS0 

r2 dr\ dr J dr dr 

for the zero-order state, and 

VPolQ = - V0O • 

If we further assume that v is always so small as to be negligible in the hydrostatic 
balance the terms of order e yield 

de /2/c0\ i\ de 
»,= —[—° P2= ~P2, 

r dr\3Pj Qdr 2 

since 2k\7>Q = r] in the simple mixing length theory. Hence the stream lines of v are 
given by S(r, G) = \ji(r) sin0P2' so that 

6 , 1 # , 
Vt = -2TVPi, »B = , Pi • 

r Q TQ dr 
If we now turn to the equation that determines Q we note that for r\ large the solution 

is uniform rotation Q = Q0 = constant. For large but finite r\ we write Q = Q0+a>i(r) 
+ oo2(r) P2 and find 

r dr \ dr I r dr\brdr 

The solution is obviously independent of the magnitude of r\, but does depend on 
ts variation in space. The solution depends on the interaction of rotation and con-
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vection through e(r). To simplify the numerical work we shall introduce variables. 

s = nho > y = OJ2IB0Q0, x = r/R, e = e0f 

so that 
1 d / 4 dy\ Wys , 2 d (s dfldx 

- 3 - X S = — f X — 
x d x \ dx/ x dx 

subject to the free surface boundary conditions dj>/dx = 0 at x=\, xh where the con­
vective zone extends from r=R to r = ri=xiR. 

PARTICULAR CASE 5 = 1 , d e / d x = 1 

This is a highly idealised case but is sufficient to give some insight into the nature of 
the solution, y satisfies the equation 

d2y 4dy lOy 2 

dx2 x dx x2 3 

which has the solution 

1 (1 - x f ) x 2 x?( l - x ( ) 
y = 18 (1 -xj) 45(1 -xj)x5 9 ' 

For X; = 0.8, an approximate solar model, this gives >>s= —0.06. So that applying our 
model to the sun gives 

aeq (i -co2/2ia0) 
— — 1 — 3OJ2I2 = 1 + e0 0.09 , 

that is an equatorial acceleration. 

FURTHER WORK 

The problem and solution given above is in very simplified form. Before any definite 
conclusion may be reached a detailed model including both radiative and convective 
energy transport must be calculated. This is being done by Dr. Durney and myself. 
Already one detailed solution has been obtained and we expect to publish details of 
this work in the future. 
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