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THETA METHOD DYNAMICS
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Abstract

Long-term solutions of the theta method applied to scalar nonlinear
differential equations are studied in this paper. In the case where
the equation has a stable steady state, lower bounds on the basin of
non-oscillatory, monotonic attraction for the theta method are de-
rived. Spurious period two solutions are then analysed. Under mild
assumptions, precise results are obtained concerning the generic na-
ture and stability of these solutions for small timesteps. Particular
problem classes are studied, and direct connections are made be-
tween the existence and stability of period two solutions and the
dynamics of the theta method. The analysis is extended to a wide
class of semi-discretized partial differential equations. Numerical
examples are given.

1. Introduction

When applied to a scalar autonomous ordinary differential equatior) (

u'=gw), u(0)=uog, 1)
the theta method takes the form
uj =uj 1+ At(1—0)g(uj—1) + At0g(u;). (2)

Hereu; is the numerical approximation io(j Ar) and At > 0 is a constant timestep. We
assume that the fixed paramefes chosen so that & 6 < 1. Forf # 0 the formula 2)

is implicit in the unknowry;, and hence, in general, a nonlinear equation solver must be
used at each step. On a constant coefficient linear problem, wlere= iu in equation

(1), we have

uj = R(LA1) ug,

where
1+(1-0)z
R(z) = ——— 3
€3] - ®)
is known as thetability functionof the method.

Note thatd = 0 in equation 2) gives Euler's method) = % gives the trapezoidal rule
andd = 1 gives the implicit or backward Euler method; see, for exampleHach of these
methods is widely used in the context of solving initial vatue:s and, more generally, for
timestepping in the solution of partial differential equatiorseS). The trapezoidal rule is
a second-order method, whereas flog % first order is achieved. In some applications,
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Theta method dynamics

a value such a8 = 0.55 is used as a trade-off between extended stability and seconc
order accuracy. Exponential fitting,[7], the technique whereb¥y is chosen so that the
numerical and exact solutions coincide wizgn) = iu for given values ok andAt, leads
to6 € [1/2, 1] for A < 0. Liniger [7] also shows that the optimality criterion
min max |eZ R(2)|
6 —oo<
leads to the valué ~ 0.878.

Our aim in this work is to investigate the long-term solutions admitted by the thet:
method. We focus on theasins of attractiorof fixed points and thetability for smallA¢
of spurious period two solutions; both topics have received little attention in the literature c
numerical dynamics. We then study problem classes wheiiefthence of the period two
solutions on the long-term dynamican be established rigorously. The related pap@}, [
which inspired this work, studied the theta method dynamics from a bifurcation viewpoin
For results about the long-term behaviour of general methods, we recommend,4, 5,

9]. The style of analysis in this work is related to that in [1].

The presentation is organised as follows. In Seciom give a lower bound on the basin
of attraction for fixed points of the theta method that correspond to stable fixed points of tf
opE (1). Section3 concerns period two solutions and their long-term influence. We show
that for smallAr these spurious solutions are generically unstablé f@r%, and stable for
0 > % We then focus on certain classesooE—positive superlinear, negative superlinear,
positive sublinear and negative sublinear. In these cases results about the dynamic:
equation (1) are readily found and we are able to quantify the corresponding behaviour
the theta method and make clear the negative effect of the period two solutions. In 8ectio
the basic period two stability result is extended to a class of semi-discrete partial different
equations. A summary and some conclusions are given in Séxtion

2. Basins of attraction for fixed points

It is clear thatu; = g is a solution to equation (2) if and only #(8) = 0. In other
words, theopke and the method have precisely the same fixed points. In the terminology ¢
[4, 5], the theta method is therefore said torbgular.

If g(B) = 0andg’(B) < 0, then the fixed point of equatiof(is linearly stable. By,
Theorem 3], the corresponding fixed point of the theta method will be stable wh€g)
lies in the linear stability intervdl : |R(z)| < 1}, where the stability functior is defined
in equation (3). Straightforward analysis shows that

%<z<0, for0< 0 < %
R2)| <1le 7 <0, for@:% 4)
z<00rz> 52, forg <6<

We see that foo > % if u(t) = B is stable for equationl) thenu; = g is stable for
equation (2), independently @fz. (This is a consequence of the A-stability property; see,
forexample, 8].) However, fo > % itis possible for the method to stabilize unstable fixed
points of theopk: if g’(B) > 0 andAr > 2/(g’'(B)(20 — 1)) then equation (2) has a stable
fixed point. Fow < % the method will not stabilize unstable fixed points, and will preserve
stable fixed points if the timestep is sufficiently small; namelvif< —2/((g'(8)(1—20)).

In terms of capturing the qualitative behaviour of the, it is also of interest to know

when the method will exhibit non-oscillatory, monotonic local convergence to a fixed point
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This requires the conditiofR(z)| < 1 to be replaced by & R(z) < 1. Itis easily shown
that

O0<R@ <l -1<(1-60)z<0.

Hence, ifg’(B) < 0 the method mimics the non-oscillitory local convergence ofdbe
when

A-0)Arlg"(B)] < 1. (5)

We note, however, that linear stability results are concerned with local attractivity. The
deal with the existence of non-empty basins of attraction. It is also of interest to hay
information about the actual basins of attraction of the fixed points. The next theorem sho
that if the condition (5) extends to an interval, then non-oscillatory, monotonic convergenc
is guaranteed throughout the interval.

Theorem 1. Suppose thag € C* with g(8) = 0 andg’(8) < 0 for someg < R. Let
I € R be an open, connected interval containifiguch thatg’ (1) < Ofor all u € I and

let gyp = SUp.¢; g/ (). If
(1—0)ggupAt < 1, (6)

then for anyug € I there exists a solution sequence of equaf®ynin which the iterates;
lie on the same side @f and approachs monotonically ag increases.

Proof. Note thatg has a unique rogé in 1.
Consider a general iteratg_, € I. If uj_y = g then, trivially,u; = g and the result
follows. Hence, suppose that_; # 8. We defingi;_; : R — R by

hj—1(u) :==u — AtOgu) —uj_1 — At(L —0)g(uj_1). @)
By construction, a zero df;_; provides a solution to equation (2). We have
hj—1(uj—1) = —Atg(uj—1) = —At (g(uj—1) — g(B)) = —Arg'¢j-1) (uj—1— B), (8)
whereg;_1 € I and we have used the mean-value theorem. Similarly,
hi1(B) =B —uj—1—At(L—0)guj—1) = (B —uj—1) (1+ Ar(1—6)g'(§j-1)). (9)
So, equations (8) and (9) give

hj—1(uj—1hj—1(B) = At (B — Mj—l)zg/(fj—l) (1+ At(1—-0)g'(¢j-1) <O,

where we have used the timestep restricti6)) Hence, there is a zero bf_, between
uj_1andp.
The result follows by using compactness and monotonicity. O

Note that the conditions in Theorefnguarantee that for anyg € I, u(t) — B
monotonically ag — oo. The result establishes a timestep constraint under which the
numerical method mimics this behaviour.

Whené = 1, equation (6) imposes no restriction on the timestep. Also, in this case th
result is equivalent to [1, Theorem 1] (witkr replaced byAx/a).

Example 1. We now illustrate Theorerh on the logisticope, whereg(u) = u(1 — u). In
this case8 = 1 is a stable fixed point. Singé(u) =1 — 2u < 0 foru > % we must have

I C (%, 00) and 1e I. To get the largest possible bound on the basin of non-oscillatory
monotonic attraction, we choogdo match the initial condition as follows.
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If % < ug < 1thenwe may také = (ug—e¢, 1+¢) forany smalk such thatig—e€ > %
Thenggup = 1+ 2¢ and equation®) becomesgl — 0)(1+ 2¢)At < 1. This condition will
be satisfied for some smaillif (1 —0)Ar < 1.
Forug > 1 we takel = (%, up) for which ggup = 2ug — 1. The constraint) is then
1—-06)At(2up—1) < 1.
Overall, we have the following constraint

1 for%<u0<1,

(1—0)Ar < 1 (10)
m forl < uo.
Theta=0.5 Theta = 0.75
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Figure 1: Boundaries for non-oscillatory, monotonic attraction: the dotted line is the com
puted boundary, while the dash-dotted line is the lower bound

The left- and right-hand pictures in Figuteshow the constraint defined by inequality
(10) in the(ug, At) plane as a dash-dot line in the cagses % ando = %, respectively.
The dotted line is the corresponding numerically computed constraint. More precisely, tl
dotted line was computed as follows. For each of a large numhey @dlues, a bisection
algorithm was used to compute the Iarg&(uo) for which non-oscillatory, monotonic
convergence was observed fokOAr < Z\t(uo). Non-oscillatory, monotonic convergence
was deemed to have occured if

uj €R, Wj_1—Pwj—p) =0, |uj—pl<luj_1—pBl, 1<j<10
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andu,p — Bl < 10-3. In solving the quadratic polynomial (2) far;, we took the root
closesttas;_;.

We see from Figurd that the constraintlQ) does indeed give a lower bound on the
region of convergence, and the bound is fairly sharp in this example, especially#op.

We have already observed frod) that the theta method with > % may stabilize fixed
points that are unstable for the underlyimge. The following result, which is proved in a
different context in [1], applies to the cag8e= 1 and shows how the stabilizing condition
g'(B)Ar > 2 can be generalized to give a lower bound on the basin of attraction.

Theorem 2. Suppose thag € C* with g(8) = 0 andg’(8) > 0 for someg < R. Let
I € R be an open, connected interval containifiguch thatg’(z) > Ofor all u € I and
letgi; :=inf,c; g'(x). Suppose that = 1 and

Atgle > 2. (12)
Thenifug, u1 € I, there exists a solution sequence of equafynin whichu; approaches
B asj increases, with successive components lying on opposite siges of

Proof. The result follows immediately from [1, Theorem 2]. O

3. Period two solutions and blow up

Although the theta method never generates spurious fixed points, itis known that spuric
period two solutions are admitted. It is demonstrated forciblylii] that such solutions,
whether stable or unstable, can have a dramatic impact on the long-term dynamics. In t
section we prove general results about the nature of period two solutions and, for cert:
problem classes, quantify precisely their effect on the dynamics.

If (v, w), with v # w, is a period two solution of (2), then

w=v+ At(l—-0)g(v) + Atfg(w),
v=w+ At(1—0)g(w) + AtOg(v).
These conditions are equivalent to

v+ At(l—20)g(v) = w, (12)
g() + g(w) =0. (13)

It follows immediately from equationl@) (and is shown in10]) that period two solutions
cannot exist fod = 3.
Writing the theta method ag = S(u;-1), we have

Sw) =u+ (1—0)Atg(u) +0Arg(Su)).
Hence, if 1—- 0 Atg’ (S(u)) # 0,
1+ @1 —-0)Atg (u)
1-0A1g (S(w))

A period two solution(v, w) is linearly stable if|S’(v)S'(w)| < 1 and linearly unstable
if 18(v)S’ (w)| > 1. Since, by definitiony = S(w) andw = S(v), it follows that these
conditons may be written as

IR@)R(zw)| <1 and [R(zy)R(zw)| > 1, (15)

S'(u) =

(14)

https://doi.org/10.1112/5146115700000019X Published online by Caghbridge University Press


https://doi.org/10.1112/S146115700000019X

Theta method dynamics

respectively, wherg, = Arg’(v) andz,, = Arg’(w) and the stability functiom is defined
in equation (3).

Example 2. For6 < % an example of a period two solution is given by

1
= —2ulul, =—) = —v. 16
8 = —2ulul, v=pae w=—u (16)
Similarly, for6 > 3
1
=2 = A W= 17
g(u) = 2uluf, v @ _nar YTV 17)
defines a period two solution. In both cases we find that
4 3-20|?
") =g¢'(w) = ——— d |R(zy)R = 18
g =gw) YN and [R(zv)R(zw)l '1+29 (18)

Hence, these period two solutions are linearly stable if and on@l;bif%.

This example has a number of features of interest: the period two solutions blow L
monotonically and in opposite directionsas — 0, the derivative valueg'(v) andg’(w)
blow up in the same direction ast — 0, and there is a change in stability éasrosses
%. In the analysis below we show that, with mild assumptiong othese features can be
shown to be generic.

In Lemma3 below, we show that genuine period two solutions must exhibit a precise
form of blow up asAt+ — 0. (We note that the fact tha|, |lw| — oo was proved by a
different approach in [10] and also follows from the general theory of Humphries [4].)

Lemma 3. Consider the theta method applied to the scalar (1), whereg is continuous.
Suppose that for sufficiently smallz, there is a period two solutiom = v(Ar) and
w = w(Ar) with v and w depending continuously upofis and with g(v) and g(w)

bounded away from zero for small. Then asAr — 0

o] > 00, [w|—>o00, [g()]— 00, [gw)|— oo.
Further, for smallAt,
vw <0, (1-20)vg(v) <0, (1-—20)wg(w) <O,
andv andw blow up monotonically.
Proof. Recall thatx andv must satisfy equations (12) and (13).
If vis bounded a&\r — 0 thenAzg(v) — 0, so thatw — v in equation (12). In this
case, from equation (13)(v) — 0. This contradicts the assumption tlgat) is bounded
away from zero for small\¢, and hence we must haye] — oo asAtr — 0. Similarly,

lw| — oo. Recalling thatg(v) and g(w) are bounded away from zero, it follows from

equation (13) thabw < 0 for smallA¢. Subsequently, using equation (12),
v + |w]
= asAt — 0.
g (V)] AfL—29] -

Similarly, |g(w)| — co asAt — 0.
From equation (12) we have, for smalt,

V2 + At(l—20)vg(v) =vw <0
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and so(1 — 20)vg(v) < 0. By symmetry(1 — 20)wg(w) < O.
Before proving monotonic blow up, we first show that

liminf [y =00 and liminf|lw| = oo, (19)

where lim inf(-) means lim\;_.o(info-ar <A+ (+)). FOr contradiction, suppose without loss
of generality that lim inflv| < co. Then, in equation (12),

liminf v — w|] < |1 — 20| liminf At|g(v)| = 0.

By continuity, liminf |g(v) —g(w)| = 0, and hence, using equatidr8], lim inf |g(v)| = 0.
This gives the required contradiction.

Finally, we show by contradiction thatand w blow up monotonically for smallz.
We assume without loss of generality that> co andw — —oo asAtr — 0. Suppose
thatv loses monotonicity at some small timest®p. Then, if, at any timeste;’ft < Ar*,
V(A1) = (A1), it foIIows from equation (12) thab (A1) > w(AtY). S|m|IarIy, if, at any
tlmestepAt < Ar*, w(A1) = w(Ar*), it follows from equation (12) that(A7) < v(Ar*).
This contradicts equations (19). O

We now use this result to make general conclusions about the stability of period two sol
tions. Note that the theorem below applies to the examij@ig(17) and to]0, Examples 2.1
and 2.2].

Theorem 4. Under the conditions of Lemn®& if g € C* then

1. foro < % the period two solution is unstable for smalt, and

2. for g > 3 the period two solution is stable for smak.

Proof. Consider first the case < % Appealing to Lemma, and assuming without loss
of generality thab — +o0 rather than-oo, we have

v — 00, g(v) —» —o0, w— —00, g(w) — oo.

Now consider a fixed, smallz > 0 with corresponding andw. PerturbAz to At —68t >
0, wheresr > 0 is small. This gives us + v andw + dw and, from the monotonicity
resultin Lemma3, we have §v >0 andsw < 0.

Note from equation (12) that

gv) -1
v—w  At(l—26)
always holds. Hence reducingy towards zero causes the left-hand side of equa@oi (
to become more negative; that is,
g +dv) - g)
v+dv—(w+dw) v—w

(20)

Hence, for sufficiently small perturbations,
(g(v) +8vg' (W)W —w) < gW)(v — w + v — dw),

and so

-1
Svg’' (W)(v —w) < gw)(Bv — dw) = (v — w)m(c‘iv —dw),
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where we have once more made use of equation (20). This simplifies to

S—w) . (1)

$ W) < Az (1_ 50

By symmetry, we find that
g (w) < ﬁ—l%) (1 - ;%) . (22)
Recall that the conditions in inequalities (15) determine stability, and note that
Atg'(v) + Arg'(w) + (1 — 20) Arg'(v) Arg(w)
[1—-0Atg’(V][1—O0Arg (w)]
It is straightforward to show that both the numerator and denominator are strictly positiv

if inequalities (21) and (22) hold. Hend&k (z,) R(zy)| > 1, as required.

Foro > % we may assume without loss of generality that

R(zy)R(zy) — 1=

v — 00, g(v) = o0, w — —00, g(w) »> —o0,

and a similar analysis to that above can be performed, resulting in the inequalities

, 1 Sw
s> G =) (1 - E) (23)
, 1 sv
_(1-—). 24
§W) > U1 Sw (24)
It can then be shown théR (z,) R(zy)| < 1, giving the required result. O

We now study four problem classes for which the existence of period two solutions ar
their effect on the long-term dynamics can be pinned down precisely.

Definitions
« Functiong is positive superlineaif ¢ € C* andg’(u) — +o0 as|u| — oo.
+ Functiong is negative superlineaif ¢ € C andg’ (1) — —oc as|u| — oo.

« Functiong is positive sublineaiif ¢ € C* and there exists a constabtsuch that
0 < g'(u) < D forall u.

« Functiong is negative sublineaif g € C1, there exists a constai? such that
—D < g'(u) < Oforalluandg(u*) = 0 for someu* € (—o0, c0). In this case:* is
unique, and we assume for convenience iffat 0.

The following results are easily established.
Results
Suppose that equation (1) has a unique solution fargaé R andr > 0.

* If g is positive superlinear then fawg| sufficiently large in equatioriy, |u(z)| — oo
monotonically as — oo.

« If g is negative superlinear then equati@ié dissipative in the sense that there exists
a constank such thafu(z)| decreases monotonically wittwhenevelu(z)| > K.

 If g is positive sublinear then whenevgiuo) # 0 in equation {), «(¢) is monotonic
and|u(t)| — oo ast — oo.

« If g is negative sublinear then all solutions to equatirsétisfyu (t) — 0ast — oo.
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Theoremb5 below shows that in the positive superlinear case, period two solutions exis
if and only if 6 > % and the monotonic asymptotic blow up property of the probl&jmg(
not captured whea # 0.

Theorem 5. Consider the theta method applied to the scalak (1), whereg is positive
superlinear.

1. Ifand only if6 > % do there exist for smalhr period two solution® = v(Ar) and
w = w(At) with v andw depending continuously upaxr and withg(v) and g(w)
bounded away from zero for small. (Note that Lemma& and Theorend apply to
these solutions.)

2. For 6 # 0 there does not exist a numerical solution such {fhat — oo asj — oo
and{uj}j'io is monotonic.

Proof. We begin by proving the ‘if’ implication of part. Suppose that > % We note
that sinceg is superlinearg (1) is monotonic for largeu|, say|u| > L. We may redefine
g(u) for lu| < L without affecting the validity of the proof, and hence we supposesthat
is monotonic for alk:.

It follows from equationsX2) and (3) thatv, w with v # w is a period two solution if

gw) — g(w) _ 1
v—w At(% -1
g() = —g(w). (26)

Now consider the straight line through the origin of (positive) sloﬂesl(%’ —1)). Since
g is superlinear, for small\r there must be points > 0 andw < 0 at which this line
intersectsg, so that equation (25) is satisfied. Now, singés monotonic, by adding a
constant to the straight-line function we may alter the intersection points until equ2éipn (
is satisfied. This establishes the existence of a period two solution for all amnalthe
solution is clearly continuous inr.

To prove the ‘only if” implication of parfl, suppose that < % Note that sgtg (1)) =
sgnu) for large|u|, say|u| > M. We may redefing(u) for [u| < M without affecting
the validity of the proof, and hence we suppose thatg@an) = sgn(u) for all u # 0. By
Lemma3, if (v, w) is a period two solution thesmw < 0, sothatg(v)—g(w))/(v—w) > 0O,
which contradicts equation (25).

To prove parRwe letp : R — R be defined by (1) = u — 0 Arg(u). The theta method
(2) may then be written

(25)

puj) — p(uj—1) = Atg(uj_1).
From the mean-value theorem,

P'(zj) (uj —uj-1) = Arg(uj-1),
wherez; lies between;_1 andu;. This means that

(1—0A18' () (uj — uj—1) = Atg(uj_1). (27)
If Ju;_1] and|u;| are sufficiently large and of the same sign, thea dArg’(zj) < 0in
equation (27), and the result follows. O

Part1 of Theorem5 shows that stable period two solutions are generi@dfor % on
positive superlinear blow up problems. The proof of @ashows that the solution sequence
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will increase monotonically until it reaches a point where AAtg’ (1) < 0, after which it
may be expected to approach the stable period two solution. We illustrate this behaviour
the case (1) = uIn(1 + |u|) with ug = 1 andAr = 0.1. The upper and lower pictures in
Figure2 show{uj}fgg for& = 2 andg = 1, respectively. For clarity, we plot the piecewise
linear interpolant through the data. The dashed lines show period two solutions that we
found by solving equations (12) and (13). In both cases, the numerical solution increas
monotonically until the condition & 6Arg’(u;) > 0 is first violated. From this point
onwards the solution approaches the stable period two level.

R

J

Figure 2: Theta method solutions with = % (upper) and® = 1 (lower) for g(u) =
uln(l+ |ul) with ug = 1 andAr = 0.1.

We remark that a related area—finite time blow up—has been studied by Sanz-Ser
and Verwer [8]; ford = 0, they tookg(u) = u™ (for m > 1) andug = 1. In this case,
solutions of problem (1) exist only for & ¢+ < 1/(m — 1), and it is shown that Euler’s
method mimics the correct behaviouras — 0.

Theoren®t below concerns the negative superlinear case. It shows that period two sol
tions exist if and only iH < % and in this parameter range the dissipativity property of the
problem (1) is not captured.
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Theorem 6. Consider the theta method applied to the scalar (1), whereg is negative
superlinear.

1. Ifand only if6 < % do there exist for smalhr period two solution® = v(Ar) and
w = w(Ar) with v andw depending continuously upakr and withg(v) and g(w)
bounded away from zero for smallr. (Note that Lemma& and Theorend apply to
these solutions.)

2. 1f6 < % then the theta method is not dissipative in the sense that there exists
K = K(At,0) suchthatforeverk > K thereisa paitug, u1 With |u1| > |uo| = K
that satisfies equatiof®).

Proof. Partl may be proved in a similar manner to pamf Theoremb.
To prove pari2, letd = % — ¢, wheree > 0. For a giverug, let hg(u) be defined by
equation (7), so that

A
ho(u) :=u — 7t (g(u) 4 g(uo)) + €At (g(u) — g(uo)) — uo.

Note thathg(u) — oo asu — oo andhg(u) — —oo asu — —oo.
Sinceg is negative superlinear, there ika= K (At, 6) such thatg is monotonic for
lu| > K and
|u|

lul > K = g'(u) <0, ugu) <0, |gu)l> A (28)

Now, consider anyi > K. If |g(w)| > |g(—u)| then it follows from inequalities38) that,
with ug = u,

A
ho(—7) = 27 — { (g(—T0) + (@) + € At (g(—T) — g(@)) > O.

Hence, there is a zero bf in the intervak—oo, —iz). Onthe other hand, jg ()| < |g(—u)]
then it follows from inequalities (28) that, withy = —i,

A
ho(i) = 207 — é (2(@) + g(=) + €AT () — g(—)) < 0.

Hence, there is a zero af in the interval(u, co).
Overall, we have shown that for eveky > K there exists a paitg, u1 with |u1| >
lug| = K that satisfies equation (2). O

By Theoremy, the period two solution identified in pdrof Theorent must be unstable.
Hence, it is reasonable to regard the unstable spurious solution as the cause of the r
dissipativity established in pa2t To illustrate this idea, we consider the case wh&g —
—u(u+1)(u—1). In this case a period two solution fr< % can be found analytically—
the positive branch/1 — 2/(At(1 — 20)) is plotted with the ‘o’ symbol in Figure3 for
0= 711. The dark and light regions in FiguBeshow the timesteps and initial conditions in
the range @ < Ar < 1 and 0< ug < 5, for which the theta method produced dissipative
and non-dissipative solutions, respectively. In these computations, a solution was regare
as non-dissipative if may ;<soluj| > 5000. We see that the unstable period two branch
clearly delimits the correct and incorrect asymptotic behaviour.

Lemma? below shows that the result in p&bf Theorem6 does not extend té > %
and in this sense the cut-off for a guaranteed lack of dissipativity coincides with the cut-o
for the existence of period two solutions.
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Theta = 0.25

Initial condition

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Timestep

Figure 3: Theta method with = 711 ong(u) = —u(u+1)(u—1). The dark region leads to
dissipative solutions, the light region leads to non-dissipative solutions, and ‘0’ marks tt
unstable period two branch.

Lemma 7. Suppose thag € C! is odd andg’(x) < O for all u. Then, forg > % any
solution sequencm,}]ﬁo produced by the theta method hiag| — 0 monotonically as
j — oo.

Proof. First, we note that;_; = 0= u; = 0.
Now, suppose that;_; > 0. If u; > 0 theng(x;) < 0 andg(x;—1) < 0, and hence
uj =uj_1+ At (Og(uj) + (11— G)g(uj_l)) <uj_1.

On the other hand, ifi; < O then suppose thak;| > |u;_1|. We then haveg(u;) >
—g(uj_1), and henc®g(u;) > —(1—0)g(u;—1). This gives

0>uj =uj_1+ At (0g(u;) + (L —0)g(uj—1)) > uj—1 > 0,

which is a contradiction.
We have thus shown that

uj—1 > 0= luj| < fuj—q].
Similarly, we can show that

uj—1 < 0= |M,| < |u/~_1|.
Hencelu;| < |u;_1| wheneven;_1 # 0.
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Since the sequenc{@jl};’io is bounded, it must have a convergent subsequence, witt
limit «*. It follows from equation?) thatg («*) = 0, and hence that' = 0. The montonoc-
ity result then shows that the full sequerife; ”?io must have the same limit. O

TheorenB below concerns the positive sublinear case. It shows that for 2mgtleriod
two solutions do not exist and monotonic asymptotic blow up is guaranteed.

Theorem 8. Consider the theta method applied to the scalar (1), whereg is positive
sublinear.
1. Period two solutions do not exist for smalk.

2. If g(ug) # Othen for sufficiently smalh¢, any numerical solution sequenfe }]?’10
is monotonic and satisfigs;| — oo as j — oo.

Proof. Note thatif(v, w) is a period two solution theth £ % and, applying the mean-value
theorem to equation (25),

§@ = 0 v (29)

wherez lies betweernw andv. Sinceg is sublinear, this cannot hold whe\r is sufficiently
small. This proves patft.

To prove par2 we follow the proofin Theorerf, part2, and note that £ 6 Azg’(z;) > 0
in equation (27) for smalhr. O

Theoremn® below concerns the negative sublinear case. It shows that for amalériod
two solutions do not exist, and convergence to a steady state is guaranteed.

Theorem 9. Consider the theta method applied to the scalar (1), whereg is negative
sublinear.
1. Period two solutions do not exist for smalk.
2. For sufficiently smallA¢, any numerical solution sequenfg }j?'io is monotonic and
satisfiess; — O0asj — oo.

Proof. Partl follows from equation (29).

To prove part2 we consider the nontrivial casg_; # 0. Sinceg is sublinear and
g(0) =0,

lg(w)| < Dlu|, forallu. (30)
Let
At < L (31)
S 2D’
From equations (27), (30) and (31) we have
Atg(uj-1) uj—1]

| = | —2 T <At )] < . 32
lj —uj—1] ‘1_ QAtg/(Zj) lg(uj—1)l 2 (32)

We deduce thai; andu;_1 always have the same sign. It follows from equatidn)(that
sgnMu; — uj—1) = sgn(g(u;j—1)) = —sgnu;—1). We conclude thafu;| < |u;_1], which
completes the proof. O
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4. Partial differential equations

We now generalize Theorerhto cover a class of semi-discretized partial differential
equations. More precisely, we consiadeE systems of the form

U = — 34 AU 4+ g(U) =: G(U), U(0) = Up € RY, (33)

wherea, Ax > 0, m € Z+, A € RV*N andg(U); = g(U;) with g : R — R. Such
systems arise, for example, when a method-of-lines approach is used to solve a perio
initial-value problem that combines reaction with convection or diffusion in one or more
space variables. Here, the spatial derivatives are discretized using finite differences or fir
elements, withAx representing the spatial mesh size.

The theta method applied to system (33) takes the form

Uj = Uj 14 At(1—6)G(U;_1) + At6G(U;).

We will suppose that the matrit in system 83) satisfiesdAe = 0, wheree € R" is the
vector with all components equal to 1. In this case, fixed points or periodic solutions c
the theta method on the scalar problelh¢orrespond to spatially uniform fixed points or
periodic solutions of the theta method on the system (33).

Theorem 10. Consider the theta method applied to the sys(88), whereAe = 0 and
g € C! . Consider a spatially uniform period two solutigne, we}, wherev = v(Ar)
andw = w(At) with v and w depending continuously upakr and withg(v) and g(w)
bounded away from zero for smal. Letc := aAr/Ax™.

1. Foro < % independently of, this period two solution is linearly unstable for small
At.

2. Foro > % this period two solution is linearly stable for small
Proof. Writing system (33) as U= G (U), the Jacobian of; at a pointze has the form

G'ue) = —x4m A+ g Wl (34)

Writing the theta method dd; = S(U;_1), the Jacobian of at a pointze has the form
S'(ue) = [I— GAtG’(S(ue))]_l [+ 1 —0)AtG (ue)],
and hence
S'(ve)S' (we) = [I — 0AIG' (we)] " [I + (1 — 0)A1G (ve)]
x [I — 641G we)] " [I + (L 6)A1G (we)] . (35)

If A has an eigenvaluethen, from equations3é) and (35)S’(ve)S’(we) has an eigen-
value

(1+ A -OAH(—5Zm A + &' () (14 A=) At(—xLmh + &' (w)))

, 36
(1=0A1(—x%m i + 8 (v)) (L - 0A1H(— 52wk + g/ (w))) (36)

which may be writterR (z,) R(Z,,), Wwhere
v =At(—x5 A+ ¢ (v) and Z, = Ar(— xS + g/ (w)). (37)

Foro < % inserting the eigenvalug = 0, and following the proof of Theorer
establishes instability for smalz.
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Foro > % we know from Theoremd that |R(Azg’(v))R(Arg' (w))| < 1 for small
At. Sincez, = Arg’(v) + O(c) andz, = Atg’ (w) + O(c), the required stability result
follows. O

It is of interest to contrast Theoref® with [1, Theorem 6]. In I] a class of explicit
Runge—Kutta methods is studied, and spurious fixed points (of period one) are consider
It is shown that although stable spurious solutions can exist for stadh a scalaopg,
these must necessarily be unstable as spatially uniform spurious fixed points of a meth
of-lines system (33). The theorem above, on the other hand, concerns a different class
time-stepping methods, and involves period two solutions. The result shows tha&fér
stable spurious behaviour is generic for smaall

The following example, to which Theoreh® applies, is sufficiently simple that we can
compute precise stability constraints.

Example 3. Consider the system (33) wit(u) from equations (16)—(17p = 1 and
1 -1
A= ) ) ) (38)
-1 1
This system arises when first-order upwind differences are used on the hyperbolic problc

uy +auy = g(u), withu(x, 0) given for 0< x < 1 and periodic boundary conditions. The
eigenvalues ofA are

xk=1—exp(%), 1<k <N. (39)

We note that for € C, writing z = x + iy,

2
1 2 1 1
(X—’—m) +y <m, f0r0<9<§,

IR(x +iy)|<1ls (40)

2
(x—i—ﬁ) +y2>m, for%<6<1.

Whené < % we considek = N in equations9). In this case, from equatioa), we
havez, =7, = T‘_l which does not lie in the region given by implicatiof0j. Hence,
the solution is is always unstable.

To study the casé > % we note from equationl@) thatz, andz,, in equations 7)
lie on the circle

2
(xv+e—gtg) +r2=c2 (41)
wherec := aAr/Ax is the Courant number. Comparing this with (40), we find that, as
increases, stability can be guaranteed until the circle (41) intersects the circle
2
1 2 1
(x + 1—29) Y= T

It follows that the period two solution is linearly stablerif< 5.

5. Summary and conclusions

The popularity of the theta method is due in large part to its simplicity—making it (a)
easy to program and (b) efficient on large problems. In this work we aim to show the
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the simple structure of the theta method also makes its long-term dynamics amenable t
detailed analysis.

Theoreml shows how the linear stability property can be extended to give informatior
about the set of initial conditions and timesteps for which correct, monotonic convergent
to steady state is achieved. Theordrooncerns spurious period two solutions for small
At and shows that the kenspeckle vatue- % forms a precise cut-off between instability
and stability. Theorerb applies whery in problem () is positive superlinear. In this case
the numerical method is simulating a monotonic blow up solution. The theorem shows th
period two solutions exist in, and only in, the stable case % These stable, oscillatory
solutions will clearly lead to a qualitatively incorrect approximation to monotonic blow
up, as illustrated in Figurg. In Theorens, g is taken to be negative superlinear, so that
problem (1) is dissipative. The theorem shows that period two solutions exist in, and on
in, the unstable < % regime, where dissipativity is then lost. Figudllustrates this
phenomenon. These results formalize and extend some of the commetisSeftion 1]
and the examples in [10, Section 2].

Loosely, on blow up problems a stable period two solution ensnares iterates into
spurious oscillatory mode, and on dissipative problems an unstable period two soluti
repels large initial data away from the correct attractor. In both cases the period two soluti
is negatively impacting the dynamics.

For the sublinear cases in TheoreB@d9, we see that for smallr period two solutions
do not exist, and the theta method behaves well.

Although the results in Sectidhare derived fobpks, in Sectiort we extended the basic
stability cut-off to the case of spatially uniform period two solutions on a general class c
semi-discretisednes.
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