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Abstract

We describe the design, implementation and use of a new kind of profiling tool that yields
valuable information about the memory use of lazy functional programs. The tool has two
parts: a modified functional language implementation which generates profiling information
during the execution of programs, and a separate program which converts this information to
graphical form. With the aid of profile graphs, one can make alterations to a functional
program which dramatically reduce its space consumption. We demonstrate this in the case of
a genuine example — the first to which the tool was applied - for which the results are strikingly
successful.

Capsule review

Profiling technology for lazy functional programs is long overdue. Runciman and Wakeling
have produced a practical and useful tool, notably because it works in the context of a fully-
fledged compiler. Their work highlights the lack of information we have about the dynamic
behaviour of lazy functional programs and the potential performance improvements which
may be possible given profiling tools to provide us with it. This paper opens up new areas of
practical research designing and building such tools.

Runciman and Wakeling have started this work with the design and implementation of a
heap profiling tool. They place considerable emphasis on the design of an appropriate graphical
presentation of the large quantity of profiling data produced. It is interesting that they profile
space and not time; ideally one would like both. An upper bound on execution time
improvements from improving space behaviour is the garbage collection and paging time.
However, they found that the task of fixing space bugs does sometimes lead to beneficial
algorithmic changes too.

We await with interest the continued development of practical profiling tools for lazy
functional programs.

1 Introduction

There was a time when it seemed that almost every paper on functional programming
began with the standard arguments about the semantic elegance and simplicity of
functional programming languages. We shall spare the reader another rendition of
them here. Suffice it to say that the extensional properties of a functional program
(what it computes as its result) are usually far easier to understand than those of
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the corresponding imperative otte. However, the intensional properties of a functional
program (how it computes its result) can often be much harder to understand than
those of an imperative one, especially in the presence of higher order functions and
lazy evaluation.

Several authors have observed this problem. In his thesis, Meira (1985) uses a
number of examples to show that it is hard to write efficient functional programs
because of the need to understand the underlying order of expression evaluation.
Wray (1986) also notes that lazy evaluation leads to uncertainty about time and space
behaviour, as does Stoye (1986), who laments the fact that so much research is
directed towards improving implementation performance, rather than towards
providing profiling facilities. All of this work is tidily summarized in a chapter of
Peyton Jones’ book (1987).

The problem of reasoning about the time and space complexity of functional
programs can be addressed in two different ways. These might be called the theoretical
and the practical approaches.

The theoretical approach attempts to develop a framework that allows the
programmer to reason about the intensional properties of the program using similar
algebraic methods to those used to reason about the extensional ones. There has been
some work in this area, notably by Wadler (1988), Bjerner and Holmstrém (1989) and
Sands (1991) concerning time behaviour. However, the problem is a hard one and
progress has so far been modest.

The practical approach involves the construction of profiling tools which gather
information when the program is executed. Such execution profiles assist the
programmer by revealing the underlying intensional properties of the program.
However, current functional language implementations provide only the most
rudimentary profiling facilities. A measure such as the number of reductions
performed does not correlate reliably with actual execution time (in seconds), because
some kinds of reduction are much slower than others — an extreme example of a slow
reduction is one that involves a garbage collection. Neither does a measure such as
the number of heap cells allocated correlate well with actual memory demand (in
bytes), because it ignores the pattern of allocations and the lifetimes of cells — on
account of these the peak memory demand of one program may vastly exceed that
of another which allocates the same number of cells.

This paper describes the implementation and use of a new tool for profiling the
space consumption of lazy functional programs. It is organized as follows. Section 2
describes heap profiling, a simple way for a functional language implementation to
furnish the programmer with information about how memory is being used. Heap
profiles are best understood when they are drawn as graphs, and section 3 is
concerned with some graphical design issues. Aspects of an LML implementation of
heap profiling are described in section 4. Section 5 presents an extended example,
demonstrating that the use of heap profiling can dramatically improve the space
behaviour of a lazy functional program. Section 6 discusses some issues arising from
the example, and section 7 describes how the tool was subsequently developed.
Section 8 reviews some closely related work, section 9 makes some suggestions for
future work, and section 10 concludes.
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2 Heap profiling

Before we can execute a functional program we must decide how it is to be
represented in the computer’s memory. A popular choice is as a graph, and in this case
the program is executed by reducing the graph to normal form, printing the result as
it becomes available. During reduction new graph nodes are produced and attached
to the graph; existing nodes are consumed and detached from it. In other words, the
execution of a functional program can be regarded as nothing more than the
production and consumption of pieces of graph.

Graph reduction is implemented by storing nodes in cells allocated from a large
area of memory called the heap. As new graph nodes are attached to the graph they
are stored in new cells. When the supply of new cells runs out, the implementation
may suspend reduction in order to determine the nodes that have become detached
from the graph, and to recover their cells for re-use. Other approaches, such as
reference counting, interleave this garbage collection process with graph reduction.

In current implementations, it is quite common to have several hundred kilobytes
or even a few megabytes of heap memory. When the evaluation of a particular
functional program needs such a large amount of memory, the programmer might
reasonably ask a few questions. For example, what sorts of nodes in the graph
occupy the most space for the longest time? Which functions were the (immediate)
cause of those nodes being introduced into the graph? Our heap profiling tool is
designed to supply precise answers to exactly such questions.

The first component of the tool is a modified compiler which attaches two rags to
every cell in the heap. These tags, which are intended only for use by the profiler,
identify:

e the function that produced the graph node
e the construction that the graph node represents.

All nodes have an identifiable producer, even if it is only the SYSTEM which is
assumed to produce the original graph and a few special nodes representing such
things as command-line arguments and open files. However, not all nodes have an
immediately identifiable construction because they represent closures which have yet
to be reduced to normal form. For closures we take the construction to be the name
of the function component, or UNKNOWN if we cannot easily determine what the
function is. We shall say more about cell tags in section 4.

When the programmer requests a heap profile, execution is suspended at specified
regular intervals and the profiler traverses the graph gathering information from each
cell. This information is appended to a log file and execution is resumed. When
execution is complete, the log file contains a profile of the graph nodes that were
stored in the heap at each interval.

3 Data graphics

In the introduction to his excellent book on the design of statistical graphics, Tufte
(1983) remarks:

10 FPR 3
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At their best, graphics are instruments for reasoning about quantitative
information. Often, the most effective way to describe, explore, and summarise
a set of numbers — even a very large set — is to look at pictures of these numbers.
Furthermore, of all methods for analysing and communicating statistical
information, well-designed data graphics are usually the simplest and at the
same time the most powerful.

The second component of our heap profiling tool is a program that generates a
graph from a heap profile. This program produces PostScript!, and so the graph may
be either displayed on a graphics workstation or printed on a laser-printer. An
example graph is shown in Fig. 1. It shows how the amount of heap storage occupied
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Fig. 1. An example graph.

by the program (measured in bytes) varies over the time that the program takes to run
(measured in seconds). Shaded bands are used to show how much of the total storage
is taken up by cells tagged with each of the identifiers mentioned in the key. Since it
is only possible to distinguish between a few shades of grey on the screen or the
printed page, the shaded bands and the entries in the key cycle through only a small
number of different tones. Any ambiguities are resolved by reading both in the same
order.

The title of the graph comes in three parts: the name of the program together with
the profiling options used, a figure representing the cost of the program as a product
of bytes and seconds, and the date on which the program was run. The program in

! PostScript is a trademark of Adobe Systems Incorporated.
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Fig. 1 was called ‘compress’; the option selected was ‘-p’, requesting a profile of the
nodes according to which function produced them. The cost of running this program
(calculated as the total area below the graph) is approximately 6-2 Mbs (megabyte-
seconds).

Graphical design is a complicated business, and we have made every effort to follow
Tufte’s guidelines in order to avoid producing ‘chartjunk’. Thus, our graphs attempt
to maximize the data-ink ratio, which is defined to be the proportion of the graph’s
ink devoted to the non-redundant display of data-information. In some places
though, our graphs still fall short of the ideal. One of Tufte’s guidelines suggests that
varying shades of grey should be used instead of cross-hatching. This prevents moiré
effects (in which the design of the graph interacts with the physiological tremor of the
eye) from producing a distracting appearance of vibration and movement. However,
the same guideline also suggests that specific areas of the graph should be labelled
with words, rather than being encoded with shades of grey via a key.

In addition to Tufte’s guidelines, our experience has led us to develop three rules
of our own. The first rule avoids cluttering up the key with identifiers that account
for only a small fraction of the total storage allocated. All those identifiers which,
when taken together, account for less than one percent of the total storage allocated
by the computation are ignored when drawing the graph. In practice this ‘ one percent
rule’ is remarkably effective. It removes trace elements from the graph, which then
focuses clearly on the occupants of large amounts of space. The second rule is that
every graph should occupy just one page. Originally, we tried graphs flowing over
several pages, but these proved to be rather unwieldy and unhelpful. Our final rule is a
consequence of the way in which the bands for each identifier are stacked on top of
each other. It turns out that the graphs are much easier to understand when the
smoothest bands (those representing series of values with the smallest standard
deviations) are at the bottom, with the rougher bands stacked on top. This ordering
also naturally focuses attention on the ‘troublemakers’ at the top of the graph.

4 Implementation

Our implementation is based on Augustsson (1987) and Johnsson’s (1987) LML
compiler. In what follows we shall assume some familiarity with this compiler and the
underlying idea of programmed graph reduction. For those without such familiarity,
Augustsson and Johnsson’s (1989) paper provides a good overview, and an excellent
tutorial description can be found in Peyton Jones’ (1987) book.

Our LML compiler has a modified lambda lifting pass and a new run-time system.
These are described in turn below.

4.1 Lambda lifting

In order to avoid the overhead of run-time environment management, the LML
compiler converts all functions into supercombinators prior to code generation. This
conversion involves binding the function’s free variables as extra formal parameters
and then passing values for these variables as extra actual parameters at every point

10-2
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where the function is called. Johnsson (1985) christened this conversion lambda
lifting, although the term supercombinator was invented by Hughes (1984), who
independently discovered a similar conversion.

As Peyton Jones (1987) notes, an unfortunate consequence of lambda lifting is that
the bodies of some functions get broken up into many small fragments which are then
turned into individual combinators. From the profiling perspective this causes
problems because names generated for these fragments may bear no relation to the
original function name and may therefore be meaningless to the programmer. In our
modified compiler the original function name appears as part of every new function
name formed by the compiler during lambda lifting. The profiling tool can then
recover and use the original function name.

4.2 The run-time system

In our implementation we distinguish between static and dynamic cell tags. Static cell
tags carry information determined at compile-time and dynamic cell tags carry
information determined at run-time. Extra fields are added to every cell to
accommodate these tags. For the static tags, space is reserved in each cell for a pointer
to some tag information maintained by the compiler. For each dynamic tag, space is
reserved for some tag information maintained by the run-time system. By way of
example, Fig. 2 shows how a list cell is tagged. The static tags identify the function

CONS

—+— head
—— tail

UNUSED i I

—+— “map” (producer)
—+— “(.)”  (construction)

Fig. 2. A tagged list cell.

that produced the graph node, and the construction that it represents. Space is also
reserved for one dynamic tag, but at the moment this is unused.

The garbage collector and other components of the run-time system must be
modified to cope with the larger tagged cells. Although straightforward, these
modifications are numerous and tedious to describe, and so we shall move on to
consider the additions that we have made to the run-time system to allow the graph
to be sampled at regular intervals.

Our first thought was to sample the graph after each garbage collection. This is easy
to implement because garbage collection provides a natural break in program
execution. In practice though, the resulting sample grain is often either too coarse (for
very short computations) or too fine (for very long ones). A much better idea is to
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sample the graph every ¢ seconds, where ¢ is specified when the program is run. Of
course, the graph had better be in good shape before it is traversed — there must be
no partially-updated nodes, for example — and so sampling is performed as follows.

To the standard LML run-time system we add a clock which ticks at 50 Hz. Each
tick generates a signal which is fielded by a signal handler. When the signal handler
detects that another sampler interval has elapsed, a flag is set. Code to test this flag
is planted by the compiler at the beginning of the code for each function. If the flag
is set then graph reduction is suspended, the graph is sampled, the flag is reset, and
reduction continues. Testing the flag at the start of each function ensures that when
the graph is sampled there are no partially-updated nodes, and that all of its roots are
on the pointer stack rather than in registers. The samples themselves are recorded in
an ordinary text file.

The space occupied by the cell tags is ignored during sampling, as are any clock
ticks that may occur. As a result, the profile graphs do not depict the additional space
and time that is required by the implementation to store and gather heap profiling
information.

One consequence of interval-based sampling is that no two runs of a program yield
identical sample files. Virtual system time is derived from real system time, and
variations can occur as a result. In our SUN-3 implementation, for example, the real
time clock interrupts at 50 Hz (100 Hz divided by 2 in software), and the
operating system charges whichever process happens to be running then with the full
50th of a second. Thus, context switching, interrupts and the phase relationship
between a process’ start time and the 100 Hz signal all combine to produce variations
between runs which are reflected in the sample file. In practice, they are not a
problem: invariably, one is interested in the overall behaviour of the program and
minor differences between runs do not matter.

5 An example

In this section we shall give an account of the very first series of experiments we
conducted with our heap profiling tool. As the subject of these experiments, we
deliberately chose a small (130 lines), but by no means trivial, program that:

(a) had been written long before we started work on profiling

(b) had been used quite satisfactorily by classes of students

(c) had already been ‘neatened up’ for presentation to functional programmers, and
so could be assumed to have no glaringly obvious defect.

This program, which we shall call clausify, takes as input a series of propositional
formulae, and yields as output their clausal form equivalents. The required
transformation of each proposition to a set of clauses can be specified by the
following rules.

The elim rule, which eliminates equivalence and implications:

p=q - (p=q9 A (@G=>Dp)
p=q - -pVgq.
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The negin rule, which makes negations the innermost connectives:

-mp > p
~(pVyqg - -pA-g
~(pAq@ > -pV g

The disin rule, which pushes disjunctions within conjunctions:

pV@Ar) - (pVveA(pVr)
PADVIr > (pvrA@Vr).

The split rule, which splits up conjuncts:

png - p
q.

The unicl rule, which forms a set of unique non-tautologous clauses:

gV ...V g,op V... Vop. o> ({4t P s Pd)-

A clause (gs, ps) is tautologous if (¢s N ps) + &.

The implementation of the above transformation rules in the clausify program uses
the following type definition for the abstract syntax of propositional formulae — note
the constructors Sym, Not, etc., which will shortly figure prominently in our
discussion:

type Prop = Sym Char

+ Not Prop
+ Con Prop Prop
+Dis Prop Prop
+Imp Prop Prop
+Eqv Prop Prop.
The heart of the program is a ‘pipeline’ composition of several functions, each
corresponding to one of the rules given above:
...unicl o
split o
disin o
negin o
elimo
parse....
Appendix A contains a full source listing of the clausify program, including
definitions of all these functions.
For the purposes of the profiling experiments we also needed to select a fairly

demanding proposition as a benchmark problem to be used as input for the program.
From inspection of the transformation rules, any proposition involving several
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equivalences can be expected to generate a substantial amount of work. Hence we
chose to use the following proposition as input:

(a=a=a) = (a=a=a) = (@=a=a).

Applying the transformation rules to this proposition eventually reduces it to the
single clause

({a}, @)

but the intermediate formulae involved are indeed extensive.

5.1 Version 0

The first heap profiles that we produced for the original clausify program were a real
surprise. Both the producer profile (Fig. 3) and the construction profile (Fig. 4) show

'_ claustf_y -p 12,253,889 bytes x seconds Thu Apr 30 10'[’?:51 1992 .
P
| 1,200k / i !
| y. |
| / j disin
|
: 1,000k P ' |
-
,/
o ‘ Mo |

! . negin

. reduce

. split

0.0 20 40 6.0 8.0 10.0 120 14.0 seconds

Fig. 3. A producer profile for version 0.

the amount of heap space in use steadily increasing, with a peak of around 1-:3 Mb in
use just before the program terminates. In a strict call-by-value language, we would
expect to see the graph grow and shrink as each successive intermediate form of the
proposition in turn is computed ‘eagerly’ in its entirety, and replaces its predecessor
— the peak memory demand occurring when the largest intermediate form is reached.
But in a non-strict call-by-need language, each intermediate form is constructed
‘lazily’, and so we would expect to see demand-driven pipelining.

(Our benchmark problem is a single proposition, whereas in general the program is
used to normalize a series of propositions supplied by the user. The profiles show a
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[ clausity -c 12,292,241 bytes x seconds Thu Apr 30 10:18:31 1992 |
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Fig. 4. A construction profile for version 0.

single tooth of what would be an irregular saw-blade pattern for a complete session
involving a variety of propositions.)

As with the famous Sherlock Holmes case involving the significant dog in the night,
the significance of which was that it did not bark, so with version 0 of clausify: Fig. 3
shows the functions elim, negin, disin and split’ (an auxiliary of split) producing
nodes which are steadily being added to the graph. The next stage in the pipeline,
unicl, should be consuming this structure and producing its clausal representation —
to be printed as soon as it becomes available. In fact, however, the program yields no
clausal output at all until the computation is almost over. From this observation, and
the information in the heap profiles, it seems that unicl accumulates its input in
memory until it has all been received, blocking the clausify ‘pipeline’. Only when the
entire input is available does unic/ finally consume it in the production of clausal
output. Examining the definition of unicl, the source of the blockage is soon apparent:

unicla =
let unicl px =
(if tautclause cp then x else insert cp x
where cp = clause p)
in
Sfoldr unicl [] a.

This formulation of unicl is tail-strict: it demands to see all of its input — representing
all of the conjuncts in a conjunctive proposition — before giving any output.
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5.2 Version 1

It is not hard to write a version of unicl that is not tail-strict:

unicl = filterset (not o tautclause) o map clause
Sfilterset = filterset []
filterset sp[] = []

filterset’ sp (x.xs) =
if not (mem x s) & p x then
x . filterset’ (x.5) p xs
else
filterset’ s p xs.
The new version of unic/ brings about an impressive factor of seven decrease in the

cost of running the benchmark problem — compare the 12-1 Mbs of version 0 in Fig. 4
with the 17 Mbs of version 1 in Fig. 5, for which the same scale has been requested.

| claus1fy_-£ 1,666,647 bytes x seconds Thu Apr 30 10:32:46 1992 .
200k
1,000k ()
| | I8
8OOk Lo
s
600k |
. Not
400k |
200k | ;
> | e
Ok L ﬂ
0.0 20 40 6.0 80 10.0 12.0 140 seconds

Fig. 5. A construction profile for version 1 to same scale as version 0.

This though, is really just the beginning. By default, the new heap profile is scaled to
fill the entire page, and this brings another problem to light (see Fig. 6). List
constructions (represented by (.) in LML) now dominate the computation. Once
again, this is a real surprise because the pipeline nature of clausify would lead one to
expect that list constructions would be very short-lived. In order to fix this new
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| clausify -c 1,666,647 bytes x seconds Thu Apr 30 10:32:46 1992 ||
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- Sym
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0.0 20 4.0 6.0 B0 10.0 120 140 seconds

Fig. 6. A page-scaled construction profile for version 1.

problem we first need to identify the producers of list constructions. Our heap
profiling tool makes this quite easy: we simply re-run the program specifying that the
only producers of interest are those of list constructions (see Fig. 7).

| clausify -p -¢{(.)} N 916,843 bytes x seconds Thu Apr 30 10:3?:[?1 1992

. insert

W e

| B

0.0 20 40 6.0 B.0 100 12.0 140 seconds

Fig. 7. A producer profile for version 1 (producers of (.) nodes only).
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From Fig. 7 we can see that only the insert and map functions produce significant
numbers of list constructions. The appearance of insert in this profile is as expected,
but the appearance of map is completely unexpected. Studying the program, we can
determine that the map in question must be the one used in the new definition of unicl
because the only other uses of map generate but one list node per input proposition
or per output clause. The curious thing is that the suspected instance of map generates
a list for exclusive and immediate consumption by filterset.

After checking our profiling tool very carefully, we were forced to conclude that the
standard LML compiler was at fault, and indeed this turned out to be the case. As
Jones (1992) explains, LML compilers of the vintage that we were working with are
subject to a space leak which causes cells to be unnecessarily preserved by the garbage
collector. The problem arises when tail-recursive functions, such as filterset’, are
compiled into G-machine code. Figure 8 (a) shows how the stack is arranged on entry

X8

nnnn
o
RN

r//)@\\\\
P ﬁ\ Xs
filterse{;q‘s ( :{Q‘x filterse{’q‘s ( :Ax

(2) (b)

Fig. 8. Stack rearrangement prior to a tail call of filterset'.

to filterset', and Fig. 8(b) shows how it is rearranged prior to a tail call using the
mysterious S rules hinted at by Johnsson (1987). Shuffling the arguments to the
original call of filterset’ like this means that the stack frame is re-used and that
recursion is effectively replaced by iteration. However, the root cell of the original
redex is not overwritten and so everything accessible from it is preserved by the
garbage collector. In the case of filterset’, list structure is unnecessarily preserved, and
this accounts for the large number of list constructions that appear so unexpectedly
in Fig. 6.

5.2 Version 2

The way to avoid space leaks when performing tail recursion is to ‘ blackhole’ the root
of the original redex by overwriting it with a HOLE node. We added a new
BLACKHOLE instruction — a hybrid of ALLOC and UPDATE — to our G-machine,
and modified our compiler to emit this instruction at the site of each tail call. The
result was a further factor of four reduction in the cost of running the benchmark
problem — from 1-7 Mbs in Fig. 6 to 0-4 Mbs in Fig. 9.

This new profile, with its striking twin peaks, prompts us to look for further
improvements. The peaks represent large numbers of Dis, Sym, Not and Con
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[ clausify -c 480,706 bytes x seconds Thu Apr 30 10:43:32 1992

o
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Fig. 9. A construction profile for version 2.

constructions — not too surprising, perhaps, since the entire program is about
reformulation of propositions. But wait a minute: why are there 15kb of Sym
constructions representing basic proposition symbols? After all, the benchmark
problem contains just nine ‘a’ symbols, so its representation contains just nine Sym
constructions. Since the transformation into clausal form does not involve
introducing any new symbols, and since any replication of existing symbols ought to
be achieved by sharing, we would certainly not expect the number of symbols to
increase. Yet it does, as the profile in Fig. 9 makes clear.

The producer of these extra symbols can be discovered by re-running the program
to get a profile just for the producers of Sym constructions (see Fig. 10). Now clearly
there must be something wrong with the elim function, and a glance at its definition
pinpoints the problem:

elim(Syms) = Syms

elim (Not p) = Not (elim p)

elim(Dispq) = Dis(elim p) (elim q)

elim(Conpq) = Con(elimp) (elim q)

elim(Imppq) = Dis(Not (elim p)) (elim q)
elim(Equpq) = Con{elim (Imp p q)) (elim (Imp q p)).

The first clause of this definition creates a new Sym construction, even though the
argument presents an existing identical construction which could be returned instead.
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Fig. 10. A producer profile for version 2 (producers of Sym constructions only).

5.4 Version 3

The desired effect can be expressed by rewriting the elim function, replacing the initial
Sym clause with a final default clause:

elim (Not p) = Not (elim p)

elim(Dispq) = Dis(elimp) (elim q)

elim(Conpgqg) = Con(elimp) (elimq)

elim(Imppq) = Dis(Not (elim p)) (elim q)
elim(Equpq) = Con(elim(Imp p q)) (elim (Imp q p))

elimp = p.

The bad news is that this change in the definition of elim makes no difference
whatsoever! The good news is that this failed experiment points out the real problem
and leads us to a solution.

There are two choices that can be made when updating the root cell of a redex with
a cell that was not constructed during the reduction. The first is to update the root
of the redex with a copy of the root of the result, and the second is to update with an
indirection to the result. The advantages of each choice are set out in Peyton Jones’
(1987) book. Since our improved definition of elim makes no difference, we can
conclude that our compiler’s G-machine must update by copying. Altering the update
mechanism to use indirections instead gives the heap profile shown in Fig. 11.
Although the overall profile looks very similar to that of the previous version, note
the change of scale. The number of Sym constructions has been greatly reduced, as
has the number of Dis, Not and Con constructions. This is because the disin and negin
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Fig. 11. A construction profile for version 3.

functions benefit from the use of indirections in exactly the same way that the elim
function does — their original definitions already had final clauses of the form
disin p = p and negin p = p. Notice that indirection nodes do rot appear in a heap
profile; they are, after all, only placeholders that will be elided at the next garbage
collection.

The problem now is clearly the large number of Dis constructions in the graph.
Once again, the producer of these constructions can be discovered by requesting a
profile for just the producers of Dis constructions (see Fig. 12). Recall that disin is
responsible for distributing disjunction over conjunction, assuming that equivalences
and implications have already been eliminated and that any negations apply to
elementary proposition symbols only. Here is the way it is defined in version 3:

disin (Disp (Conqr)) = Con (disin (Dis p q)) (disin (Dis p r))
disin (Dis (Con p q)r) Con (disin (Dis p r)) (disin (Dis q r))

disin(Dispq) =
letdp = disinpin
letdg = disingin
if conjunct dp | conjunct dq then
disin (Dis dp dg)
else
(Dis dp dq)
disin (Conpq) = Con (disin p) (disin q)
disinp = p.
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Fig. 12. A producer profile for version 3 (producers of Dis constructions only).

The potential for exponential growth is evident in the first two clauses each of which
‘doubles’ a disjunction. Looking at the right hand sides in the full sequence of
defining clauses, there are no less than six occurrences of Dis constructions in all. An
opportunity for improvement presents itself in a notable feature common to all but
the last of these: they appear as arguments to recursive disin calls.

5.5 Version 4

We therefore introduce an auxiliary disin’ corresponding to this composition,
replacing explicit Dis constructions with an implicit relationship of disjunction
between disin’ arguments. Further, we note that in one of the original occurrences, the
arguments are in conjunctive normal form. In order that this can be exploited by
disin’ we make it a uniform assumption in the revised definition:

disin (Conpq) = Con (disin p) (disin q)

disin (Disp q) = disin’ (disin p) (disin q)
disinp = p

disi" (Conpq)r = Con (disin’ p r) (disin’ qr)
disin’ p(Congqr) = Con(disin’ pq)(disin’ pr)
disiwpq = Dispagq.

The outcome of this reformulation is very satisfying. Figure 13 shows that the space
needed for the maximum population of Dis constructions has been reduced to a mere
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Fig. 13. A construction profile for version 4.

10 % of its former size, from 30 kb to 3 kb. In addition, the new formulation of disin
significantly decreases the overall run-time. Although the aim was only to reduce the

volume of Dis constructions, the pursuit of this aim has also led to an improved
algorithm.

However, the corresponding producer profile suggests that there is still further
room for improvement (see Fig. 14). The worrying thing here is that throughout the
computation, the graph contains an almost constant number of nodes produced by
the splitat function. In the clausify program, splitat is used only to split the list of
characters representing a propositional formula into lines prior to parsing. Thus, we
would not expect nodes produced by splitat to be retained in the graph once the
benchmark problem has been parsed.

At first glance, the definition of splitat in the LML standard library seems harmless

enough:
splitat c[] = (L[]
splitat ¢ (a.b) =

ifa = cthen
()]
else
let(x,y) = splitatcbin(a.x,y).

However, we know from Hughes’ (1984) thesis that all possible definitions of splitat
are subject to a space leak if an ordinary sequential evaluator? is used. The problem

2 Hughes defines a sequential evaluator as one that, once it has begun to reduce an expression e, will only
reduce e and other expressions that e demands until e has been completely reduced.
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Fig. 14. A producer profile for version 4.

is easily explained. In LML, and in most other lazy functional languages, a pattern
on the left-hand side of a local definition is matched /azily. In other words,

let(p,g) = rinspgqg

is treated as being equivalent to

lett = rins(fstt)(sndi)

where ¢ is a new variable and fst and snd are the usual selection operations on pairs.
One consequence of this is that the garbage collector will preserve the storage for p
and q until both have been demanded by the computation. This is because whichever
of p and g is discarded first, the other will cause its storage to remain accessible via
a pending selection operation. In the clausify program, this space leak causes the
entire input preceding the first newline to be unnecessarily preserved until the end of
the computation.

5.6 Version 5

Fortunately, the problem with splitat is easily solved. The idea, described by Wadler
(1987) is to modify the garbage collector to perform reductions of the form shown in
Fig. 15, whenever it encounters an application of either a fs¢ or a snd selector to a
fully-evaluated argument. Modifying our G-machine’s garbage collector in this way
further reduces the cost of running the clausify program (see Fig. 16).
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Fig. 15. Reductions performed by garbage collector.
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Fig. 16. A producer profile for version 5.

6 Discussion

Of course, the profile of version 5 suggests where to look for still further
improvements. Perhaps the space cost of the disin’ function could be reduced —
although it is not immediately clear how this might be done. For now, let us be
content with what we have achieved: we have reduced the peak memory demand by
more than two orders of magnitude, from the original 1-3 Mb to the present 7 kb.
Moreover, saving space has proved to be an extremely effective way of saving time,
as version 5 is almost twice as fast as version (. The ratio of their overall costs is no
less than 350:1.

6.1 Summary and assessment of the method

In the course of working on the clausify program, we established a basic method of
using the profiling tool, which can be summarized as repeated application of the
following procedure:

1. Obtain a complete construction profile (- option) and a complete producer profile
(-p option).
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2. Identify the major users of memory (constructions, producers or both) and obtain
a product profile restricted to these.

3. Identify the producer/construction combinations demanding the largest share of
memory.

4. Investigate the definitions of the relevant producers in this light. Try to reformulate
at least one of these definitions in a way that reduces the demand for one or more
of the critical constructions.

The iteration continues (or backtracks to consider alternatives) until a version of the
program is obtained for which the memory peaks either fall within a target figure or
else seem unavoidable given the extensional specification of the program.

Clausify was the first program to which we applied this method, but it has since
been applied to many others. In our experience, steps 1, 2 and 3 above do successfully
isolate critical definitions for investigation. One measure of the value of such
information is the degree to which it is surprising: by this yardstick we have found
producer-construction pairings delivered by our profiler extremely valuable on
several occasions!

The real pay-off depends on step 4. The most striking thing is that typical gains
from a successful reformulation are not just small percentages but factors of 2, 3 or
even more — it does not take many such factors, multiplied together, to yield an
overall factor in the hundreds. But how easy is it to determine the appropriate
reformulation, even once the key definitions and constructions are known? Here our
experience has varied. In some cases, such as the Sym-copying definition of elim, the
problem is immediately apparent and a suitable reformulation is the work of a
moment; but in others, such as the production of Dis constructions by disin, the
appropriate reformulation is much less obvious and its effectiveness is less certain in
advance of further tests.

Inevitably, it becomes harder and harder to find significant space-savings as the
refinement process goes on. So, when should one stop? Currently we have no easy
way to establish whether some observed part of the memory demands of a program
is ‘unavoidable’ or not — at the time of writing this is still an open question for the
remaining plateau of version 5. However, if space consumption can be made
‘acceptably low’ before the reformulation problem becomes intractable, the difficulty
of distinguishing between avoidable and unavoidable space demands might not
matter too much in practice: in comparison with an original figure of 1-3 megabytes,
a difference of a few kilobytes is not great.

6.2 Implementation and|or application profiling

Profiling experiments of the kind we have described inevitably examine a particular
combination of at least four elements:

1. An application program.

2. A compiler (and run-time system).
3. A set of input data.

4. A target machine.

https://doi.org/10.1017/50956796800000708 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000708

238 Colin Runciman and David Wakeling

Although space-efficient programming in a lazy functional language can present
subtle difficulties whatever the implementation, several years’ emphasis on com-
pilation techniques to improve the speed of functional computation has resulted in
a comparative disregard for even quite major space problems. So the emergence from
the “clausify in LML’ profiling exercise of both program and compiler problems was
no surprise — though we never imagined at the outset quite how much mileage we
would get from this particular combination of a well-tried program and a well-tried
compiler.

We hope that profiling tools such as ours will serve to increase ‘space awareness’
among compiler writers, so that space problems attributable to the implementation
will decrease. This should correspondingly enhance the value of profiling as a tool for
isolating and fixing space problems in programs.

So far as dependence on input data is concerned, it is true that our benchmark
problem involving nested equivalence chains over a single propositional symbol
makes extreme demands on the clausify program. The space savings are less dramatic
when the input comprises a more typical mixture of propositions (for example, the
exercises from chapter 1 of Manna and Waldinger (1985)), but they are still impressive
— between one and two orders of magnitude rather than between two and three.

7 Subsequent developments

Following our success with clausify, we extended the profiler to make it more suitable
for dealing with large programs. The producers were extended to whole modules or
groups of modules, and the constructions were extended to whole types. At the same
time, we reduced the cost of profiling by performing a garbage collection while
sampling the graph. This idea, suggested to us by Peyton Jones, makes heap profiling
intrusive because the extra sampling garbage collections alter the program’s normal
pattern of garbage collection. However, we consider it to be a sensible compromise
between virtue and efficiency. We have reported elsewhere (Runciman and Wakeling,
1992) the successful application of this extended profiler to the LML compiler,
including the discovery and correction of a long-standing space fault.

Our profiling system has subsequently been distributed to a large number of other
users (and it is now available as part of the LML/HBC compiler distribution from
Chalmers University). To give just two examples of various successful applications
known to us, Hughes has located and fixed a space fault in his CDS loop-detecting
interpreter (Hughes, 1992), cutting the maximum heap size when interpreting a simple
but highly recursive program from 1-8 Mb to 30 kb. He found that heap profiling was
essential, and even then the job was not easy. Kozato (1992) used heap profiling to
guide the reformulation of a lazy image processing system, so that the final version
runs in constant space regardless of the size of the image.

8 Related work
Not much work seems to have been done on providing profiling facilities for lazy

functional languages.
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We have already noted that other heap attributes, apart from statically determined
properties of individual cells, may be of interest to functional programmers. Hartel
and Veen (1988), for example, studied the life-times of cells and the lengths of
application chains. Indeed, one could profile all kinds of structural properties of the
heap, but it is not obvious which properties to choose or what structural information
would best serve the aim of reducing computational costs.

In a previous paper (Runciman and Wakeling, 1990), we made a proposal for
profiling the storage consumption of lazy functional programs. Essentially, our idea
was to construct an interpretive profiler based on source level graph reduction.
During the computation this interpreter would collect information about the
production and consumption of every node as the program graph was reduced. This
information could then be presented to the programmer in the form of a producer-
consumer matrix. By studying the matrix, we hoped that the programmer could see
how to modify the program so as to reduce either the maximum or the average size
of the graph.

Sansom (1992) suggests a scheme somewhat different from our own, the central
idea being that the programmer should nominate cost centres to which the cost of
evaluating selected expressions should be attributed. Cost centres are attached to
expressions through applications of the primitive function setCostCentre. The only
costs of evaluating an expression that are not attributed to its cost centre are the cost
of evaluating any free variables, and the cost of evaluating any subexpressions for
which another cost centre has been nominated. Sansom describes a possible
implementation of his cost centre model based on Peyton Jones’ (1992) Spineless
Tagless G-machine. The machine is modified by adding a new CurrentCostCentre
register, and by arranging for every cell in the heap to be tagged with the value of this
register when it is allocated. The setCostCentre primitive saves the value of the
CurrentCostCentre register and sets it to a new value. When evaluation of the
expression to which the new cost centre is attached is complete, the previous value of
the CurrentCostRegister is restored. Heap profiling can then be accomplished by
using the cost centre tag attached to each cell and a sampling scheme similar to the
one that we have described. Sansom’s work is still in the early stages of development,
and it will be interesting to see how his approach compares in practice with our own.

9 Future work

In the clausify example, to diagnose the first problem with unic/ we had to use our
knowledge of the pipeline structure of the program, and also an observation about
its output behaviour. This gave us some information about graph consumption to put
alongside the production profile. Our earlier view that consumer profiling could also
be of value is thus confirmed (Runciman and Wakeling, 1990). Consumer profiling
might also help with another problem we encountered: when map (say) produces an
unexpectedly large number of nodes, how do we know which particular instance of
map is responsible? It was somewhat fortuitous that when this problem arose, it was
easy to rule out all but one. Currently, we have no way to distinguish between nodes
that were produced by different instances of a given function: the best that we can do
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is to rename a suspect instance and generate an appropriately renamed copy of its
code. Consumer profiling would also have been useful to Hughes in the analysis of
his interpreter: once he had construction and producer information about an
anomalously large heap component, his main problem was finding out why this
component was being retained.

The basic sampling scheme could be further improved by replacing the test of the
sample flag at the start of each function with a sampling interrupt similar to the timer
interrupt used in the implementation of SML/NJ (Appel, 1992). When a sample is
due, the signal handler simply sets the heap limit register to zero. The next attempt
to allocate space from the heap is then certain to call the garbage collector. The
garbage collector examines the heap limit register and decides whether to perform an
ordinary garbage collection or one with sampling.

One might imagine using more sophisticated graphical presentation techniques
which take advantage of the rapidly falling cost of colour workstations and colour
laser printers. However, we believe that the effort devoted to producing colour output
would be largely wasted. In his book, Tufte (1983) explains that the use of colour
often results in ‘graphical puzzles’ which are actually harder to understand than if
shades of grey had been used instead. Van der Poel’s motto puts it another way:

What cannot be made clear by white chalk alone cannot be made clear by
coloured chalk either.

So, although we shall continue to improve our graphs with reference to Tufte’s
guidelines, they will still be printed with shades of grey.

Our current methods of examining the graphical profiles, and interpreting them in
the light of the way functions are defined, are entirely ad hoc. However, certain
characteristic shapes recur in heap strata, and with experience we hope that it will be
possible to give a systematic account of the most frequently occurring phenomena
and their most likely causes, leading to improved techniques for reformulation. We
also hope that the investigation of profile graphs will yield fresh insights of a more
general nature, that might be useful in an eventual theory of lazy evaluation costs.

10 Summary and conclusions

We have described the design and implementation of a tool for profiling the space
consumption of lazy functional programs. Heap profiling gathers information about
the live heap contents throughout a computation and presents it in a graphical,
source-related form. It can be used to bring about dramatic reductions in the space
consumption of functional computations, as illustrated by the clausify example in this
paper, and subsequently confirmed in a wide variety of other applications.

Our experience suggests that space faults are not rare but common. Full remedies
sometimes require not only modifications to the source program, but also changes to
the implementation. But the information supplied by heap profiling is equally
valuable in either case.
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Appendix A: The clausify program

This appendix contains the text of the original clausify program before modification.
let rec
—— abstract syntax for propositional formulae
type Formula = Sym Char
Not Formula
Dis Formula Formula
Con Formula Formula

+ + + +

Imp Formula Formula
+ Equ Formula Formula
—— entries on stack used by proposition parser
and type StackFrame = Ast Formula+ Lex Char

—— separate positive and negative literals, eliminating duplicates

and clause p =

let rec clause’ (Dis p q) x = clause’ p (clause’ q x)
| clause’ (Sym s) (c,a) = (insertsc,a)
| clause’ (Not (Syms)) (c,a) = (c, insertsa)

in

clause’ p ({1, [

— — the pipeline from propositional formulae to printed clauses

and clauses = concat o
map disp o
unicl o

split o
disin o
negin o
elimo

parse
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—— the main program: simple line-based interaction
and clausify = concat (interleave (repeat *“ prop> )

(map clauses (lines input)))

— — concatenation of a list of lists
and concat = foldr (@) ][]
— — test for conjunctive proposition
and conjunct (Conpq) = true
| conjunctp = false
— — shift disjunction within conjunction
and disin (Dis p (Con qr)) = Con (disin (Dis p q)) (disin (Dis p r))
|| disin(Dis(Conp q)ry = Con (disin (Dis p r)) (disin (Dis q r))
| disin(Dispgq)=
letdp = disinpin
letdg = disingin
if conjunct dp | conjunct dg then

disin (Dis dp dq)
else

(Dis dp dq)
| disin(Conpq) = Con (disin p) (disin q)
| disinhp = p
— — format pair of lists of propositional symbols as clausal axiom
and disp (I,r) = interleave I spaces @ *“ < =" @ interleave spacesr @ “\n”

—— eliminate connectives other than not, disjunction and conjunction

and elim (Symp) = Syms

| elim(Notp) = Not (elim p)

| elim(Dispg) = Dis(elimp) (elim q)

| elim(Conpq) = Con/(elimp) (elimgq)

| elim{mppq) = Dis(Not (elimp)) (elim q)

| elim(Equpq) = Con(elim(Imp p q)) (elim (Imp q p))
— — reduce familiarly renamed

and foldr = reduce

— — insertion of an item into an ordered list

and insert x[] = [x]

| insertx(pas(y.ys)) =
ifx < ythenx.p
else if x > y then y . insert x ys
else p
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—— alternation of items from two lists until one is exhausted
and interleave (x.xs) ys = Xx.interleave ys xs

| interleavel] - = []

— — list of lines from given text
and lines[] = []
| linesxs = let(l,r) = splitat’\n’ xsinl. linesr

— — shift negation to innermost positions

and negin (Not (Not p)) = neginp

| negin (Not(Conpq)) = Dis(negin (Not p)) (negin (Not q))
| negin (Not (Dispq)) = Con (negin (Not p)) (negin (Not q))
| negin(Dispq) = Dis(negin p) (negin q)

| negin(Conpq) = Con(negin p) (negin q)

[ neginp = p

— — the priorities of symbols during parsing

and opri’(° = 0

| opri’=" 1

| opri’>’ = 2

I opri’|’ = 3

| opri’&’> = 4

| opri’~’ = 5§

—— parsing a propositional formula

and parset = let[Astf] = parse’ t[]inf
—— parsing auxiliary — extra argument is stack
and parse’[1s = redstars
| parse’ (’.t)s = parse’ts
| parse CC.t)s = parse’ t(Lex’(.s)
| parse C).0)s =

let(x.Lex’(.s’) = redstarsin

parse’ t(x.s’)
|  parse’ (c.t)s =

if islower c then parse’ t (Ast (Sym ¢) . s)

else if spri s > opri ¢ then parse’ (c.t) (red s)

else parse’ t (Lex c . s)

— — reduction of the parse stack
and red (Astp.Lex’ =" .Astq.s) = Ast(Equqp).s
| red(Astp.Lex’ >’ .Astqg.s) = Ast(Impqgp).s
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| red(Astp.Lex’]’.Astq.s) = Ast(Disqp).s
| red(Astp.Lex’&’ .Astq.s) = Ast(Congp).s
| red(Astp.Lex’~’.s) = Ast(Notp).s

— — iterative reduction of the parse stack

and redstar = while ((~ =) 0 o spri) red

— — infinite list of identical items

and repeat x = letrecxs = x.xsinxs
— — an infinite list of spaces

and spaces = repeat’’

—— split conjunctive proposition into a list of conjuncts

and splitp =

let rec split (Conpqg)a = split p (split’ q a)

| splitpa = p.a
in
split p[]

— — priority of the parse stack
and spri (Astx . Lexc.s) = opric
| spris = 0

—— does any symbol appear in both consequent and antecedent of clause

and tautclause (c,a) = intersectca~ = []

— — form set of unique non-tautolous clauses given list of conjuncts
and unicla =
letunicl px =

(if tautclause cp then x else insert cp x

where cp = clause p)
in
foldr unicl [] a
—— higher order functional counterpart to the ‘while loop’
and whilep fx = if p x then while p f (f x) else x
in
clausify.
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