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ON [-ADIC ITERATED INTEGRALS, II

FUNCTIONAL EQUATIONS AND [-ADIC
POLYLOGARITHMS

ZDZISLAW WOJTKOWIAK

Abstract. We continue to study [l-adic iterated integrals introduced in the
first part. We shall show that the l-adic iterated integrals satisfy essentially the
same functional equations as the classical complex iterated integrals. Next we
are studying l-adic analogs of classical polylogarithms.

§9. Introduction to Part II

9.1. The classical complex iterated integrals satisfy functional equa-
tions (see [W1]). We shall show that [-adic iterated integrals satisfy the
same functional equations as the classical complex iterated integrals.

First we introduce the following notation which we shall use in this
paper. Let 7 (resp. L) be a group (resp. a Lie algebra). We denote by
{T*7}r>1 (vesp. {T*L}x>1) the lower central series of the group 7 (resp.
the Lie algebra L).

We set

grim =Tkr/T* 1 (resp. ¢ri L .= *L/IFL).

Before we formulate our main result we make a following remark. Let

Y =Py \{b1,...,bpms1}. Then

[e.o]

P ortm(¥(C)z) 2 Q

k=1

is canonically isomorphic to a free Lie algebra over Q on m generators
Yi,...,Y,,, which we denote by Lie(Yy,...,Y,,). Hence any linear form ¢
on grk m (Y(C);x) ® Q corresponds to a linear form ¢ on Lie(Yy, ..., Ys,).
Now we formulate our main result concerning functional equations.
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THEOREM D. Let X =Ph\{a1,...,ant1} and let Y =P\ {b1,...,
bmi1}. Let zov € X(K). Let f; : X — Y be a smooth morphism and
let ¢; € Lie(Y1,...,Y)® be a linear form of degree q defined over Q for
i1=1,...,N. Let ny,...,ny be rational numbers. If

N
D nigio(fi)e =0
i=1

in Hom (gri m (X(C);v); Q), where
(fi)s © grim(X(C)yv) — grim(Y(C); fi(v))

is the map induced by f; on fundamental groups fori =1,..., N, then we
have a functional equation

N
S nil#(fil2), fi(v)) = 0.
=1

Next we generalize well known formulas

b a c b c
/w—l—/w—O and /w—/w—l—/w
a b a a b

from the elementary calculus (w is a one-form). We show the following
result.

THEOREM E. Let z,y,v € X(K) and let ¢ € Lie(X1,...,X,)°. Then
we have

LP(z,v) + LP(v,2) =0
and

L (z,v) = L (z,y) + LP(y,v).

Let wy, wy be one-forms. The classical complex iterated integrals satisfy
the following relations written here for two one-forms (see [Ch]).

i) f7w17w2+f7w2,m = fvwl-fwa,
ii) fa,@wlv‘*@ = fawlaw2+fawl‘fﬁw2+fﬁwl,w2,

111) f’y Wi,wy = (—1)2 f'y_l wo,W1.
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The analog of the formula i) is satisfied by “l-adic iterated integrals”
(coefficients of the power series A,(c)) by the very definition because the
image of the inclusion map of the fundamental group into the algebra of
formal non-commutative power series is of the form exp L(X), where L(X)
is the set of Lie elements in the algebra of formal non-commutative power
series.

The formula

fpg(o) = q_l fp(0) - q - fqlo)

(see Part I Lemma 1.0.6), which after using suitable embeddings implies

qu(o) = Ap(U) ‘Aq(a)

is the analog of the formula ii).

We do not know how to show an analog of the formula iii) for “l-adic
iterated integrals” (coefficients of the power series Aj,(c)). To complete the
picture we are still missing several [-adic analogs in the following table.

classical iterated integrals [-adic iterated integrals

values of Riemann zeta function at

positive integers Soulé classes for Q

values of [-adic iterated integrals

Itival
multivalue zeta numbers at 1 and at roots of 1

multivalue zeta functions ?
shuffle relations for multivalue zeta
numbers and multivalue zeta func- ?
tions

The classical polylogarithms are the most important examples of iter-
ated integrals. In Section 11 we introduce [-adic polylogarithms and we
study their properties. We prove a theorem saying when a linear combina-
tion of [-adic polylogarithms is a cocycle. The reader can compare our result
with Proposition in Section 4.6 of [BD]. In Section 11 we study functional
equations of [-adic polylogarithms. We show that the [-adic dilogarithm
satisfies the distribution relation

m(m; b(€he) ) = ")

on the Galois group Gqy,,) and the Abel five term functional equation on
GQ(us)-
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These results are stronger than those in Theorem D in the sense that
we get functional equations on the Galois groups Gq(,) and Gq(uew)
while the functional equations from Theorem D hold on the subgroup

Ny Hy(Y; fi(2), fi(v)) of Gk
§10. Functional equations

10.0. Let X =PL \{a1,...,an41} and let Y = PL\ {b1,...,bpi1}.
Let f: X — Y be a smooth morphism. Let z,v € X(K). The morphism f
induces

feoim(Xgiv) — m(Yg; f(v))
and
feorm(Xgiz,0) — w(Yg; f(2), f(v)).

Let us fix a path p from v to z. We recall that for ¢ € G we have defined

Then we have

(10.0.1) fe(5p(0)) = F ) (0)-

Let © = (z1,...,Zn+1) (vesp. ¥ = (Y1,-..,Ym+1)) be a sequence of ge-
ometric generators of m1(X(C);v) (resp. m1(Y(C); f(v)). We set X :=
{X1,..., X} and Y :={Y1,...,Y,}. We recall that we have embeddings

ky : m(X(C);v) — Q{{X}} and ky : m(Y(C); f(v)) — Qi{{Y}} associ-
ated with a choice of sequences of geometric generators = of 71 (X (C);v)
and y of m1(Y(C); f(v)). There is a homomorphism of Q;-algebras

for Q{{X}} — Qi{{Y}H
such that
(10.0.2) fooks =kyof. and fooky,=ky )0 fe
Let 0 € Gg(y)- The equations (10.0.1) and (10.0.2) imply that

foo0up =0y sp) o fo

Hence we have
f<> o log Oz,p = 10g Oy, f(p) © f<>
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and

(10.0.3) fo((log 02.5)(1)) = (log oy 7)) (1)-

The map f, induces a homomorphism of Lie algebras
fo: L(X) — L(Y).
Let

o o
fo: @QT%L(X) — @QT%L Y
i=1 i=1

be the map induced by f, on associated graded Lie algebras. The associ-
ated graded Lie algebras are canonically isomorphic to Lie(X) and Lie(Y).
Hence the map f, induces

fo : Lie(X) — Lie(Y).
Let ¢ € Lie(Y)® be a linear form of degree g. Let us set

afof* = (fo((log 04,)(1))).

(In Part I we defined coefficients aj , only for homogenous forms, hence we
introduce this new definition.) It follows from (10.0.3) that

(10.0.4) agylo =al o

The map f, is not homogenous. Therefore we have
(10.0.5) afofo = azsls + Z ax p-
deg x<q

It follows from (10.0.4) and (10.0.5) that
(10.06) L7 (2,0) = L(f(2), £ (0)

on the subgroup Hy(X;z,v) of Gg.

Below we shall use fundamental groups of X or Y with various base
points. Sequences of geometric generators and embeddings into algebras of
non-commutative formal power series will be chosen as above.

Let v and o' belong to X(K). If x = (z1,...,2p41) is a sequence
of geometric generators of m1(X(C);v) and ¢ is a path from v’ to v then
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g laq:= (g 21-q,...,¢ 2u11-q) is a sequence of geometric generators

of m1(X(C);v"). Then we have embeddings

ky : m(X(C);v) — Qi{{X}}

given by ky(z;) = e~ for i = 1,...,n and
kq*1~ac~q : Wl(X(C); ’U/) - Ql{{X}}
given by kq_l,x,q(q_l cxi-q)=eXifori=1,...,n.

THEOREM 10.0.7. Let f; : X — Y be a smooth morphism and let ¢; €
L(Y1,...,Yn)° be a linear form of degree q defined over Q fori=1,...,N.
Let z,v € X(K). Let ny,...,ny be rational numbers. If

N
D nigio(fi)e =0
i=1

in Hom (gri m (X(C);v); Q), where
(fi)s = grim(X(C);v) — grim (Y (C); fi(v))

is the map induced by f; fori=1,..., N, then we have functional equations

> miLP (fi(2): filw) = 0

on the subgroup Hy(X;z,v) of Gk and

N
i _
n;a = lower degree terms
DI g
i=1

on Gk, where “lower degree terms” means a linear combination of a},
with degree of x strictly smaller than q and y; is a sequence of geometric
generators of (Y (C); fi(v)) fori=1,...,N.

Proof. It follows from (10.0.6) that

N N
Zni'c%(fi(z)§fi(v)) — Zniﬁwo(m'(z,v)
i=1 i=1

e szil niﬂoio(fi)' (Z,U) e 0
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It follows from (10.0.4) and (10.0.5) that

N N N

. Pi — . pio(fi)o — io(fi)e
Zn‘ayi,fi(p) = anaxm = Z niagh + lower degree terms
i=1

i=1 i=1
N ool
= a%:;,':l nieiele 4 Jower degree terms = lower degree terms.
10.1. Let p be a path from v to z. Let x = (z1,...,x,41) be asequence
of geometric generators of 71 (X (C);v). Then 2’ := (p-21-p~%, ..., 0 Tny1-

p~ 1) is a sequence of geometric generators of m1(X(C);z). The action of

o,-1 on m(Xg;2) can be expressed in the following way by the action of

op on m(Xg;v). Let w € m(Xg;2). Then op-1(w) =p-o(p~'-w-p)-
fp(0)~! - p~L. This implies that on Q;{{X}} we have
(10.1.0) Orp=Lp,0)00z and ou 1 = Ry (5)-1 00y

LEMMA 10.1.1. Let D be a derivation of the algebra Q;{{X}} and let
w € L(X). Then

L,OD=L;+D and R_,OD=R_+D
for some ¢ € L(X).
Proof. The lemma follows from the identities
[Lws Dl = L_py, [R-w,D]= Rp,)

and
[Lis L_p)] = L_ju,pw)y  [B-w; Bpw)] = Rl pw)-

THEOREM 10.1.2. Let z,v € X(K) and let p be a path from v to z.
Then we have

i) L(z,v) + LY(v,2) =0,

N e e N
i) g+ ap,, 1,1 =0.

Proof. It follows from (10.1.0) that
(log Ux’,pfl)(l) = (R— log Ap (o) O log Ux)(l)'

It follows from Lemma 10.1.1 that

(R, log Ap (o) O log Ux)(l) = _(LlogAp(o') O log Ux)(l)
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Hence we get that
(log U;c’,pfl)(l) = _<10g Ux,p)(l)-
Evaluating a linear form on both sides of the equation we get the theorem.
THEOREM 10.1.3. Let z,y,v € X(K). Then we have
L(z,v) = Lz,y) + L(y,v).

Proof. Let p be a path from v to y, let r be a path from y to z and let
q=r-p. We have 0 = L; ()00 and 04 = Ly ;)00 on m1(Xg;v) and 0, =
L, (5y00 on 71 (X g; y). It follows from Lemma 1.0.6 that oq = L,-15,(5),°0p-
Let us choose a sequence = of geometric generators of m1(Xg;y). Then
7' =p~1. 2. pis asequence of geometric generators of 71 (X z;v). Observe
that

Oglq = Og,r © 055_1 0 Tg p-

Hence we get
log 04 g = log o, O log o, ' Olog T p-
Let o belongs to the degree m step of the f}ltration defined in Section 3,
i.e., 0 € KL (X) for some finite subset T C X (K)2. Then
(log 7y ) (1) = (log 0,) (1) + (log 047 ) (1) mod I™H [(X).

Evaluating a linear form of degree m on both sides of the congruence we
get the theorem.

10.2. It follows from Proposition 7.1.10 that relations between func-
tions £¢(z,v) imply relations between symbols {z,v}.. Hence we get the
following result.

COROLLARY 10.2.1.  Assume that Conjectures D,, are true for all n.
Assume that for all n the maps realization : Ext}\AMK (Q(0),Q(n) ®Q —
HY (G, Qi(n)) are injective. Then we have

{z,v}e + {v,2}c =0
and
{Z, U}e = {Z’ y}e + {y, U}e
in LX(X).

Proof. The corollary follows from Theorems 10.1.2 and 10.1.3 and

Proposition 7.1.10.
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10.3. Let m be a group. If 7 is nilpotent then we denote by 7 ® Q its
rationalization. For an arbitrary group m, 7®Q :=lim ((7/I"'7)® Q) is a
rational completion of . The group 71 (X 5;v) is equipped with a pro-finite
topology. Hence every quotient 71 (X z;v)/T"m (X 5;v) is equipped with a
pro-finite topology. Therefore rationalization (71(Xz;v)/I"m(Xg;v))®@Q
is a Q;-Lie group. Hence m1(X;v)®Q =lim ((m1(Xg;0)/I"m1(Xz5v))®
Q) is equipped with a topology of the inverse limit of Q;-Lie groups. The
action of Gx on w1 (Xg;v) extends uniquely to a continous action of G
on 7T1(XR; U) ® Q.

Now we shall define a rational completion of 71 (X z;v)-torsor m(X z;
z,v). We introduce an equivalence relation on the product 7(Xz;z,v) X
m1(Xz;v) ® Q. We say that a pair (p, S) is equivalent to a pair (¢,7T") and
we write (p, S) ~ (¢, T) if S = (p~t-q) - T in m(Xg;v) ® Q.

We set

(X 2,0) @ Q= (W(XK;Z,’U) x T (Xg;0) ® Q)/N.

The Galois group Gk acts on the product 7(Xz; 2z, v) x 711 (X z;v) @ Q com-
ponent wise. The group m(Xz;v) ® Q acts on the product 7(X g; z,v) X
m1(Xz;v) @ Q by the right multiplication on the second factor. Both ac-
tions are compatible with the equivalence relation ~ and continous. Hence
Gk acts on the set of equivalence classes m(X g;2,v) ® Q. The action of
m1(X;v) ® Q on the product m(X ;5 z,v) X m1 (X g;v) ® Q induces a struc-
ture of m1 (X z; v)®Q-torsor on the set of equivalence classes (X ;; z, v)®@Q.
Elements of m(Xz;2,v) ® Q have the form p - S, where p is in 7(Xz; 2,v)
and S € m(Xg;v) ® Q. We shall call them Q;-paths.

LEMMA 10.3.1. The embedding ky : m(Xg;v) — Qi{{X}} extends
uniquely to a continous multiplicative embedding k, : m(Xz;v) @ Q —

Q{{X}}-

Proof. The image of k, is contained in Q;{{X}}*. The group Q;{{X}}*
is a pro-unipotent group with exponents in Q;. Hence k, extends to k, :

m(Xz;v) ® Q — Q{{X}}.

Further we shall denote the embedding k, by k.. One shows that the
formulas

fp-q(a) = qil : fp(o') "q- fq(o')’

Ap.qg(0) = Ap(0) - Ag(0),
Ap(7 - 0) = Ap(7) - T(Ap(0))
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and g« (fp) = fg(p)» where g : Xk — X is a regular map, are valid also for
Q;-paths p and q.

§11. [-adic polylogarithms

11.0. In this subsection we introduce l-adic polylogarithms. We give
sufficient conditions when a linear combination of [-adic polylogarithms is
a cocycle. Next we are studying a relative version of [-adic polylogarithms.
We also show that [-adic polylogarithms are special case of [-adic iterated
integrals introduced in Section 5.

Let K be a number field. Let V = P}, \ {0,1,00}. Let z and y be
standard generators of m (Vi; (Tl)) — loops around 0 and 1 respectively (see
the Picture 1).

Picture 1

Let £ : wl(VK;(ﬁ)) ® Q — Qi{{X,Y}} be a multiplicative continous
embedding given by k(z) = eX and k(y) = ¢¥. We denote by Lie(X,Y)
a free Lie algebra over Q; on X and Y and by L(X,Y) a completion of
Lie(X,Y) with respect to the lower central series. We identify L(X,Y)
with the Lie algebra of Lie elements in Q;{{X,Y }}.

Let us set By := Y, Exyq1 = [Ex, X]. Let B be a base of Lie(X,Y)
given by basicA Lie elements. We assume that Ey € _l:)’ fork=1,2,....

Let z € V(K) and let p be a Q;-path from 01 to z. We recall that

—
fp(c0) = p" - o(p) € m(Vg;01) ® Q and Ap(0) := k(fy(0)) € Q{{X, YV}
for any o € Gg.

If e € B we denote by e* the dual linear form to e with respect to B.

DEFINITION 11.0.1. Let 0 € Gg. We set
n(2)(0) = E}(log Ay(0) and  1(2)(0) := X*(log Ay(0)).

The coefficient 1,,(z) is an l-adic polylogarithm (n-th order [-adic poly-
logarithm) evaluated at z. It is a function from G g to Q;(n). It depends on
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a choice of p in 7(Vi; 2, (ﬁ) ® Q. The coefficient [(z) is an [-adic logarithm
evaluated at z. If we are using various paths and it is important to indicate
the dependence of [,,(z) (resp. I(z)) on a path p we shall write l,,(2), (resp.

U(2)p)-
DEFINITION 11.0.2. We set

Ln(2) 3= n(2) g, (v.257)

Observe that £, (z) depends only on z.

Let us set ep =y and eg4+1 = (ex, ). Observe that any element
g € m(V;01) ® Q can be written in the following form

g =22 . yol8) 270 270 ((y y,)80) 2N g a9 p

where the exponents are in Q; and each f, is a product of powers of com-
mutators of length n, which contain y at least twice.

DEFINITION 11.0.3. Let 0 € Gg. We define functions k7 : Gx — Q
by the identity

Fp(0) = 2@ L yR3(0) L KEO) 20D e RO g R
Let n > 1. Then 7 we view as a function from Gk to Qi(n). «Y
we view as a function from G to Q;(1). We shall also use the notation
1

ko(z) = kY and k1(z) := k.. If we are using various paths and it is

important to indicate the dependence of k7 (c) on a path p we shall write

K2 (0)p-
We shall express [-adic polylogarithms in terms of functions 7.
Let f € L(X,Y). We define a derivation ad f of L(X,Y) setting

(ad f)(g) = [f, 9] for any g € L(X,Y).
Let Ij be a Lie ideal of L(X,Y") generated topologically by Lie brackets
which contain Y at least k-times.

LEMMA 11.0.4. We have

log(k(en+1)) = (—1)" Z %(adX)lir"*k"(Y) mod Is.
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LEMMA 11.0.5. (see [B] chapitre II) We have

1 =1
log(eX - e¥) =X +Y + S YT+ > ngn(ad X)*(Y) mod L.

n=1

PrRoPOSITION 11.0.6. Let 0 € Gg. We have

- i—1 4 > 1 o
+Z(_1) lﬁz(a)( Z W(adX)kH— +k’_1(Y))
i=1 kookiq=1 LML
L1yeeeyg—1
1 o0
+ 5|2 (0)X, Z}(—l)z—lm;(g)
= 1
X kit4ki1 Y
X( Z kq! -k‘i_ll(ad ) ( ))
k1,nkio1=1
i HO o 2n [es) o
# 3 U Bnlad )7 (Z(—l)z o)
n=1 : i=1
N 1 kit4ki
" ( 2 R 0T ) | med L
1y kio1=

Proof. The proposition follows from Lemmas 11.0.4 and 11.0.5.

Using Proposition 11.0.6 we can easily calculate [-adic polylogarithms
in terms of functions 7. For example in small degrees we get the following
result.

COROLLARY 11.0.7. We have

and

PROPOSITION 11.0.8. Let ¢ € V(K) and let p be a Q-path from 01
— —
to . Let q be the standard path from 01 to 10 (an interval [0,1]). Let
g: Vi — Vi be given by g(z) =1 — z. Then we have

A (C)p = l(l - C)g(p)q'
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Proof. Tt follows from Corollary 11.0.7 that
fp = a'©r -y Or mod I () (Vi 01) Q).
Observe that g(p) - ¢ is a Q;-path from 0l to1— (. Hence we have
fopyq = 2w yh(1=0swra mod I?(my(Vg:0) © Q).

On the other side
fo(p)-q = g fop) -4 Tq = g 9«(fp) - q - fq

—
because ¢~ g (z) ¢ =y, ¢ g«(y)-¢ = x and f;, = 1 mod I'*(m; (V; 01)®
Q). The proposition follows from the last two congruences.

THEOREM 11.0.9. Let z; € V(K), let p; € W(VQ;zi,(ﬁ) ® Q and let
n, € Q fori=1,...,N. Let us assume that l-adic polylogarithms ly(z;)
calculated along the Q-paths p; for i = 1,..., N satisfy the following con-
ditions

D) S0 ni(l(20) (7)™ (Uza) () (U(=z0) (1) (20) (0) —L(23) (0)-la (20) (7)) =

0 for any 7,0 € G and for any o and B such that a + 3 =n — 2,

i) Yoy ma(l(z:) (1) - (1(z:)(0))? - l(2:)(0) = 0 for any 7,0 € G, for
k=2,....n—1 and for any a and B such that a« + 3 =n — k.

Then Zf\;1 niln(z;) is a cocycle on Gy with values in Q;(n).
Proof. The equality A,(10) = Ap(7) - 7(Ap(0)) implies

log Ap(10) = log Ap(7) + log 7(Ap(0)) + %[log Ap(7), log(T(Ap(0)))]
- % [llog Ap(7), log(7(Ap(9)))], log Ap(7)]
+ %[[log Ap(7),10g(7(Ap(0)))]; log (7(Ap()))]

- i[[[log Ap(7),10g(7(Ap()))]; log ((Ap()))], log Ap(T)] + - --
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Comparing coefficients at F,, we get

In(2)(10) = 1. (2)(T) + x(7)"n(2)(0)

+ %(ln_l(z)(f)x(f)l(z)(o) = X(1)" Hn1(2)(0)1(2) (7))
- 1—12(ln-z(z)(T)x(f)l(z)(f)l(z)(a) = X(1)"Pla2(2)(0)(U(2)(7))?)
+ 1—12(zn_Q(z)(T)X(T)Q(z(z)(a»? — X(N)" Hpa(2)(0)1(2) (T)1(2)(0))

- (s () XU )

— X ()" 23 (2) (@) (U(2) (1) 21(2) (0)) + -+ .

The assumptions of the theorem imply that

N
an n zz TU an n zz + X(T)n Zniln(zl)(a)
=1

The [-adic polylogarithm [,,(2),, depends on a choice of a Q;-path from
01 to 2. We have the following elementary result.

LEMMA 11.0.10. Let p be a Q-path from 01 toz and let S € m1(Vg, 0_1))
—
®Q. If S = 2% -y% mod I'}(m (V;01) @ Q) then 1(2)ps = 1(2), +a(x — 1)
and 11 (2)ps = l1(2)p + B(x — 1).

Proof. We have f,s(0) = S7L-§,(0) - o(S). Hence Aps(o) = k(S)~!-
Ap(o)-k(o(S)). Let S = a:o‘-yﬁ~e§2 ~e§3 - f3-€4*----. Therefore log Aps(U)
(—log(e®X - Y - (eX e em X e7YV)P2 ... )) Olog Ay(0) O log(e™X
eIX (@)Y (x(@)X oX(0)Y o=x(0) X o =x (@)Y )82 ... ) = —aX - BY +(2),(0) X+
11(2)p(0)Y + ax(0)X + Bx(0)Y mod I'?L(X,Y). The lemma follows from
the congruence.

THEOREM 11.0.11. Let z; € V(K), let p; € W(Vg;zi,()-f) ® Q and let
n; € Q fori=1,...,N. Let S be a subgroup of K* ® Q generated by z;
and 1 —z; fori=1,...,N. Assume that

i) the map ¢ : S — ZY(Gr; Qu(1)) given by p(z;) = U(z;)p, and o(1 —
zi) = l1(%i)p, is well defined and it is a homomorphism;

ii) Zfil niv1(z) - vn—2(2i)(z) AN(1 —2;) =0 1in (SAS)® Qq for any

homomorphisms v1,...,Vn_o from S to Qy;
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i) SN mg - v (20)® - va(2)? - Ik(2i)(0) = O for any homomorphisms v
and vo from S to Qq, for any 0 € Gk, fork=2,...,n—1 and for
any o and B such that o+ 3 =n — k.

Then Zf\il Niln(2i)p; 15 @ cocycle on G with values in Qi(n).

Proof. Let us fix 7 € Gg. The map & — Q(1) given by s — ¢(s)(7)
(zi — U(#)(7)) is a homomorphism. Let us fix 7,0 € Gg. The map
S&S — Qu(2), 2@y — $(x)(r)-$()(0) — () (o) () (7) (268 (1-25) —
1(zi)(7T) - l1(zi)(0) — U(zi)(o) - l1(z) (7)) factors through S A'S. Hence the
theorem follows from Theorem 11.0.9.

COROLLARY 11.0.12. Let Em be a m-th root of 1 different from 1.
There is a Qp-path p from 01 to Em such that 1, (&m)p s a cocycle on GQ(H )-

If | does not divide m then one can choose the path p in W(VQ,fm, 01).

Proof. Let m = 1% .1, where | does not divide r. Let ¢ be a path from
— n
01 to &y. There are a, # and « in Z; such that ({7 ., - s & )neN 18
a compatible family of {™-th roots of &, determined by the path ¢q. Hence

U(&m)q = (55 +7)(x —1). Lemma 11.0.10 implies that there is a Q;-path p

from 01 to &m such that [(&,,), = 0. Theorem 11.0.9 implies that 1,,({m)p
is a cocycle. Observe that if ko = 0 then one can choose p in 7(Vg; &m, (ﬁ))

z dz dz

1—2° 27

The classical polylogarithms are iterated integrals defined by f

. The iterated integral f b dzz, dZZ e % can be express by classical
polylogarlthms Now we shall define a normalized analog of the iterated

integral [ 7 bdz dz dz

125, Fy, 2

Let z,v € V( ). Let ¢ be a path from 01 to v and let p be a path from
v to z. We shall define relative polylogarithms [, (z,v). Let us set 1 :=
gx-qg oy = q§>~q_1. Observe that z1, y; are generators of w1 (Vi;v). Let
Gnt+1 C m(Vg;01) (resp. %+1 C m(Vi;v)) be a closed normal subgroup
generated by 'l (Vig;01) (resp. I lm(Vig;v)) and all_ commutators
which contain y (resp. y1) at least twice. Let m := m(Vg;01)/Gp41 and
=1 (Vg;0)/Ghyy-

It follows from Proposition 2.2.1 that the action of G on 7 is given
by

o(@1) = (@ fo(@) -7 - &X7 - (g (o(0)) ™ - q71) mod Gy
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and
oly1) = (@-Tg(0) -0 - X7 - (g (Gg(0) ™" -q7") mod Gl

LEMMA 11.0.13.  The action of Gk on 71 (Vg;v) induced from the ac-
tion on the torsor m(Vy;z,v) by the isomorphism t, (see Part I Section 1)
s given by

op(w) = (4 Tpg(0) -a7 1) -7 (w) - (a- (Fg(0) ™" -¢™") mod Gy,

x(o) (o)

where 5(z1) = 277, 5(y1) =y’ and & is continous and multiplicative.

Proof. The formula for o,(w) follows from Lemma 1.0.2 and Lem-
ma 1.0.6.

Let I be the augmentation ideal of Q;{{X, Y }} and let J,,+1 be a closed
ideal of Q;{{X,Y}} generated by I"*! and all monomials which contain Y’
at least twice. We define two maps

k:m(Vi;01) — Q{{X,Y}}/Jus1 and
Komi (Vo) — Q{X Y1/ o
by k(z) = X, k(y) = ¥ and k/(z1) = X, K/ (y1) = €.
Let ( )p : Gk — GL(Qi{{X,Y}}/Jn+1) be the action of Gi induced
from the action of G on the torsor W(VQ; z,v) by the isomorphism ¢, and

the embedding &'.
Let us set

bp(0) = ap 0 p(x(0) ™),
We recall that Fy := Y and Ej4q := [Eg, X] for k = 1,...,n — 1. Then

any Lie element of Q;{{X,Y}}/Jn4+1 is a linear combination with Q; co-
efficients of X, Fy,...,E,. If g € 7’ then logk/(g) is a Lie element of

Ql{{Xv Y}}/Jn+1~

DEFINITION 11.0.14. Let 0 € Gg. We set
(log ¥p(0)(1) = (2, 0)p(0) X + Y _ li(2,0)p(0) Ep.
k=1

ProrosITION 11.0.15. We have

In(2,0)p = ln(2)pg — In(v)g-
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Proof. Observe that £’ (q fpg(0) @) = k(fpg(0)) = Apg(o) and k' (q -
(g™t g™ = k((54(0))™1) = (Ay(0))7L. Let 0 € Gk. It follows from
Lemma 11.0.13 that

Up(0) = Liyy(o) © Biag(o)) 1
This implies that

log wp(a) - Llogqu(U) O R_ log Ag(o)-

The operators Liggp,, (o) and R_joep, () commute. Hence log,(o) =
Liog Apy(oc) T B—10g A4(s)- This implies the proposition.

COROLLARY 11.0.16. We have
—
ln(2,01), = 1p(2)p-

Proof. Tt follows from Proposition 11.0.15 that ln(z,()-f)p = lu(2)p —
ln((ﬁ)c, where c is a constant path. For such a path ln(()_1>)C =0.

Remark. The relative polylogarithm [, (z,v) is the function af" from
Section 5. Hence the l-adic polylogarithm [, (2), is also a special case of
l-adic iterated integrals defined in Section 5.

We finish this subsection with a result expressing coefficiets of f, in
degree one for an arbitrary X by [-adic logarithms.

PROPOSITION 11.0.17. Let X = PL\{a1,...,an, 00}, let z,v € X (K)
and let p be a path from v to z. Let g; : X — P} \ {0,00} be given by
gi(z) =z—a; fori=1,...,n. Then

fp = xll(zfal)gn(ﬁ)'ql71(07(11)‘11 ..... xf,fz_an)g”(p)'q” Hv=an)ay mod F 7T1(XK7 )

where g; is any path from 01 to v — a; on P\ {0,00} fori=1,...,n

Proof. Without loss of generality we can suppose that X = P\ {a, 00}
and g: X — Pk \ {0,00} is given by g(z) = z — a. Let p be a path from v
to z on X;. Then g(p) is a path from v — a to z — a on P} \ {0,00}. Let
¢ be any path from 01 to v — a on P\ {0,00}. We have

fop)-a = ¢ fop) 4 Tq = g “9+(fp) - 4 fq-
It follows from Corollary 11.0.7 that

z—a)y( I(U*a)q7

2 Vara = gL g, (5,) g @

. I(z— g—l(v—
where x is a loop around 0. Hence we get that f, = xa(z Do(pya~H a)q,
where g.(z4) =q-z-q¢ L
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11.1. In this subsection we shall study functional equations of [-adic
polylogarithms. We shall prove the distribution relation and the Abel five
term equation for l-adic dilogarithms. We shall show that [-adic diloga-
rithms satisfy these functional equations without lower degree terms.

We start with the discussion of the [-adic analog of the functional equa-
tion

log(z - y) =logz + logy

of the classical logarithm.

PROPOSITION 11.1.0. Let C y € PYK)\ {O oo}.  Then there exist
paths v from 01 to ¢, d from 0l to y and @ from 0l to y - ¢ such that

Wy - Qe = Uy)s +1(C)y

on Gg.

Proof. Let 9: PL\{0,00} — P\ {0,000} be glven by g(z) = y-z. Let

p be a path from 01 to ¢. Then g(p) is a path from Oy to y-(. We recall that
— —

x is a standard generator of 71 (P %\ {0,000}, 01). Let us fix a path ¢ from 01

— —
to 0y. Let us set 2/ = ¢-z-¢~'. Then 2’ is a generator of Wl(P}—(\{O, oo}, 0y).
Observe that g.(x) = 2. It follows from Corollary 11.0.7 that

fplo) = 2@ and ](g(p)-q(U) — W Ogr)a(0)
On the other side we have

fa(p)- q(0) = f9(1))( o) q-fqlo) = q ! G (fp(a)) - q - fq(o)
_ xl(C)p( o) .xl(Oy)q(U) — gcl(C)p(U)Jrl(@)q(U).

Comparing exponents we get

1Y+ Qg = UC)p + 1),

Let t be the canonical path from O_gj to y. Then t - q is a path from 01 to Y
(see Picture 2).

We have 2!®¢1(0) = §,..(0) = ¢~ y(0)-q-f4(0) = ¢~ ]o(0) -2l 0)a()
It rests to calculate fi(o). Without loss of generahty we can suppose that
y = 1 and ¢ is the canonical path from 01 to 1. Then it is clear that
ft(c) = 1. Hence l(Oy)q = l(y)t.q- This finishes the proof of the proposition.
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Y

a

Picture 2

Now we shall discuss the [-adic analog of the functional equation

Lia(z™) = m<§m; Li2(€fnz)>

of the classical dilogarithm. Let Y = P%Q(Hm) \{0, iy, 00} and V = P%Q(Hm)\

{0,1,00}. We choose generators z’,yo, ..., Ym—1 of m1(Yq,01) as on the
picture.

Yo

Picture 3

Let f: Y — V begiven by f(z) = 2™. We have f.(2') = 2™, f«(y0) =y

and fi(y;) = 27" -y 2. Let z € ?(Q(,um)) and let p be a path from 01
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to z. We define functions A(z), po(2), ..., ttm—1(2), vo(2),...,Vm—1(2) from
GQ(um) t0 Z; by the following congruence

(11.1.1) fp = ™) .ygo(Z) ,yiu(z) o yS{’iT(Z)

VO(Z) . Vm—l(z)

. (y07$/) Tt (ymflax/)
e —
-H(yi,yj)o‘”( ) mod F37T1(YQ;01).
1<j
Observe that f(p) is a path from 01 to ™. Hence we have
Frpy = @m -y (y,2)™m mod T (Vg; 01),

(see Definition 11.0.3).

LEMMA 11.1.2.  We have k%m = mA(2), kim = po(2) + p1(2) + - +
pm—1(2) and KZm = m(vo(z) + -+ vm-1(2)) + pa(2) + - +ipi(z) + 0 +
(m = 1D)pm—1(2).

Proof. We have
fulp = gmAE) ypo(z) L =l () g
cgm M) L gpme1(2) gm0 ()t rm - (2)
= gMAME) L ypo ()t timo1(2) | (y’z)M(Vo(Z)+---+Vm—1(Z))+Z§i_oliui(Z)
mod I (Vig: 01).

Observe that f.fp = fs(,). Comparing exponents of f.f, and fr(,) we get
the equalities of the lemma.

— —
Let ¢; be a path from 0}, to 01 as on Picture 4.
Let us set z; := qi_1~x’-qi and y,iz) = qi_l-yk-ql-. Let f; : Y =V

—

be given by fi(z) = 0 z. Observe that (f;).0&, = [ﬁ), (fi)e(xs) = z,
(fi)*(yi(Z)) =y and (fi)*(y,(;)) =1 for k #1i.

LEMMA 11.1.3. We have

W =N (1), wL = e) and /2= () (1)),

Em'z m Em'z

https://doi.org/10.1017/50027763000009077 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000009077

ON I-ADIC ITERATED INTEGRALS, II 137

Picture 4

Proof.  fi(pqg;) is a path from 01 to ¢iz. Hence we have

0

K, Klii /@2% 3 —
ffipg) =T m'= -y &'z - (y,x) "= mod Im; (Vg; 01),
by the Definition 11.0.3. On the other side

(fi)sfpq: = (fz)*(q;l fp i) - (fi)«(Fg)-

Hence it follows from (11.1.1) that

(Fi)ufpq = 2*E) i@ L (g 7)) . (1220

Il
8
>
x
+
3~
-
|
<
<
=
O
—
=
8
S~—
S
X
+
3|~
-
|
&
5
O
e}
o
)1
=]
—
—~
S
—
~—

We have the identity
(fi)sfpa: = T£.(pas)-

Hence comparing exponents of (f;)«fpq; and f,(pq,) We get the equalities of
the lemma.

PROPOSITION 11.1.4.  Let I3(2™) be calculated along the path f(p) and
let 15(€,,:2) be calculated along the Q;-path fi(pqi)'a:# fori=0,1,...,m—1.

Then we have .
Ir(z™) =m <Z ZQ(gmiz)> .
i=0

Proof. Tt follows from Corollary 11.0.7 that
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Hence it follows from Lemma 11.1.2 that

m—1 m—1

B = 3 ul)) + 3 i)

1=0 1=0

(o)

i . We have

Let lculate (& i
et us calculate l2(¢,, z)fi(in)'xm

ffi(Pqi)-:v% (0) = 77+ ffypgy) (@) - & X,

Hence it follows from Lemma 11.1.3 that

—i . (2) — )
BEri2), o = () + () — SM ().
Comparing formulas for ly(2™) () and (&, 2 )f ot 7 get

(") ) = m (Zl2 En'2) filpg)w nz)'

The classical dilogarithm satisfy the functional equation

Li?(%) —Liz(yZHLiz(%) — Liy ( Y 1) + Lig(2)

= lower degree terms.

We shall prove its [-adic analog.
Let V = P\ {0,1,00} and let Y = Pj \ {0,1, ;, 00}, where y €
K\ {0, 1}._L)et ¢,¢ € V(K) and let 7 be a path from & to ¢ and let p be a

path from 01 to & (see Picture 5).
€
/_\/o C

Picture 5
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Let us set

1 1

t'=p-x-p and Y =p-y-p”

where z, y are generators of m (Viz; (ﬁ)) as in 11.0. We define functions €(7),
t1(m) and €5(7) from G to Z; by the following congruence

fr = x/é(w) _ylﬁl(ﬂ) . (y/7x/)ég(7r) mod F37T1(Vf(;§).

LEMMA 11.1.5. i) We have

1 1 1
1(O)rp — 12(8),, = ta(m) — Qé(w)h (7) — 5%2/@ + 5/@'2/@%.
ii) If we replace p by p1 = p-x® then in terms of new generators x” =
pr-x-pit, Yy =p1-y-p" the triple &(r), & (1), €a(r) is replaced by
the triple ¥(m), &1 (), t2(m) + aty (7).

Proof. 1t follows from the formula §,, = p~'f,p - f, (see Lemma 1.0.6)
that Arp(0) = Ar(0) - Ay(0), where Ar(0) is the image of f by the embed-
ding of 71 (V; €) into Q{{X,Y}} sending 2’ to e and 3’ to e¥'. Applying
logarithm we get

log Arp(e) O (—log A, (0)) = log Ax(0).

Comparing coefficient at [Y, X] we get

12(Q)rp — 12(8),, = ba(m) — SE(m)by () — %ngné + %Fag/{é.

The second part of the lemma follows from the congruence y” = 2/ -/ -

=y (v, )" mod TPmy(Vig; €).
DEFINITION 11.1.6. Let us set
K((,€) = —Iiglié + Iiglié.

Observe that K((,§) is a function from G g to Q. After the restriction
t0 G (00 the function K (¢, ) does not depend on a choice of paths from
—

01 to € and (.

Now we start to look for I-adic analog of the 5-term functional equation
of the classical dilogarithm. Let f(z) = (lz—_yl)z7 9(z) = yz, h(z) = %
and k(z) = z. Observe that f, g, h and k define regular maps from Y to V.
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Picture 6

Let v be a tangential base point at 0 corresponding to the local parameter
yz at 0. Let xo, 71, Ty, Too be geometric generators of Wl(YQ;U) — loops
around 0, 1, é and oo respectively (see Picture 6).
We assume that
Too * Ty * X1 - X = 1.

Let z € Y(K) and let p € n(Yg;2,v). We introduce functions A(z), pu(z),
v(z), a(z), B(z) and v(z) from Gk to Z; by the following congruence

(LL7) = 2@ - 2f® - ap) (21,20)°) - (2, 20)7F) - (g, 1))

mod 37 (Y3 v).

We recall that f : Y — V is given by f(z) = (1:’1)2. Observe that

f«(v) = w, where w is a tangential base point at 0 corresponding to the
local parameter Y7 -z at 0. Let us set 2’ := fi(xzo) and y' := fi(zy).
Observe that f(oco) = 1 —y. This implies that f.(ro) = 1. Therefore
fe(x1) =9/~1-2'71. Let ¢ be a path from 01 to f+«(v) such that g-z-q~! = 2/
and q-y-q~! =y (see Picture 7).

By the definition of functions ¢ and ¢; we have

frip) = @) @) (o VU @) mod T3m (Vie, fo(v)).
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Picture 7

Applying f, to (11.1.7) we get

fefp = 2O 71GE) LG =@ () x’)—a(2)+ﬂ(2)—7(Z)+%H(Z)2+%M(Z)
mod I (Vi fi(v)).

The equality f.fp = ff(,) implies

(1.1 HIW) = AE) — (), B(0) = v(z) — a(2)
and
(L18) &) = —a(2) + B(z) ~ () + 5u(2)* + 3u2)

_ We recall that g : Y — V' is given by g(z) = yz. Observe that g.(v) =
01, g«(z0) = @, g«(w1) = 1 and g.(wy) = y. Comparing coefficients of
and g.f, we get

(11.1.9) tg(p)) = A(z), t(g(p) =v(z), E(g(p)) = B(2).
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We recall that h : Y — V is given by h(z) = =y Observe that

1-y

he(v) = % Let us set xp, := hi(z1) and y, = hs«(z,). Notice that
h«(z¢) = 1. Let r be a path from 0l to 71 such that 7 -z - r~! =z and
r-y-r~! =1y, (see Picture 8).

L.//h(p)

y—1

,
0 of 1
Th Yn
Picture 8

Comparing coefficients of fj,(,) and h.f, we get

(11.1.10) t(h(p)) = pu(2), E(h(p)) = v(z), Ea2(h(p)) =~(2).

We recall that k : Y — V is given by k(z) = z. Observe that k. (v) = v.
Let us set z, = ki(x0) and yj := k.(x1). We have k,(z,) = 1. Let s be a
path from 01 to v such that

s-x-st=x, and s-y-s 1=y

(see Picture 9).

Comparing coefficients of fj(,) and k.f, we get

(11.1.11) tk(p) = Az), (k(p) = pu(z), E(k(p) = alz).
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1
. =
Yy

N

0 1

Picture 9

It follows from the equalities (11.1.8)—(11.1.11) that

(11.1.12)
B(f(p) — %f(f(p))h(f(p)) —t2(9(p)) + %?(g(p))i’l(g(p))
1

+0(h(p)) — D) (h(p)) + k() — D) (kD) = 5u(2).

LEmMMA 11.1.13. On G we have the following equality

Hico)

K(f(2), f+(v)) = K(9(2), g« (v)) + K(h(2), ha (v)) + K (k(2), kx(v)) = 0.

Proof. We recall that xg(z) = kY and k1(2) = k.. Hence we have

K(£(2), £.(0)) = K (9(2), 9.(0)) + K (h(z), hu (v) + <<> <>>
= K(f(2),w) = K(g(2),01) (hz)yyl)
0t (122

— 001} (y2) - “°<(21:1y) )”1<y . 1)

+ Ho(y g 1),%1 (%) — ko(2)k1(v) + Ko(v)k1(2).

One checks that Ko((Yl) = ko(a) and ml(()?z) = 0. The lemma follows from

the fact that ko(x - y) = ko(z) + ko(y) and k1(z) = ko(1 — 2) on Gk (e )-
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THEOREM 11.1.14. There are paths (Qg-paths if | = 2) from 01 to
points (1z:y1)z7 Yz, (Zlily)y, % and z such that on G .. for l-adic dilog-

arithms calculated along these paths we have

(U by (57 () s o

z

Proof. Tt follows from Lemma 11.1.5, the equality (11.1.12) and Lem-
ma 11.1.13 that

lo(f(2)) = 12(f+(v)) = 2(9(2)) + 12(g+(v))

1
+1a(h(2)) = l2(he(v) + 12(k(2)) = l2(ke(v)) = Sp(2).
To eliminate 1p(z) we replace the path s by s’ = s - z~Y2. Then x) =
8/°I'S,_1 = T and y;{ = (5'33_1/2)’2/'(5‘15_1/2)_1 = s.y.(ij)l/Q.s_l =

Yk - (yk, 7)'/2. In terms of generators x, and y}, of 1 (V;v) we have

—

Observe that I2(0a) = 0. Hence we get

JQ(OZ%BZ) l (yz)+l2(%) —52(%) Fly(z) = 0

for l-adic dilogarithms calculated along the paths f(p) - ¢, g(p), h(r) -r, r
and k(p) - s - £~ /2 respectively.

It would be interesting to choose paths in such a way that we get the
Abel equation on G without lower degree terms.

11.2. Now we shall discuss functional equations of arbitrary [-adic
polylogarithms. The next result is a corollary of Theorem 10.0.7. We
recall that a subgroup Gp41 of m1(Vg; 01) was defined at the end of Sub-
section 11.0.

We are not able to show that after a suitable choice of paths [-adic
polylogarithms satisfy functional equations without lower degree terms. We
have only the following result.

THEOREM 11.2.1. Let K be a number field and let V =P}, \ {0, 1, 00}.
Let ay,...,ams1 be K-points of P and let Y =P\ {a1,...,ams1}. Let
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n; €24 fori=1,...,N and let f; : Y — V be reqular maps defined over K
fori=1,...,N. Let z,v € Y(K). Let us assume that Zf\;1 ni(fi)s =0 in

Hom (T 71 (Yie; v) /Ty (Yies v); I"m(Vg; 0_1>)/Gn+1).

Then we have a functional equation

N
N ni(Lalfi(2) — La(filv) =0
=1

on the subgroup H,(Y;z,v) of Gk.

Proof. The theorem follows from Theorem 10.0.7 and Proposition
11.0.15.

COROLLARY 11.2.2. Let &, be a primitive m-th root of 1. Then we

have .
(X Laleha)) = £alem)
k=0
on the subgroup H"(P%Q(um) \ {0, fm, 00}; 2, (ﬁ) of GQum)-

In Part III we shall need a special case of the equality from Corol-

lary 11.2.2.

COROLLARY 11.2.3. Let &, be a primitive m-th root of 1. Then we
have )

(X Lk = £
k=0
— —

on the subgroup Hy,(Pq(u,,) \ 10, tm,o0};10,01) of Gq(u,,), where Ly(1) :=

—
L,(10).

Both corollaries follow immediately from Theorem 11.2.1. We give
however a detailed proof of Corollary 11.2.3 because of it importance in
Part III.

Proof of Corollary 11.2.3. We shall use the notation of Subsection 11.1,

where we discussed the l-adic analog of the functional equation Lis(2™) =
m (3" Liz(&l,2)). We shall use also the following notation. If a and b are
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elements of a group then (a,b!) := (a,b) = a-b-a~!-b~! and (a,b") :=
((a,b"71),b) for n > 1.
We recall that Y = PlQ(,U«m) \ {0, i, 0} and f : Y — V is given

— —
™. Let p be a path from 01 to 10, the interval [0,1]. Let

by f(z) = =
— —
o € H,(Y;10,01). Then we have
fp(0) = (yo, ™) 8ID@) oy, M- (10)(@)

modulo a subgroup generated by I'"*lm (Yi; (ﬁ)) and commutators which
contain at least two y’s. Observe that f(p) is a path from 01 to m-10. Then
for any o € H,(V; ﬁ, (ﬁ)), and therefore also for any o € H,(Y; ﬁ,(ﬁ) we
have

1)“%0(‘7)

frp(o) = (y, 2"~ mod Gy y1.

It follows from the equality fif, = fs(,) that
n—1/ n/73 n n
(11.2.4) m" (5 (10) + - - + 1, _1(10)) = K%

on Hy(Y;10,01). We recall that f; : Y — V is given by fi(z) = £ - 2.
Observe that (f;)ufpg (0) = (y, 2" 1) 190) mod G,pyq for o € Hn(Y;m,

—> ' n

0&l) = Hn(Y;1_>,_1>) and f,(pg(0) = (y,x"fl)ﬂﬁr}’(a) mod G4 for o €
H,(Y;¢,°0,01) = H,(Y;10,01), where g; is a path from 0£}, to 01 as on
Picture 4. Hence we get

(11.2.5) v (10) = ng_i
7 — — —
on Hy,(Y;£,°0,01) = H,(Y;10,01). It follows from (11.2.4) and (11.2.5)

that

[y

m—

mnt Z KZ?) =K

1=

ol®

7 — — — —
on H,(Y;¢§,'0,01) = H,(Y;10,01). For ¢ € H,(Y;10,01) we have
: —
ng_i(a) = L, (o) and KL%(O‘) = L,(10)(c). This finishes the proof
of Corollary 11.2.3.

One of the most useful functional equations of classical polylogarithms
is the relation between Liy(z) and Li,(L). For l-adic polylogarithms we
have the following result.
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COROLLARY 11.2.6. For any z € V(K), we have
n 1
Ln(2) + (—1) £n<;) ~0
—
on the subgroup H,(Vg;z,01).

Proof. It follows from Theorem 11.2.1 that

_ 1

Ln(2) — La(01) + (~1)" (cn (;) - cn(o?i)) ~0.

En(()-f) vanishes. Hence we have to calculate En(o?f) Let p a path from
— g — —
01 to 10 and let s a path from 10 to 1oo as on the picture.

Picture 10

Let g : V. — V be given by g(z) = % Let us set ¢ := g(p)~' - s-p.
— — —
We denote by 7 the subgroup [['2m; (Vi;01), 271 (V; 01)] of 71 (Vi;01).
— =
Let (™17 (V;01),7”) be a normal subgroup of 71 (V;01) generated by
—
I *ir (Vg; 01) and 7",
o
Let o € Hy(Vg;2,01). Then we have

11.27) fo)= [ () )y tyrs e

i+j=n,i>1,j>1

mod ("7, (Vig,01), 7).

for some /ﬁ;m(oa)(a) € Z;. It follows from Lemma 1.0.6 and from equality
(10.0.1) that

(11.2.8) fo=a ' g:(p) " ap e T
Observe that

(11.2.9) ' g -q=y and ¢ '-g(z)-g=a"" -y "
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Let 0 € Hn(VQ;z,(ﬁ). Then we have

(11.210) fp0)=  J[ (@) )y =100
i+j=n,i>1,j>1
—_

mod (T 7y (V,01), ©")

—

for some k; j(10)(0) € Z;. It follows from (11.2.7)-(11.2.10) that
Fn—1.1(001) = (=1)"kp_1.1(10)(0") + Kin_1.1(10)(c).

—
Hence fp—1,1(0c0l) =0 if n is odd.
We shall show that /in,m(ﬁ) vanishes for n even. Let x, y and z be
—
generators of m1(Vi;01) as on the picture.

Y
Picture 11
Then we have z -y - @ = 1. It follows from Proposition 2.2.1 that
(f(0) (@, 1)) "+ 247 - (fy(0) (2, 9)) - (Fp(o) (2, ) " - X
< (fp(0) (@, y)) - 2X) = 1.
Let o € H,(Vi; z,01). It follows from (11.2.8) and (11.2.9) that
fo(0)(2,9) = (fp(o) (™ y ™1 9)) - (Fulo) (2, ).

Hence we get

(Fp(0) (2, 1)) ™" - (o) @y ™)) 2™yt (o) (@™ y ™)) ™
< (Fp(0)(2,9)) - (Fplo )( )y ( )(@,y)) @ =1
Comparing exponents at (y,z") we get (1 + (—1)”)/%_171(@) = 0. Hence
nn,m(ﬁ) = 0 for n even (see also [I1], [I12] and [D], where the element

fp(o) is studied). Therefore /ﬂn_m(o?l)) = 0 for any n. The equality
— —
kn—1,1(00l) = L,,(co0l) implies the corollary.
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The fact that Hn_Ll(ﬂ))) vanishes for n even implies the following well
known result.

COROLLARY 11.2.11.
L2,(10) = 0.

812. Monodromy of [-adic iterated integrals and [-adic polyloga-
rithms

12.0. We shall show here that suitable defined [-adic polylogarithms
form a local system with the similar shape of the monodromy representation
as the local system of classical polylogarithms given in [BD]. We start with
the discussion of the monodromy of arbitrary l-adic iterated integrals. The
notation is the same as in Section 10.

Let p be a path from v to z on X and let S € m;(Xg;v). Then we
have

(12.0.0) fps(a) =57 fy(0) - S - fs(0).

Let Map(Gg;m1(Xg;v)) be the set of all maps from G to m (Xg;v). We
define a map

Taop t T1(X g v) — Autge(Map(Gg;m1(Xg;50)))

setting
T2p(9)(w)(0) = S ~w(o) - S fs(o),
for S € m(Xg;v), w € Map(Gg;m1(Xgz;v)) and 0 € G
Further we drop the indices , ,., to simplify the notation.

LEMMA 12.0.1. The map 7,4 is a representation of w1 (X z;v).

Proof. Let S,T € m(Xg;v). We have v(T)(r(S)w)(c) = T71(S~ .
w(0)-5 - §5(0)) - T-fr(0) = (S-T) " w(a) (S -T)- (T -fs(0) - T-fr(0) =
(S-T)twlo) - (S-T) fsr(o) = (S T)(w)(c). We recall that in our
notation S - T" means that first we go along 7" and then along S. Therefore
7 is a representation of m (X z;v).

We recall that k, : m (X 5;0v) — Qi{{X}} is a continous multiplicative
embedding given by ky(z;) = eXi for i = 1,...,n and that for a path p
from v to z we set A,(0) = kz(fp(0)).
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Let Map(Gx; Qi{{X}}) be the set of all maps from Gx to Q;{{X}}.
Observe that Map(Gr; Qi{{X}}) is a vector space over Q;. We denote by
GL(Map(Gk; Qi{{X}})) the group of linear automorphisms of the vector

space Map(Gr; Qi{{X}}).
Let us define a map

R, vp i m(Xg;v) — GL(Map(Gg; Qi{{X}}))

setting
Revip(S)(W)(0) := ka(S) ™1 - W(a) - ku(S) - As(o).

PROPOSITION 12.0.2. The map R ,.p is a representation of w1 (Xg;v).

Proof. To simplify the notation let us set R R, p. Let ST €
T1(Xg;v). We have R(T)(R(S)(W))(o )—k? ()~ (R(S)(W)(0)) - ks (T) -
Ar(o) = ke(T) 7" - (ke (S) - W (o) - Ky (S) 5(0)) - ko (T) - A ( ) = ka(S -
T)~1 - W(0) ke(S-T) ke (T)™' - As(0) - ko (T) - Ar(0) = R(S - T)(W)(0).

It follows from Lemma 10.3.1 that the embedding k, : m(Xgz;v) —
Q{{X}} extends uniquely to a continous multiplicative embedding k,

T (Xg;v) ® Q — Q{{X}.

PROPOSITION 12.0.3.  The representation R .., extends to the repre-
sentation

Rz,v;p $ T (X[_(; U) ®Q — GL(Map(GKa Ql{{X}}))

Let S € mi(Xg;v) ® Q. Then we have

Rz,v;p(s)(W)(U) = ]%:c(s)il -W(o) - l_ﬂx(s) ) Rz,v;p(s)(l)(a)'

Proof. We define an increasing filtration {W_;}ien of the Q;-vector
space Map(Gr; Qi{{X}}) setting

W_or = W_or_1 to be a set of all maps from Gk to Ik,

where I¥ is a k-th power of the augmentation ideal of Q;{{X}}. Let S €
m1(Xg;v) and let W € W_y;,. Then we have

R vip(S) (W) =W mod W_s(j41).-
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Hence the image of R, ,., is in the subgroup of pro-unipotent automor-
phisms of the vector space Map(Gr; Qi{{X}}). This implies that the rep-
resentation 2. .., extends to the representation

Rep s m1(Xgiv) ® Q = GL(Map(Gic; Qu{{X})).
Let S € m(Xz;v) ® Q be such that S € 71 (Xg;v). Then we have
Rewip(S")(W)(0) = ka(8"") 1 W (o) - ka(S™) - Agim (o),
where Agim (o) = R, 1,,(S")(1)(0). This implies that
R ip(S)(W)(0) = ka(S) ™" W(0) - k() - Reyoip(S)(1)(0)-
The elements S € 71(Xg;v) ® Q such that S € 7m(Xg;v) for some

m are dense in m(Xz;v) ® Q hence the last formula holds for any S €
m1(X5;v) ® Q. This finishes the proof of the proposition.

12.1. Now we shall study monodromy of l-adic polylogarithms, more
exactly, we shall study monodromy of coefficients at X" 'Y of the power
series A,(0). Let V = P} \ {0,1,00} and let p be a path from 0l to 2.
From now on the notation is the same as in Subsection 11.0.

We define functions \;(2)p, 1tj(2)p and v; j(2), from Gk to Q; by the
congruence

—1+Z X’“+ZA o)Xy

+Zﬂj yXITt ZVZ] o)XY X7
i,7=1
modulo the ideal generated by monomials with at least two Y’s.
The function A\(z), = l1(z), and the l-adic polylogarithms [;(z), can
be expressed by the function A;(z), and the functions [(z2), and A;(z), with
i < k.

ProrosITION 12.1.1. The monodromy transformation of functions
l(2)p and A (2)p is as follows:

n—1 n—i
z:l(z)p — U2)p+ (x—1), A(2)p — M(2)p + Z %)\i(z)p,
=1
n—1 n—i n—1
pn(2)p — pn(2)p + ZZQ (n— Z)|Mz( )p + (n — 1)|)‘1(Z)p
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and

y:l(z)p — U(2)p, M(2)p — Mi(2)p + (X — 1),
((z)p)""
An(2)p — An(2)p + X =T

| and . @)
forn > 1 and pn(2)p = pn(2)p — G2

Proof. The proposition follows from the formula
Aps(0) = k(S)™! - Ay(0) - k(S) - As (o),
which for S = x gives
Apo(o) =e X - Ay(o) - X)X

For S = y the formula is more complicated, however when we restrict our
attention to coefficients with only one Y then the formula have the same
simple form.
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