ON *l*-ADIC ITERATED INTEGRALS, II FUNCTIONAL EQUATIONS AND *l*-ADIC POLYLOGARITHMS

ZDZISŁAW WOJTKOWIAK

Abstract. We continue to study l-adic iterated integrals introduced in the first part. We shall show that the l-adic iterated integrals satisfy essentially the same functional equations as the classical complex iterated integrals. Next we are studying l-adic analogs of classical polylogarithms.

§9. Introduction to Part II

9.1. The classical complex iterated integrals satisfy functional equations (see [W1]). We shall show that *l*-adic iterated integrals satisfy the same functional equations as the classical complex iterated integrals.

First we introduce the following notation which we shall use in this paper. Let π (resp. L) be a group (resp. a Lie algebra). We denote by $\{\Gamma^k \pi\}_{k\geq 1}$ (resp. $\{\Gamma^k L\}_{k\geq 1}$) the lower central series of the group π (resp. the Lie algebra L).

We set

$$gr_{\Gamma}^k \pi := \Gamma^k \pi / \Gamma^{k+1} \pi$$
 (resp. $gr_{\Gamma}^k L := \Gamma^k L / \Gamma^{k+1} L$).

Before we formulate our main result we make a following remark. Let $Y = \mathbf{P}_K^1 \setminus \{b_1, \dots, b_{m+1}\}$. Then

$$\bigoplus_{k=1}^{\infty} gr_{\Gamma}^k \, \pi_1(Y(\mathbf{C}); x) \otimes \mathbf{Q}$$

is canonically isomorphic to a free Lie algebra over \mathbf{Q} on m generators Y_1, \ldots, Y_m , which we denote by $\mathrm{Lie}(Y_1, \ldots, Y_m)$. Hence any linear form φ on $gr^k_\Gamma \pi_1(Y(\mathbf{C}); x) \otimes \mathbf{Q}$ corresponds to a linear form φ on $\mathrm{Lie}(Y_1, \ldots, Y_m)$. Now we formulate our main result concerning functional equations.

Received January 7, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 11G55, 11G99, 14G32.

THEOREM D. Let $X = \mathbf{P}_K^1 \setminus \{a_1, \ldots, a_{n+1}\}$ and let $Y = \mathbf{P}_K^1 \setminus \{b_1, \ldots, b_{m+1}\}$. Let $z, v \in \hat{X}(K)$. Let $f_i : X \to Y$ be a smooth morphism and let $\varphi_i \in \text{Lie}(Y_1, \ldots, Y_m)^{\diamond}$ be a linear form of degree q defined over \mathbf{Q} for $i = 1, \ldots, N$. Let n_1, \ldots, n_N be rational numbers. If

$$\sum_{i=1}^{N} n_i \varphi_i \circ (f_i)_* = 0$$

in $\operatorname{Hom}(gr_{\Gamma}^{q}\pi_{1}(X(\mathbf{C});v);\mathbf{Q})$, where

$$(f_i)_*: gr_{\Gamma}^q \pi_1(X(\mathbf{C}); v) \longrightarrow gr_{\Gamma}^q \pi_1(Y(\mathbf{C}); f_i(v))$$

is the map induced by f_i on fundamental groups for i = 1, ..., N, then we have a functional equation

$$\sum_{i=1}^{N} n_i \mathcal{L}^{\varphi_i}(f_i(z), f_i(v)) = 0.$$

Next we generalize well known formulas

$$\int_{a}^{b} \omega + \int_{b}^{a} \omega = 0 \quad \text{and} \quad \int_{a}^{c} \omega = \int_{a}^{b} \omega + \int_{b}^{c} \omega$$

from the elementary calculus (ω is a one-form). We show the following result.

Theorem E. Let $z, y, v \in \hat{X}(K)$ and let $\varphi \in \text{Lie}(X_1, \dots, X_n)^{\diamond}$. Then we have

$$\mathcal{L}^{\varphi}(z,v) + \mathcal{L}^{\varphi}(v,z) = 0$$

and

$$\mathcal{L}^{\varphi}(z,v) = \mathcal{L}^{\varphi}(z,y) + \mathcal{L}^{\varphi}(y,v).$$

Let ω_1 , ω_2 be one-forms. The classical complex iterated integrals satisfy the following relations written here for two one-forms (see [Ch]).

i)
$$\int_{\gamma} \omega_1, \omega_2 + \int_{\gamma} \omega_2, \omega_1 = \int_{\gamma} \omega_1 \cdot \int_{\gamma} \omega_2$$

ii)
$$\int_{\alpha\beta}\omega_1, \omega_2 = \int_{\alpha}\omega_1, \omega_2 + \int_{\alpha}\omega_1 \cdot \int_{\beta}\omega_2 + \int_{\beta}\omega_1, \omega_2,$$

iii)
$$\int_{\gamma} \omega_1, \omega_2 = (-1)^2 \int_{\gamma^{-1}} \omega_2, \omega_1.$$

The analog of the formula i) is satisfied by "l-adic iterated integrals" (coefficients of the power series $\Lambda_p(\sigma)$) by the very definition because the image of the inclusion map of the fundamental group into the algebra of formal non-commutative power series is of the form $\exp L(\mathbf{X})$, where $L(\mathbf{X})$ is the set of Lie elements in the algebra of formal non-commutative power series.

The formula

$$\mathfrak{f}_{pq}(\sigma) = q^{-1} \cdot \mathfrak{f}_p(\sigma) \cdot q \cdot \mathfrak{f}_q(\sigma)$$

(see Part I Lemma 1.0.6), which after using suitable embeddings implies

$$\Lambda_{pq}(\sigma) = \Lambda_p(\sigma) \cdot \Lambda_q(\sigma)$$

is the analog of the formula ii).

We do not know how to show an analog of the formula iii) for "l-adic iterated integrals" (coefficients of the power series $\Lambda_p(\sigma)$). To complete the picture we are still missing several l-adic analogs in the following table.

classical iterated integrals	l-adic iterated integrals
values of Riemann zeta function at	Soulé classes for ${f Q}$
positive integers	
multivalue zeta numbers	values of l -adic iterated integrals
	at 1 and at roots of 1
multivalue zeta functions	?
shuffle relations for multivalue zeta	
numbers and multivalue zeta func-	?
tions	

The classical polylogarithms are the most important examples of iterated integrals. In Section 11 we introduce l-adic polylogarithms and we study their properties. We prove a theorem saying when a linear combination of l-adic polylogarithms is a cocycle. The reader can compare our result with Proposition in Section 4.6 of [BD]. In Section 11 we study functional equations of l-adic polylogarithms. We show that the l-adic dilogarithm satisfies the distribution relation

$$m\left(\sum_{i=0}^{m-1} l_2(\xi_m^i z)\right) = l_2(z^m)$$

on the Galois group $G_{\mathbf{Q}(\mu_m)}$ and the Abel five term functional equation on $G_{\mathbf{Q}(\mu_{l^{\infty}})}$.

These results are stronger than those in Theorem D in the sense that we get functional equations on the Galois groups $G_{\mathbf{Q}(\mu_n)}$ and $G_{\mathbf{Q}(\mu_{l\infty})}$, while the functional equations from Theorem D hold on the subgroup $\bigcap_{i=1}^N H_q(Y; f_i(z), f_i(v))$ of G_K .

§10. Functional equations

10.0. Let $X = \mathbf{P}_K^1 \setminus \{a_1, \dots, a_{n+1}\}$ and let $Y = \mathbf{P}_K^1 \setminus \{b_1, \dots, b_{m+1}\}$. Let $f: X \to Y$ be a smooth morphism. Let $z, v \in \hat{X}(K)$. The morphism f induces

$$f_*: \pi_1(X_{\bar{K}}; v) \longrightarrow \pi_1(Y_{\bar{K}}; f(v))$$

and

$$f_*: \pi(X_{\bar{K}}; z, v) \longrightarrow \pi(Y_{\bar{K}}; f(z), f(v)).$$

Let us fix a path p from v to z. We recall that for $\sigma \in G_K$ we have defined

$$\mathfrak{f}_p(\sigma) := p^{-1} \cdot \sigma(p).$$

Then we have

$$(10.0.1) f_*(\mathfrak{f}_p(\sigma)) = \mathfrak{f}_{f(p)}(\sigma).$$

Let $x = (x_1, \ldots, x_{n+1})$ (resp. $y = (y_1, \ldots, y_{m+1})$) be a sequence of geometric generators of $\pi_1(X(\mathbf{C}); v)$ (resp. $\pi_1(Y(\mathbf{C}); f(v))$). We set $\mathbf{X} := \{X_1, \ldots, X_n\}$ and $\mathbf{Y} := \{Y_1, \ldots, Y_n\}$. We recall that we have embeddings $k_x : \pi_1(X(\mathbf{C}); v) \to \mathbf{Q}_l\{\{\mathbf{X}\}\}$ and $k_y : \pi_1(Y(\mathbf{C}); f(v)) \to \mathbf{Q}_l\{\{\mathbf{Y}\}\}$ associated with a choice of sequences of geometric generators x of $\pi_1(X(\mathbf{C}); v)$ and y of $\pi_1(Y(\mathbf{C}); f(v))$. There is a homomorphism of \mathbf{Q}_l -algebras

$$f_{\diamond}: \mathbf{Q}_{l}\{\{\mathbf{X}\}\} \longrightarrow \mathbf{Q}_{l}\{\{\mathbf{Y}\}\}$$

such that

(10.0.2)
$$f_{\diamond} \circ k_x = k_y \circ f_*$$
 and $f_{\diamond} \circ k_{x,p} = k_{y,f(p)} \circ f_*$.

Let $\sigma \in G_{K(\mu_l \infty)}$. The equations (10.0.1) and (10.0.2) imply that

$$f_{\diamond} \circ \sigma_{x,p} = \sigma_{y,f(p)} \circ f_{\diamond}.$$

Hence we have

$$f_{\diamond} \circ \log \sigma_{x,p} = \log \sigma_{y,f(p)} \circ f_{\diamond}$$

and

(10.0.3)
$$f_{\diamond}((\log \sigma_{x,p})(1)) = (\log \sigma_{y,f(p)})(1).$$

The map f_{\diamond} induces a homomorphism of Lie algebras

$$f_{\diamond}: L(\mathbf{X}) \longrightarrow L(\mathbf{Y}).$$

Let

$$f_{\bullet}: \bigoplus_{i=1}^{\infty} gr_{\Gamma}^{i} L(\mathbf{X}) \longrightarrow \bigoplus_{i=1}^{\infty} gr_{\Gamma}^{i} L(\mathbf{Y})$$

be the map induced by f_{\diamond} on associated graded Lie algebras. The associated graded Lie algebras are canonically isomorphic to Lie(**X**) and Lie(**Y**). Hence the map f_{\diamond} induces

$$f_{\bullet}: \operatorname{Lie}(\mathbf{X}) \longrightarrow \operatorname{Lie}(\mathbf{Y}).$$

Let $\varphi \in \text{Lie}(\mathbf{Y})^{\diamond}$ be a linear form of degree q. Let us set

$$a_{x,p}^{\varphi \circ f_{\Diamond}} := \varphi(f_{\Diamond}((\log \sigma_{x,p})(1))).$$

(In Part I we defined coefficients $a_{x,p}^{\varphi}$ only for homogenous forms, hence we introduce this new definition.) It follows from (10.0.3) that

$$a_{x,p}^{\varphi \circ f_{\diamond}} = a_{u,f(p)}^{\varphi}.$$

The map f_{\diamond} is not homogenous. Therefore we have

(10.0.5)
$$a_{x,p}^{\varphi \circ f_{\diamond}} = a_{x,p}^{\varphi \circ f_{\bullet}} + \sum_{\deg \chi < q} a_{x,p}^{\chi}.$$

It follows from (10.0.4) and (10.0.5) that

(10.0.6)
$$\mathcal{L}^{\varphi \circ f_{\bullet}}(z, v) = \mathcal{L}^{\varphi}(f(z), f(v))$$

on the subgroup $H_q(X; z, v)$ of G_K .

Below we shall use fundamental groups of X or Y with various base points. Sequences of geometric generators and embeddings into algebras of non-commutative formal power series will be chosen as above.

Let v and v' belong to $\hat{X}(K)$. If $x = (x_1, \ldots, x_{n+1})$ is a sequence of geometric generators of $\pi_1(X(\mathbf{C}); v)$ and q is a path from v' to v then

 $q^{-1} \cdot x \cdot q := (q^{-1} \cdot x_1 \cdot q, \dots, q^{-1} \cdot x_{n+1} \cdot q)$ is a sequence of geometric generators of $\pi_1(X(\mathbf{C}); v')$. Then we have embeddings

$$k_x: \pi_1(X(\mathbf{C}); v) \longrightarrow \mathbf{Q}_l\{\{\mathbf{X}\}\}\$$

given by $k_x(x_i) = e^{X_i}$ for i = 1, ..., n and

$$k_{q^{-1}\cdot x\cdot q}: \pi_1(X(\mathbf{C}); v') \longrightarrow \mathbf{Q}_l\{\{\mathbf{X}\}\}$$

given by $k_{q^{-1}\cdot x\cdot q}(q^{-1}\cdot x_i\cdot q)=e^{X_i}$ for $i=1,\ldots,n$.

THEOREM 10.0.7. Let $f_i: X \to Y$ be a smooth morphism and let $\varphi_i \in L(Y_1, \ldots, Y_m)^{\diamond}$ be a linear form of degree q defined over \mathbf{Q} for $i = 1, \ldots, N$. Let $z, v \in \hat{X}(K)$. Let n_1, \ldots, n_N be rational numbers. If

$$\sum_{i=1}^{N} n_i \varphi_i \circ (f_i)_* = 0$$

in $\operatorname{Hom}(gr_{\Gamma}^{q} \pi_{1}(X(\mathbf{C}); v); \mathbf{Q})$, where

$$(f_i)_*: gr^q_\Gamma \pi_1(X(\mathbf{C}); v) \longrightarrow gr^q_\Gamma \pi_1(Y(\mathbf{C}); f_i(v))$$

is the map induced by f_i for i = 1, ..., N, then we have functional equations

$$\sum_{i=1}^{N} n_i \mathcal{L}^{\varphi_i}(f_i(z); f_i(v)) = 0$$

on the subgroup $H_q(X; z, v)$ of G_K and

$$\sum_{i=1}^{N} n_i a_{y_i, f_i(p)}^{\varphi_i} = \text{lower degree terms}$$

on G_K , where "lower degree terms" means a linear combination of $a_{x,p}^{\chi}$ with degree of χ strictly smaller than q and y_i is a sequence of geometric generators of $\pi_1(Y(\mathbf{C}); f_i(v))$ for i = 1, ..., N.

Proof. It follows from (10.0.6) that

$$\sum_{i=1}^{N} n_i \mathcal{L}^{\varphi_i}(f_i(z); f_i(v)) = \sum_{i=1}^{N} n_i \mathcal{L}^{\varphi_i \circ (f_i) \bullet}(z, v)$$
$$= \mathcal{L}^{\sum_{i=1}^{N} n_i \varphi_i \circ (f_i) \bullet}(z, v) = 0.$$

It follows from (10.0.4) and (10.0.5) that

$$\begin{split} \sum_{i=1}^N n_i a_{y_i,f_i(p)}^{\varphi_i} &= \sum_{i=1}^N n_i a_{x,p}^{\varphi_i \circ (f_i) \circ} = \sum_{i=1}^N n_i a_{x,p}^{\varphi_i \circ (f_i) \bullet} + \text{lower degree terms} \\ &= a_{x,p}^{\sum_{i=1}^N n_i \varphi_i \circ (f_i) \bullet} + \text{lower degree terms} = \text{lower degree terms}. \end{split}$$

10.1. Let p be a path from v to z. Let $x = (x_1, \ldots, x_{n+1})$ be a sequence of geometric generators of $\pi_1(X(\mathbf{C}); v)$. Then $x' := (p \cdot x_1 \cdot p^{-1}, \ldots, p \cdot x_{n+1} \cdot p^{-1})$ is a sequence of geometric generators of $\pi_1(X(\mathbf{C}); z)$. The action of $\sigma_{p^{-1}}$ on $\pi_1(X_{\bar{K}}; z)$ can be expressed in the following way by the action of σ_p on $\pi_1(X_{\bar{K}}; v)$. Let $\omega \in \pi_1(X_{\bar{K}}; z)$. Then $\sigma_{p^{-1}}(\omega) = p \cdot \sigma(p^{-1} \cdot \omega \cdot p) \cdot f_p(\sigma)^{-1} \cdot p^{-1}$. This implies that on $\mathbf{Q}_l\{\{\mathbf{X}\}\}$ we have

(10.1.0)
$$\sigma_{x,p} = L_{\Lambda_p(\sigma)} \circ \sigma_x \text{ and } \sigma_{x',p^{-1}} = R_{\Lambda_p(\sigma)^{-1}} \circ \sigma_x.$$

LEMMA 10.1.1. Let D be a derivation of the algebra $\mathbf{Q}_{l}\{\{\mathbf{X}\}\}\$ and let $\omega \in L(\mathbf{X})$. Then

$$L_{\omega} \bigcirc D = L_{\zeta} + D$$
 and $R_{-\omega} \bigcirc D = R_{-\zeta} + D$

for some $\zeta \in L(\mathbf{X})$.

Proof. The lemma follows from the identities

$$[L_{\omega}, D] = L_{-D(\omega)}, \quad [R_{-\omega}, D] = R_{D(\omega)}$$

and

$$[L_{\omega}, L_{-D(\omega)}] = L_{-[\omega, D(\omega)]}, \quad [R_{-\omega}, R_{D(\omega)}] = R_{[\omega, D(\omega)]}.$$

Theorem 10.1.2. Let $z,v\in \hat{X}(K)$ and let p be a path from v to z. Then we have

$$i) \mathcal{L}^e(z,v) + \mathcal{L}^e(v,z) = 0,$$

$$ii) \ a_{x,p}^e + a_{pxp^{-1},p^{-1}}^e = 0.$$

Proof. It follows from (10.1.0) that

$$(\log \sigma_{x',p^{-1}})(1) = (R_{-\log \Lambda_p(\sigma)} \bigcirc \log \sigma_x)(1).$$

It follows from Lemma 10.1.1 that

$$(R_{-\log \Lambda_p(\sigma)} \bigcirc \log \sigma_x)(1) = -(L_{\log \Lambda_p(\sigma)} \bigcirc \log \sigma_x)(1).$$

Hence we get that

$$(\log \sigma_{x',p^{-1}})(1) = -(\log \sigma_{x,p})(1).$$

Evaluating a linear form on both sides of the equation we get the theorem.

Theorem 10.1.3. Let $z, y, v \in \hat{X}(K)$. Then we have

$$\mathcal{L}^e(z,v) = \mathcal{L}^e(z,y) + \mathcal{L}^e(y,v).$$

Proof. Let p be a path from v to y, let r be a path from y to z and let $q = r \cdot p$. We have $\sigma_p = L_{\mathfrak{f}_p(\sigma)} \circ \sigma$ and $\sigma_q = L_{\mathfrak{f}_q(\sigma)} \circ \sigma$ on $\pi_1(X_{\bar{K}}; v)$ and $\sigma_r = L_{\mathfrak{f}_r(\sigma)} \circ \sigma$ on $\pi_1(X_{\bar{K}}; y)$. It follows from Lemma 1.0.6 that $\sigma_q = L_{p^{-1}\mathfrak{f}_r(\sigma)p} \circ \sigma_p$. Let us choose a sequence x of geometric generators of $\pi_1(X_{\bar{K}}; y)$. Then $x' = p^{-1} \cdot x \cdot p$ is a sequence of geometric generators of $\pi_1(X_{\bar{K}}; v)$. Observe that

$$\sigma_{x',q} = \sigma_{x,r} \circ \sigma_x^{-1} \circ \sigma_{x',p}.$$

Hence we get

$$\log \sigma_{x',q} = \log \sigma_{x,r} \bigcirc \log \sigma_x^{-1} \bigcirc \log \sigma_{x',p}.$$

Let σ belongs to the degree m step of the filtration defined in Section 3, i.e., $\sigma \in \mathcal{K}_m^T(X)$ for some finite subset $T \subset \hat{X}(K)^2$. Then

$$(\log \sigma_{x',p})(1) \equiv (\log \sigma_{x,r})(1) + (\log \sigma_{x',p})(1) \mod \Gamma^{m+1}L(\mathbf{X}).$$

Evaluating a linear form of degree m on both sides of the congruence we get the theorem.

10.2. It follows from Proposition 7.1.10 that relations between functions $\mathcal{L}^e(z,v)$ imply relations between symbols $\{z,v\}_e$. Hence we get the following result.

COROLLARY 10.2.1. Assume that Conjectures D_n are true for all n. Assume that for all n the maps realization: $\operatorname{Ext}^1_{\mathcal{MM}_K}(\mathbf{Q}(0),\mathbf{Q}(n))\otimes\mathbf{Q}\to H^1(G_K,\mathbf{Q}_l(n))$ are injective. Then we have

$${z,v}_e + {v,z}_e = 0$$

and

$$\{z,v\}_e = \{z,y\}_e + \{y,v\}_e$$

in $\mathcal{L}^K(X)$.

Proof. The corollary follows from Theorems 10.1.2 and 10.1.3 and Proposition 7.1.10.

10.3. Let π be a group. If π is nilpotent then we denote by $\pi \otimes \mathbf{Q}$ its rationalization. For an arbitrary group π , $\pi \otimes \mathbf{Q} := \varprojlim_n ((\pi/\Gamma^n \pi) \otimes \mathbf{Q})$ is a rational completion of π . The group $\pi_1(X_{\bar{K}};v)$ is equipped with a pro-finite topology. Hence every quotient $\pi_1(X_{\bar{K}};v)/\Gamma^n \pi_1(X_{\bar{K}};v)$ is equipped with a pro-finite topology. Therefore rationalization $(\pi_1(X_{\bar{K}};v)/\Gamma^n \pi_1(X_{\bar{K}};v)) \otimes \mathbf{Q}$ is a \mathbf{Q}_l -Lie group. Hence $\pi_1(X_{\bar{K}};v) \otimes \mathbf{Q} = \varprojlim_n ((\pi_1(X_{\bar{K}};v)/\Gamma^n \pi_1(X_{\bar{K}};v)) \otimes \mathbf{Q})$ is equipped with a topology of the inverse limit of \mathbf{Q}_l -Lie groups. The action of G_K on $\pi_1(X_{\bar{K}};v)$ extends uniquely to a continous action of G_K on $\pi_1(X_{\bar{K}};v) \otimes \mathbf{Q}$.

Now we shall define a rational completion of $\pi_1(X_{\bar{K}};v)$ -torsor $\pi(X_{\bar{K}};z,v)$. We introduce an equivalence relation on the product $\pi(X_{\bar{K}};z,v)\times \pi_1(X_{\bar{K}};v)\otimes \mathbf{Q}$. We say that a pair (p,S) is equivalent to a pair (q,T) and we write $(p,S)\sim (q,T)$ if $S=(p^{-1}\cdot q)\cdot T$ in $\pi_1(X_{\bar{K}};v)\otimes \mathbf{Q}$.

We set

$$\pi(X_{\bar{K}};z,v)\otimes\mathbf{Q}:=(\pi(X_{\bar{K}};z,v)\times\pi_1(X_{\bar{K}};v)\otimes\mathbf{Q})/\sim.$$

The Galois group G_K acts on the product $\pi(X_{\bar{K}};z,v) \times \pi_1(X_{\bar{K}};v) \otimes \mathbf{Q}$ component wise. The group $\pi_1(X_{\bar{K}};v) \otimes \mathbf{Q}$ acts on the product $\pi(X_{\bar{K}};z,v) \times \pi_1(X_{\bar{K}};v) \otimes \mathbf{Q}$ by the right multiplication on the second factor. Both actions are compatible with the equivalence relation \sim and continous. Hence G_K acts on the set of equivalence classes $\pi(X_{\bar{K}};z,v) \otimes \mathbf{Q}$. The action of $\pi_1(X_{\bar{K}};v) \otimes \mathbf{Q}$ on the product $\pi(X_{\bar{K}};z,v) \times \pi_1(X_{\bar{K}};v) \otimes \mathbf{Q}$ induces a structure of $\pi_1(X_{\bar{K}};v) \otimes \mathbf{Q}$ -torsor on the set of equivalence classes $\pi(X_{\bar{K}};z,v) \otimes \mathbf{Q}$. Elements of $\pi(X_{\bar{K}};z,v) \otimes \mathbf{Q}$ have the form $p \cdot S$, where p is in $\pi(X_{\bar{K}};z,v)$ and $S \in \pi_1(X_{\bar{K}};v) \otimes \mathbf{Q}$. We shall call them \mathbf{Q}_l -paths.

LEMMA 10.3.1. The embedding $k_x: \pi_1(X_{\bar{K}}; v) \to \mathbf{Q}_l\{\{\mathbf{X}\}\}$ extends uniquely to a continous multiplicative embedding $\bar{k}_x: \pi_1(X_{\bar{K}}; v) \otimes \mathbf{Q} \to \mathbf{Q}_l\{\{\mathbf{X}\}\}$.

Proof. The image of k_x is contained in $\mathbf{Q}_l\{\{\mathbf{X}\}\}^*$. The group $\mathbf{Q}_l\{\{\mathbf{X}\}\}^*$ is a pro-unipotent group with exponents in \mathbf{Q}_l . Hence k_x extends to \bar{k}_x : $\pi_1(X_{\bar{K}}; v) \otimes \mathbf{Q} \to \mathbf{Q}_l\{\{\mathbf{X}\}\}$.

Further we shall denote the embedding k_x by k_x . One shows that the formulas

$$\mathfrak{f}_{p \cdot q}(\sigma) = q^{-1} \cdot \mathfrak{f}_p(\sigma) \cdot q \cdot \mathfrak{f}_q(\sigma),
\Lambda_{p \cdot q}(\sigma) = \Lambda_p(\sigma) \cdot \Lambda_q(\sigma),
\Lambda_p(\tau \cdot \sigma) = \Lambda_p(\tau) \cdot \tau(\Lambda_p(\sigma))$$

and $g_*(\mathfrak{f}_p) = \mathfrak{f}_{g(p)}$, where $g: X_K \to X_K$ is a regular map, are valid also for \mathbf{Q}_l -paths p and q.

§11. *l*-adic polylogarithms

11.0. In this subsection we introduce l-adic polylogarithms. We give sufficient conditions when a linear combination of l-adic polylogarithms is a cocycle. Next we are studying a relative version of l-adic polylogarithms. We also show that l-adic polylogarithms are special case of l-adic iterated integrals introduced in Section 5.

Let K be a number field. Let $V = \mathbf{P}_K^1 \setminus \{0, 1, \infty\}$. Let x and y be standard generators of $\pi_1(V_{\bar{K}}; \overrightarrow{01})$ – loops around 0 and 1 respectively (see the Picture 1).

Picture 1

Let $k: \pi_1(V_{\bar{K}}; \overline{01}) \otimes \mathbf{Q} \to \mathbf{Q}_l\{\{X,Y\}\}$ be a multiplicative continous embedding given by $k(x) = e^X$ and $k(y) = e^Y$. We denote by $\mathrm{Lie}(X,Y)$ a free Lie algebra over \mathbf{Q}_l on X and Y and by L(X,Y) a completion of $\mathrm{Lie}(X,Y)$ with respect to the lower central series. We identify L(X,Y) with the Lie algebra of Lie elements in $\mathbf{Q}_l\{\{X,Y\}\}$.

Let us set $E_1 := Y$, $E_{k+1} := [E_k, X]$. Let \mathcal{B} be a base of Lie(X, Y) given by basic Lie elements. We assume that $E_k \in \mathcal{B}$ for $k = 1, 2, \ldots$

Let $z \in \hat{V}(K)$ and let p be a \mathbf{Q}_l -path from $\overrightarrow{01}$ to z. We recall that $\mathfrak{f}_p(\sigma) = p^{-1} \cdot \sigma(p) \in \pi_1(V_{\overline{K}}; \overrightarrow{01}) \otimes \mathbf{Q}$ and $\Lambda_p(\sigma) := k(\mathfrak{f}_p(\sigma)) \in \mathbf{Q}_l\{\{X,Y\}\}$ for any $\sigma \in G_K$.

If $e \in \mathcal{B}$ we denote by e^* the dual linear form to e with respect to \mathcal{B} .

Definition 11.0.1. Let $\sigma \in G_K$. We set

$$l_n(z)(\sigma) := E_n^*(\log \Lambda_p(\sigma))$$
 and $l(z)(\sigma) := X^*(\log \Lambda_p(\sigma)).$

The coefficient $l_n(z)$ is an l-adic polylogarithm (n-th order l-adic polylogarithm) evaluated at z. It is a function from G_K to $\mathbf{Q}_l(n)$. It depends on

a choice of p in $\pi(V_{\bar{K}}; z, \overrightarrow{01}) \otimes \mathbf{Q}$. The coefficient l(z) is an l-adic logarithm evaluated at z. If we are using various paths and it is important to indicate the dependence of $l_n(z)$ (resp. l(z)) on a path p we shall write $l_n(z)_p$ (resp. $l(z)_p$).

Definition 11.0.2. We set

$$\mathcal{L}_n(z) := l_n(z)_{|H_n(V;z,\overrightarrow{01})}.$$

Observe that $\mathcal{L}_n(z)$ depends only on z.

Let us set $e_1 := y$ and $e_{k+1} := (e_k, x)$. Observe that any element $g \in \pi_1(V_{\bar{K}}; \overrightarrow{01}) \otimes \mathbf{Q}$ can be written in the following form

$$g = x^{\alpha^{0}(g)} \cdot y^{\alpha^{1}(g)} \cdot e_{2}^{\alpha^{2}(g)} \cdot e_{3}^{\alpha^{3}(g)} \cdot ((y, x)y)^{\beta(g)} \cdot e_{4}^{\alpha^{4}(g)} \cdot f_{4} \cdot \dots \cdot e_{n}^{\alpha^{n}(g)} \cdot f_{n} \cdot \dots,$$

where the exponents are in \mathbf{Q}_l and each f_n is a product of powers of commutators of length n, which contain y at least twice.

DEFINITION 11.0.3. Let $\sigma \in G_K$. We define functions $\kappa_z^n : G_K \to \mathbf{Q}_l$ by the identity

$$\mathfrak{f}_p(\sigma) = x^{\kappa_z^0(\sigma)} \cdot y^{\kappa_z^1(\sigma)} \cdot e_2^{\kappa_z^2(\sigma)} \cdot e_3^{\kappa_z^3(\sigma)} \cdot f_3 \cdot e_4^{\kappa_z^4(\sigma)} \cdot f_4 \cdot \dots \cdot e_n^{\kappa_z^n(\sigma)} \cdot f_n \cdot \dots$$

Let $n \geq 1$. Then κ_z^n we view as a function from G_K to $\mathbf{Q}_l(n)$. κ_z^0 we view as a function from G_K to $\mathbf{Q}_l(1)$. We shall also use the notation $\kappa_0(z) := \kappa_z^0$ and $\kappa_1(z) := \kappa_z^1$. If we are using various paths and it is important to indicate the dependence of $\kappa_z^n(\sigma)$ on a path p we shall write $\kappa_z^n(\sigma)_p$.

We shall express *l*-adic polylogarithms in terms of functions κ_z^n .

Let $f \in L(X,Y)$. We define a derivation ad f of L(X,Y) setting (ad f)(g) = [f,g] for any $g \in L(X,Y)$.

Let I_k be a Lie ideal of L(X,Y) generated topologically by Lie brackets which contain Y at least k-times.

Lemma 11.0.4. We have

$$\log(k(e_{n+1})) = (-1)^n \sum_{k_1,\dots,k_n=1}^{\infty} \frac{1}{k_1! \cdots k_n!} (ad X)^{k_1 + \dots + k_n} (Y) \mod I_2.$$

Lemma 11.0.5. (see [B] chapitre II) We have

$$\log(e^X \cdot e^Y) = X + Y + \frac{1}{2}[X, Y] + \sum_{n=1}^{\infty} \frac{1}{(2n)!} B_{2n}(ad X)^{2n}(Y) \mod I_2.$$

Proposition 11.0.6. Let $\sigma \in G_K$. We have

$$\log \Lambda_{p}(\sigma) = \kappa_{z}^{0}(\sigma)X$$

$$+ \sum_{i=1}^{\infty} (-1)^{i-1} \kappa_{z}^{i}(\sigma) \left(\sum_{k_{1}, \dots, k_{i-1}=1}^{\infty} \frac{1}{k_{1}! \dots k_{i-1}!} (ad X)^{k_{1}+\dots+k_{i-1}}(Y) \right)$$

$$+ \frac{1}{2} \left[\kappa_{z}^{0}(\sigma)X, \sum_{i=1}^{\infty} (-1)^{i-1} \kappa_{z}^{i}(\sigma) \right]$$

$$\times \left(\sum_{k_{1}, \dots, k_{i-1}=1}^{\infty} \frac{1}{k_{1}! \dots k_{i-1}!} (ad X)^{k_{1}+\dots+k_{i-1}}(Y) \right)$$

$$+ \sum_{n=1}^{\infty} \frac{(\kappa_{z}^{0}(\sigma))^{2n}}{(2n)!} B_{2n}(ad X)^{2n} \left(\sum_{i=1}^{\infty} (-1)^{i-1} \kappa_{z}^{i}(\sigma) \right)$$

$$\times \left(\sum_{k_{1}, \dots, k_{i-1}=1}^{\infty} \frac{1}{k_{1}! \dots k_{i-1}!} (ad X)^{k_{1}+\dots+k_{i-1}}(Y) \right) \mod I_{2}.$$

Proof. The proposition follows from Lemmas 11.0.4 and 11.0.5.

Using Proposition 11.0.6 we can easily calculate l-adic polylogarithms in terms of functions κ_z^n . For example in small degrees we get the following result.

Corollary 11.0.7. We have

$$l(z) = \kappa_z^0, \quad l_1(z) = \kappa_z^1, \quad l_2(z) = \kappa_z^2 - \frac{1}{2}\kappa_z^0 \cdot \kappa_z^1$$

and

$$l_3(z) = \kappa_z^3 - \frac{1}{2}\kappa_z^0 \cdot \kappa_z^2 + \frac{1}{12}(\kappa_z^0)^2 \cdot \kappa_z^1 - \frac{1}{2}\kappa_z^2.$$

PROPOSITION 11.0.8. Let $\zeta \in \hat{V}(K)$ and let p be a \mathbf{Q}_l -path from $\overrightarrow{01}$ to ζ . Let q be the standard path from $\overrightarrow{01}$ to $\overrightarrow{10}$ (an interval [0,1]). Let $g: V_K \to V_K$ be given by g(z) = 1 - z. Then we have

$$l_1(\zeta)_p = l(1-\zeta)_{g(p)\cdot q}.$$

Proof. It follows from Corollary 11.0.7 that

$$\mathfrak{f}_p \equiv x^{l(\zeta)_p} \cdot y^{l_1(\zeta)_p} \mod \Gamma^2(\pi_1(V_{\bar{K}}; \overrightarrow{01}) \otimes \mathbf{Q}).$$

Observe that $g(p) \cdot q$ is a \mathbf{Q}_l -path from $\overrightarrow{01}$ to $1 - \zeta$. Hence we have

$$\mathfrak{f}_{g(p)\cdot q} \equiv x^{l(1-\zeta)_{g(p)\cdot q}} \cdot y^{l_1(1-\zeta)_{g(p)\cdot q}} \mod \Gamma^2(\pi_1(V_{\bar{K}}; \overrightarrow{01}) \otimes \mathbf{Q}).$$

On the other side

$$\mathfrak{f}_{g(p)\cdot q} = q^{-1} \cdot \mathfrak{f}_{g(p)} \cdot q \cdot \mathfrak{f}_q = q^{-1} \cdot g_*(\mathfrak{f}_p) \cdot q \cdot \mathfrak{f}_q
\equiv x^{l_1(\zeta)_p} \cdot y^{l(\zeta)_p} \mod \Gamma^2(\pi_1(V_{\bar{K}}; \overrightarrow{01}) \otimes \mathbf{Q})$$

because $q^{-1} \cdot g_*(x) \cdot q = y$, $q^{-1} \cdot g_*(y) \cdot q = x$ and $\mathfrak{f}_q \equiv 1 \mod \Gamma^2(\pi_1(V_{\bar{K}}; \overrightarrow{01}) \otimes \mathbf{Q})$. The proposition follows from the last two congruences.

THEOREM 11.0.9. Let $z_i \in \hat{V}(K)$, let $p_i \in \pi(V_{\bar{\mathbf{Q}}}; z_i, \overrightarrow{01}) \otimes \mathbf{Q}$ and let $n_i \in \mathbf{Q}_l$ for $i = 1, \ldots, N$. Let us assume that l-adic polylogarithms $l_k(z_i)$ calculated along the \mathbf{Q}_l -paths p_i for $i = 1, \ldots, N$ satisfy the following conditions

- i) $\sum_{i=1}^{N} n_i(l(z_i)(\tau))^{\alpha} \cdot (l(z_i)(\sigma))^{\beta} \cdot (l(z_i)(\tau) \cdot l_1(z_i)(\sigma) l(z_i)(\sigma) \cdot l_1(z_i)(\tau)) = 0 \text{ for any } \tau, \sigma \in G_K \text{ and for any } \alpha \text{ and } \beta \text{ such that } \alpha + \beta = n 2,$
- ii) $\sum_{i=1}^{N} n_i(l(z_i)(\tau))^{\alpha} \cdot (l(z_i)(\sigma))^{\beta} \cdot l_k(z_i)(\sigma) = 0$ for any $\tau, \sigma \in G_K$, for $k = 2, \ldots, n-1$ and for any α and β such that $\alpha + \beta = n-k$.

Then $\sum_{i=1}^{N} n_i l_n(z_i)$ is a cocycle on G_K with values in $\mathbf{Q}_l(n)$.

Proof. The equality $\Lambda_p(\tau\sigma) = \Lambda_p(\tau) \cdot \tau(\Lambda_p(\sigma))$ implies

$$\begin{split} \log \Lambda_p(\tau\sigma) &= \log \Lambda_p(\tau) + \log \tau(\Lambda_p(\sigma)) + \frac{1}{2} [\log \Lambda_p(\tau), \log(\tau(\Lambda_p(\sigma)))] \\ &- \frac{1}{12} [[\log \Lambda_p(\tau), \log(\tau(\Lambda_p(\sigma)))], \log \Lambda_p(\tau)] \\ &+ \frac{1}{12} [[\log \Lambda_p(\tau), \log(\tau(\Lambda_p(\sigma)))], \log(\tau(\Lambda_p(\sigma)))] \\ &- \frac{1}{24} [[[\log \Lambda_p(\tau), \log(\tau(\Lambda_p(\sigma)))], \log(\tau(\Lambda_p(\sigma)))], \log \Lambda_p(\tau)] + \cdots . \end{split}$$

Comparing coefficients at E_n we get

$$l_{n}(z)(\tau\sigma) = l_{n}(z)(\tau) + \chi(\tau)^{n}l_{n}(z)(\sigma)$$

$$+ \frac{1}{2}(l_{n-1}(z)(\tau)\chi(\tau)l(z)(\sigma) - \chi(\tau)^{n-1}l_{n-1}(z)(\sigma)l(z)(\tau))$$

$$- \frac{1}{12}(l_{n-2}(z)(\tau)\chi(\tau)l(z)(\tau)l(z)(\sigma) - \chi(\tau)^{n-2}l_{n-2}(z)(\sigma)(l(z)(\tau))^{2})$$

$$+ \frac{1}{12}(l_{n-2}(z)(\tau)\chi(\tau)^{2}(l(z)(\sigma))^{2} - \chi(\tau)^{n-1}l_{n-2}(z)(\sigma)l(z)(\tau)l(z)(\sigma))$$

$$- \frac{1}{24}(l_{n-3}(z)(\tau)\chi(\tau)^{2}l(z)(\tau)(l(z)(\sigma))^{2}$$

$$- \chi(\tau)^{n-2}l_{n-3}(z)(\sigma)(l(z)(\tau))^{2}l(z)(\sigma)) + \cdots .$$

The assumptions of the theorem imply that

$$\sum_{i=1}^{N} n_i l_n(z_i)(\tau \sigma) = \sum_{i=1}^{N} n_i l_n(z_i)(\tau) + \chi(\tau)^n \sum_{i=1}^{N} n_i l_n(z_i)(\sigma).$$

The *l*-adic polylogarithm $l_n(z)_p$ depends on a choice of a \mathbf{Q}_l -path from $\overrightarrow{01}$ to z. We have the following elementary result.

LEMMA 11.0.10. Let p be a \mathbf{Q}_l -path from $\overrightarrow{01}$ to z and let $S \in \pi_1(V_{\overline{K}}, \overrightarrow{01}) \otimes \mathbf{Q}$. If $S \equiv x^{\alpha} \cdot y^{\beta} \mod \Gamma^2(\pi_1(V_{\overline{K}}; \overrightarrow{01}) \otimes \mathbf{Q})$ then $l(z)_{pS} = l(z)_p + \alpha(\chi - 1)$ and $l_1(z)_{pS} = l_1(z)_p + \beta(\chi - 1)$.

Proof. We have $\mathfrak{f}_{pS}(\sigma) = S^{-1} \cdot \mathfrak{f}_p(\sigma) \cdot \sigma(S)$. Hence $\Lambda_{pS}(\sigma) = k(S)^{-1} \cdot \Lambda_p(\sigma) \cdot k(\sigma(S))$. Let $S = x^{\alpha} \cdot y^{\beta} \cdot e_2^{\beta_2} \cdot e_3^{\beta_3} \cdot f_3 \cdot e_4^{\beta_4} \cdot \cdots$. Therefore $\log \Lambda_{pS}(\sigma) = (-\log(e^{\alpha X} \cdot e^{\beta Y} \cdot (e^X \cdot e^Y \cdot e^{-X} \cdot e^{-Y})^{\beta_2} \cdot \cdots)) \bigcirc \log \Lambda_p(\sigma) \bigcirc \log(e^{\alpha \chi(\sigma)X} \cdot e^{\beta \chi(\sigma)Y} \cdot (e^{\chi(\sigma)X} \cdot e^{\chi(\sigma)Y} \cdot e^{-\chi(\sigma)X} \cdot e^{-\chi(\sigma)Y})^{\beta_2} \cdot \cdots) \equiv -\alpha X - \beta Y + l(z)_p(\sigma)X + l_1(z)_p(\sigma)Y + \alpha \chi(\sigma)X + \beta \chi(\sigma)Y \mod \Gamma^2 L(X,Y)$. The lemma follows from the congruence.

THEOREM 11.0.11. Let $z_i \in V(K)$, let $p_i \in \pi(V_{\bar{K}}; z_i, \overrightarrow{01}) \otimes \mathbf{Q}$ and let $n_i \in \mathbf{Q}$ for i = 1, ..., N. Let \mathcal{S} be a subgroup of $K^* \otimes \mathbf{Q}$ generated by z_i and $1 - z_i$ for i = 1, ..., N. Assume that

- i) the map $\varphi: \mathcal{S} \to Z^1(G_K; \mathbf{Q}_l(1))$ given by $\varphi(z_i) = l(z_i)_{p_i}$ and $\varphi(1 z_i) = l_1(z_i)_{p_i}$ is well defined and it is a homomorphism;
- ii) $\sum_{i=1}^{N} n_i \nu_1(z_i) \cdots \nu_{n-2}(z_i)(z_i) \wedge (1-z_i) = 0$ in $(S \wedge S) \otimes \mathbf{Q}_l$ for any homomorphisms ν_1, \ldots, ν_{n-2} from S to \mathbf{Q}_l ;

iii) $\sum_{i=1}^{N} n_i \cdot \nu_1(z_i)^{\alpha} \cdot \nu_2(z_i)^{\beta} \cdot l_k(z_i)(\sigma) = 0$ for any homomorphisms ν_1 and ν_2 from S to \mathbf{Q}_l , for any $\sigma \in G_K$, for $k = 2, \ldots, n-1$ and for any α and β such that $\alpha + \beta = n - k$.

Then $\sum_{i=1}^{N} n_i l_n(z_i)_{p_i}$ is a cocycle on G_K with values in $\mathbf{Q}_l(n)$.

Proof. Let us fix $\tau \in G_K$. The map $\mathcal{S} \to \mathbf{Q}_l(1)$ given by $s \to \varphi(s)(\tau)$ $(z_i \to l(z_i)(\tau))$ is a homomorphism. Let us fix $\tau, \sigma \in G_K$. The map $\mathcal{S} \otimes \mathcal{S} \to \mathbf{Q}_l(2)$, $x \otimes y \to \varphi(x)(\tau) \cdot \varphi(y)(\sigma) - \varphi(x)(\sigma) \cdot \varphi(y)(\tau)$ $(z_i \otimes (1-z_i) \to l(z_i)(\tau) \cdot l_1(z_i)(\sigma) - l(z_i)(\sigma) \cdot l_1(z_i)(\tau))$ factors through $\mathcal{S} \wedge \mathcal{S}$. Hence the theorem follows from Theorem 11.0.9.

COROLLARY 11.0.12. Let ξ_m be a m-th root of 1 different from 1. There is a \mathbf{Q}_l -path p from $\overrightarrow{01}$ to ξ_m such that $l_n(\xi_m)_p$ is a cocycle on $G_{\mathbf{Q}(\mu_m)}$. If l does not divide m then one can choose the path p in $\pi(V_{\overline{\mathbf{Q}}}; \xi_m, \overrightarrow{01})$.

Proof. Let $m = l^{k_0} \cdot r$, where l does not divide r. Let q be a path from $\overrightarrow{01}$ to ξ_m . There are α , β and γ in \mathbf{Z}_l such that $(\xi_{l^{k_0+n}}^{\alpha} \cdot \xi_{l^n}^{\beta/l^n} \cdot \xi_{l^n}^{\gamma})_{n \in \mathbb{N}}$ is a compatible family of l^n -th roots of ξ_m determined by the path q. Hence $l(\xi_m)_q = (\frac{\alpha}{k_0} + \gamma)(\chi - 1)$. Lemma 11.0.10 implies that there is a \mathbf{Q}_l -path p from $\overrightarrow{01}$ to ξ_m such that $l(\xi_m)_p = 0$. Theorem 11.0.9 implies that $l_n(\xi_m)_p$ is a cocycle. Observe that if $k_0 = 0$ then one can choose p in $\pi(V_{\overline{\mathbf{Q}}}; \xi_m, \overrightarrow{01})$.

The classical polylogarithms are iterated integrals defined by $\int_0^z \frac{dz}{1-z}, \frac{dz}{z}, \dots, \frac{dz}{z}$. The iterated integral $\int_a^b \frac{dz}{1-z}, \frac{dz}{z}, \dots, \frac{dz}{z}$ can be express by classical polylogarithms. Now we shall define a normalized analog of the iterated integral $\int_a^b \frac{dz}{1-z}, \frac{dz}{z}, \dots, \frac{dz}{z}$.

Let $z,v\in \hat{V}(K)$. Let q be a path from $\overrightarrow{01}$ to v and let p be a path from v to z. We shall define relative polylogarithms $l_n(z,v)$. Let us set $x_1:=q\cdot x\cdot q^{-1}, y_1:=q\cdot y\cdot q^{-1}$. Observe that x_1,y_1 are generators of $\pi_1(V_{\bar{K}};v)$. Let $G_{n+1}\subset \pi_1(V_{\bar{K}};\overrightarrow{01})$ (resp. $G'_{n+1}\subset \pi_1(V_{\bar{K}};v)$) be a closed normal subgroup generated by $\Gamma^{n+1}\pi_1(V_{\bar{K}};\overrightarrow{01})$ (resp. $\Gamma^{n+1}\pi_1(V_{\bar{K}};v)$) and all commutators which contain y (resp. y_1) at least twice. Let $\pi:=\pi_1(V_{\bar{K}};\overrightarrow{01})/G_{n+1}$ and $\pi':=\pi_1(V_{\bar{K}};v)/G'_{n+1}$.

It follows from Proposition 2.2.1 that the action of G_K on π' is given by

$$\sigma(x_1) = (q \cdot \mathfrak{f}_q(\sigma) \cdot q^{-1}) \cdot x_1^{\chi(\sigma)} \cdot (q \cdot (\mathfrak{f}_q(\sigma))^{-1} \cdot q^{-1}) \mod G'_{m+1}$$

and

$$\sigma(y_1) = (q \cdot \mathfrak{f}_q(\sigma) \cdot q^{-1}) \cdot y_1^{\chi(\sigma)} \cdot (q \cdot (\mathfrak{f}_q(\sigma))^{-1} \cdot q^{-1}) \mod G'_{m+1}.$$

LEMMA 11.0.13. The action of G_K on $\pi_1(V_{\bar{K}};v)$ induced from the action on the torsor $\pi(V_{\bar{Q}};z,v)$ by the isomorphism t_p (see Part I Section 1) is given by

$$\sigma_p(w) = (q \cdot \mathfrak{f}_{pq}(\sigma) \cdot q^{-1}) \cdot \bar{\sigma}(w) \cdot (q \cdot (\mathfrak{f}_q(\sigma))^{-1} \cdot q^{-1}) \mod G'_{n+1},$$

where $\bar{\sigma}(x_1) = x_1^{\chi(\sigma)}$, $\bar{\sigma}(y_1) = y_1^{\chi(\sigma)}$ and $\bar{\sigma}$ is continous and multiplicative.

Proof. The formula for $\sigma_p(w)$ follows from Lemma 1.0.2 and Lemma 1.0.6.

Let I be the augmentation ideal of $\mathbf{Q}_{l}\{\{X,Y\}\}$ and let J_{n+1} be a closed ideal of $\mathbf{Q}_{l}\{\{X,Y\}\}$ generated by I^{n+1} and all monomials which contain Y at least twice. We define two maps

$$k: \pi_1(V_{\bar{K}}; \overrightarrow{01}) \longrightarrow \mathbf{Q}_l\{\{X,Y\}\}/J_{n+1}$$
 and $k': \pi_1(V_{\bar{K}}; v) \longrightarrow \mathbf{Q}_l\{\{X,Y\}\}/J_{n+1}$

by $k(x) = e^X$, $k(y) = e^Y$ and $k'(x_1) = e^X$, $k'(y_1) = e^Y$.

Let $(\)_p:G_K\to GL(\mathbf{Q}_l\{\{X,Y\}\}/J_{n+1})$ be the action of G_K induced from the action of G_K on the torsor $\pi(V_{\bar{\mathbf{Q}}};z,v)$ by the isomorphism t_p and the embedding k'.

Let us set

$$\psi_p(\sigma) := \sigma_p \circ \rho(\chi(\sigma)^{-1}).$$

We recall that $E_1 := Y$ and $E_{k+1} := [E_k, X]$ for k = 1, ..., n-1. Then any Lie element of $\mathbf{Q}_l\{\{X,Y\}\}/J_{n+1}$ is a linear combination with \mathbf{Q}_l coefficients of $X, E_1, ..., E_n$. If $g \in \pi'$ then $\log k'(g)$ is a Lie element of $\mathbf{Q}_l\{\{X,Y\}\}/J_{n+1}$.

Definition 11.0.14. Let $\sigma \in G_K$. We set

$$(\log \psi_p(\sigma))(1) = l(z, v)_p(\sigma)X + \sum_{k=1}^n l_k(z, v)_p(\sigma)E_k.$$

Proposition 11.0.15. We have

$$l_n(z,v)_p = l_n(z)_{pq} - l_n(v)_q.$$

Proof. Observe that $k'(q \cdot \mathfrak{f}_{pq}(\sigma) \cdot q^{-1}) = k(\mathfrak{f}_{pq}(\sigma)) = \Lambda_{pq}(\sigma)$ and $k'(q \cdot (\mathfrak{f}_q(\sigma))^{-1} \cdot q^{-1}) = k((\mathfrak{f}_q(\sigma))^{-1}) = (\Lambda_q(\sigma))^{-1}$. Let $\sigma \in G_K$. It follows from Lemma 11.0.13 that

$$\psi_p(\sigma) = L_{\Lambda_{pq}(\sigma)} \circ R_{(\Lambda_q(\sigma))^{-1}}.$$

This implies that

$$\log \psi_p(\sigma) = L_{\log \Lambda_{nq}(\sigma)} \bigcirc R_{-\log \Lambda_q(\sigma)}.$$

The operators $L_{\log \Lambda_{pq}(\sigma)}$ and $R_{-\log \Lambda_q(\sigma)}$ commute. Hence $\log \psi_p(\sigma) = L_{\log \Lambda_{pq}(\sigma)} + R_{-\log \Lambda_q(\sigma)}$. This implies the proposition.

Corollary 11.0.16. We have

$$l_n(z, \overrightarrow{01})_p = l_n(z)_p.$$

Proof. It follows from Proposition 11.0.15 that $l_n(z, \overrightarrow{01})_p = l_n(z)_p - l_n(\overrightarrow{01})_c$, where c is a constant path. For such a path $l_n(\overrightarrow{01})_c = 0$.

Remark. The relative polylogarithm $l_n(z,v)$ is the function $a_p^{E_n}$ from Section 5. Hence the l-adic polylogarithm $l_n(z)_p$ is also a special case of l-adic iterated integrals defined in Section 5.

We finish this subsection with a result expressing coefficiets of \mathfrak{f}_p in degree one for an arbitrary X by l-adic logarithms.

PROPOSITION 11.0.17. Let $X = \mathbf{P}_K^1 \setminus \{a_1, \dots, a_n, \infty\}$, let $z, v \in \hat{X}(K)$ and let p be a path from v to z. Let $g_i : X \to \mathbf{P}_K^1 \setminus \{0, \infty\}$ be given by $g_i(z) = z - a_i$ for $i = 1, \dots, n$. Then

$$\mathfrak{f}_p \equiv x_1^{l(z-a_1)_{g_1(p)\cdot q_1} - l(v-a_1)_{q_1}} \cdot \dots \cdot x_n^{l(z-a_n)_{g_n(p)\cdot q_n} - l(v-a_n)_{q_n}} \mod \Gamma^2 \pi_1(X_{\bar{K}}; v),$$

where q_i is any path from $\overrightarrow{01}$ to $v - a_i$ on $\mathbf{P}^1_{\overline{K}} \setminus \{0, \infty\}$ for $i = 1, \ldots, n$.

Proof. Without loss of generality we can suppose that $X = \mathbf{P}_K^1 \setminus \{a, \infty\}$ and $g: X \to \mathbf{P}_K^1 \setminus \{0, \infty\}$ is given by g(z) = z - a. Let p be a path from v to z on $X_{\bar{K}}$. Then g(p) is a path from v - a to z - a on $\mathbf{P}_K^1 \setminus \{0, \infty\}$. Let q be any path from $\overline{01}$ to v - a on $\mathbf{P}_{\bar{K}}^1 \setminus \{0, \infty\}$. We have

$$\mathfrak{f}_{g(p)\cdot q} = q^{-1} \cdot \mathfrak{f}_{g(p)} \cdot q \cdot \mathfrak{f}_q = q^{-1} \cdot g_*(\mathfrak{f}_p) \cdot q \cdot \mathfrak{f}_q.$$

It follows from Corollary 11.0.7 that

$$x^{l(z-a)_{g(p)\cdot q}} = q^{-1} \cdot g_*(\mathfrak{f}_p) \cdot q \cdot x^{l(v-a)_q},$$

where x is a loop around 0. Hence we get that $\mathfrak{f}_p = x_a^{l(z-a)_{g(p)\cdot q}-l(v-a)_q}$ where $g_*(x_a) = q \cdot x \cdot q^{-1}$.

11.1. In this subsection we shall study functional equations of l-adic polylogarithms. We shall prove the distribution relation and the Abel five term equation for l-adic dilogarithms. We shall show that l-adic dilogarithms satisfy these functional equations without lower degree terms.

We start with the discussion of the l-adic analog of the functional equation

$$\log(x \cdot y) = \log x + \log y$$

of the classical logarithm.

PROPOSITION 11.1.0. Let $\zeta, y \in \mathbf{P}^1(K) \setminus \{0, \infty\}$. Then there exist paths γ from $\overrightarrow{01}$ to ζ , δ from $\overrightarrow{01}$ to y and φ from $\overrightarrow{01}$ to $y \cdot \zeta$ such that

$$l(y \cdot \zeta)_{\varphi} = l(y)_{\delta} + l(\zeta)_{\gamma}$$

on G_K .

Proof. Let $g: \mathbf{P}_K^1 \setminus \{0, \infty\} \to \mathbf{P}_K^1 \setminus \{0, \infty\}$ be given by $g(z) = y \cdot z$. Let p be a path from $\overrightarrow{01}$ to ζ . Then g(p) is a path from $\overrightarrow{0y}$ to $y \cdot \zeta$. We recall that x is a standard generator of $\pi_1(\mathbf{P}_{\overline{K}}^1 \setminus \{0, \infty\}, \overrightarrow{01})$. Let us fix a path q from $\overrightarrow{01}$ to $\overrightarrow{0y}$. Let us set $x' = q \cdot x \cdot q^{-1}$. Then x' is a generator of $\pi_1(\mathbf{P}_{\overline{K}}^1 \setminus \{0, \infty\}, \overrightarrow{0y})$. Observe that $g_*(x) = x'$. It follows from Corollary 11.0.7 that

$$\mathfrak{f}_p(\sigma) = x^{l(\zeta)_p(\sigma)}$$
 and $\mathfrak{f}_{g(p)\cdot q}(\sigma) = x^{l(y\cdot\zeta)_{g(p)\cdot q}(\sigma)}$.

On the other side we have

$$\mathfrak{f}_{g(p)\cdot q}(\sigma) = q^{-1} \cdot \mathfrak{f}_{g(p)}(\sigma) \cdot q \cdot \mathfrak{f}_{q}(\sigma) = q^{-1} \cdot g_{*}(\mathfrak{f}_{p}(\sigma)) \cdot q \cdot \mathfrak{f}_{q}(\sigma)
= x^{l(\zeta)_{p}(\sigma)} \cdot x^{l(\overrightarrow{0y})_{q}(\sigma)} = x^{l(\zeta)_{p}(\sigma) + l(\overrightarrow{0y})_{q}(\sigma)}.$$

Comparing exponents we get

$$l(y \cdot \zeta)_{g(p) \cdot q} = l(\zeta)_p + l(\overrightarrow{0y})_q.$$

Let t be the canonical path from $\overrightarrow{0y}$ to y. Then $t \cdot q$ is a path from $\overrightarrow{01}$ to y (see Picture 2).

We have $x^{l(y)_{t\cdot q}(\sigma)} = \mathfrak{f}_{t\cdot q}(\sigma) = q^{-1} \cdot \mathfrak{f}_t(\sigma) \cdot q \cdot \mathfrak{f}_q(\sigma) = q^{-1} \cdot \mathfrak{f}_t(\sigma) \cdot q \cdot x^{l(\overrightarrow{0y})_q(\sigma)}$. It rests to calculate $\mathfrak{f}_t(\sigma)$. Without loss of generality we can suppose that y = 1 and t is the canonical path from $\overrightarrow{01}$ to 1. Then it is clear that $\mathfrak{f}_t(\sigma) = 1$. Hence $l(\overrightarrow{0y})_q = l(y)_{t\cdot q}$. This finishes the proof of the proposition.

Picture 2

Now we shall discuss the l-adic analog of the functional equation

$$Li_2(z^m) = m\left(\sum_{i=0}^m Li_2(\xi_m^i z)\right)$$

of the classical dilogarithm. Let $Y = \mathbf{P}^1_{\mathbf{Q}(\mu_m)} \setminus \{0, \mu_m, \infty\}$ and $V = \mathbf{P}^1_{\mathbf{Q}(\mu_m)} \setminus \{0, 1, \infty\}$. We choose generators x', y_0, \dots, y_{m-1} of $\pi_1(Y_{\bar{\mathbf{Q}}}, \overrightarrow{01})$ as on the picture.

Picture 3

Let $f: Y \to V$ be given by $f(z) = z^m$. We have $f_*(x') = x^m$, $f_*(y_0) = y$ and $f_*(y_i) = x^{-i} \cdot y \cdot x^i$. Let $z \in \hat{Y}(\mathbf{Q}(\mu_m))$ and let p be a path from $\overrightarrow{01}$

to z. We define functions $\lambda(z)$, $\mu_0(z)$,..., $\mu_{m-1}(z)$, $\nu_0(z)$,..., $\nu_{m-1}(z)$ from $G_{\mathbf{Q}(\mu_m)}$ to \mathbf{Z}_l by the following congruence

(11.1.1)
$$\mathfrak{f}_{p} \equiv x'^{\lambda(z)} \cdot y_{0}^{\mu_{0}(z)} \cdot y_{1}^{\mu_{1}(z)} \cdot \dots \cdot y_{m-1}^{\mu_{m-1}(z)} \\
\cdot (y_{0}, x')^{\nu_{0}(z)} \cdot \dots \cdot (y_{m-1}, x')^{\nu_{m-1}(z)} \\
\cdot \prod_{i < j} (y_{i}, y_{j})^{\alpha_{ij}(z)} \mod \Gamma^{3} \pi_{1}(Y_{\bar{\mathbf{Q}}}; \overline{01}).$$

Observe that f(p) is a path from $\overrightarrow{01}$ to z^m . Hence we have

$$\mathfrak{f}_{f(p)} \equiv x^{\kappa_{zm}^0} \cdot y^{\kappa_{zm}^1} \cdot (y, x)^{\kappa_{zm}^2} \mod \Gamma^3 \pi_1(V_{\bar{\mathbf{Q}}}; \overrightarrow{01}),$$

(see Definition 11.0.3).

LEMMA 11.1.2. We have $\kappa_{z^m}^0 = m\lambda(z)$, $\kappa_{z^m}^1 = \mu_0(z) + \mu_1(z) + \cdots + \mu_{m-1}(z)$ and $\kappa_{z^m}^2 = m(\nu_0(z) + \cdots + \nu_{m-1}(z)) + \mu_1(z) + \cdots + i\mu_i(z) + \cdots + (m-1)\mu_{m-1}(z)$.

Proof. We have

$$f_* \mathfrak{f}_p \equiv x^{m\lambda(z)} \cdot y^{\mu_0(z)} \cdot x^{-1} \cdot y^{\mu_1(z)} \cdot x \cdot \cdots \\ \cdot x^{-(m-1)} \cdot y^{\mu_{m-1}(z)} \cdot x^{m-1} \cdot (y, x)^{m(\nu_0(z) + \cdots + \nu_{m-1}(z))} \\ \equiv x^{m\lambda(z)} \cdot y^{\mu_0(z) + \cdots + \mu_{m-1}(z)} \cdot (y, x)^{m(\nu_0(z) + \cdots + \nu_{m-1}(z)) + \sum_{i=0}^{m-1} i\mu_i(z)} \\ \mod \Gamma^3 \pi_1(V_{\overline{\mathbf{0}}}; \overrightarrow{01}).$$

Observe that $f_* \mathfrak{f}_p = \mathfrak{f}_{f(p)}$. Comparing exponents of $f_* \mathfrak{f}_p$ and $\mathfrak{f}_{f(p)}$ we get the equalities of the lemma.

Let q_i be a path from $\overrightarrow{0\xi_m^i}$ to $\overrightarrow{01}$ as on Picture 4.

Let us set $x_i := q_i^{-1} \cdot x' \cdot q_i$ and $y_k^{(i)} := q_i^{-1} \cdot y_k \cdot q_i$. Let $f_i : Y \to V$ be given by $f_i(z) = \xi_m^{-i} \cdot z$. Observe that $(f_i)_* \overrightarrow{0\xi_m^i} = \overrightarrow{01}$, $(f_i)_* (x_i) = x$, $(f_i)_* (y_i^{(i)}) = y$ and $(f_i)_* (y_k^{(i)}) = 1$ for $k \neq i$.

Lemma 11.1.3. We have

$$\kappa_{\xi_m^{-i}z}^0 = \lambda(z) + \frac{i}{m}(1-\chi), \quad \kappa_{\xi_m^{-i}z}^1 = \mu_i(z) \quad and \quad \kappa_{\xi_m^{-i}z}^2 = \nu_i(z) + \frac{i}{m}(1-\chi)\mu_i(z).$$

Picture 4

Proof. $f_i(pq_i)$ is a path from $\overrightarrow{01}$ to $\xi_m^{-i}z$. Hence we have

$$\mathfrak{f}_{f_i(pq_i)} \equiv x^{\kappa_{\xi_m^{-i}z}^0} \cdot y^{\kappa_{\xi_m^{-i}z}^1} \cdot (y, x)^{\kappa_{\xi_m^{-i}z}^2} \mod \Gamma^3 \pi_1(V_{\bar{\mathbf{Q}}}; \overrightarrow{01}),$$

by the Definition 11.0.3. On the other side

$$(f_i)_* \mathfrak{f}_{pq_i} = (f_i)_* (q_i^{-1} \cdot \mathfrak{f}_p \cdot q_i) \cdot (f_i)_* (\mathfrak{f}_{q_i}).$$

Hence it follows from (11.1.1) that

$$(f_i)_* \mathfrak{f}_{pq_i} \equiv x^{\lambda(z)} \cdot y^{\mu_i(z)} \cdot (y, x)^{\nu_i(z)} \cdot x^{\frac{i}{m}(1-\chi)}$$

$$\equiv x^{\lambda(z) + \frac{i}{m}(1-\chi)} \cdot y^{\mu_i(z)} \cdot (y, x)^{\nu_i(z) + \frac{i}{m}(1-\chi)\mu_i(z)} \mod \Gamma^3 \pi_1(V_{\bar{\mathbf{O}}}; \overrightarrow{01}).$$

We have the identity

$$(f_i)_*\mathfrak{f}_{pq_i}=\mathfrak{f}_{f_i(pq_i)}.$$

Hence comparing exponents of $(f_i)_* \mathfrak{f}_{pq_i}$ and $\mathfrak{f}_{f_i(pq_i)}$ we get the equalities of the lemma.

PROPOSITION 11.1.4. Let $l_2(z^m)$ be calculated along the path f(p) and let $l_2(\xi_m^{-i}z)$ be calculated along the \mathbf{Q}_l -path $f_i(pq_i)\cdot x^{\frac{i}{m}}$ for $i=0,1,\ldots,m-1$. Then we have

$$l_2(z^m) = m \left(\sum_{i=0}^{m-1} l_2(\xi_m^{-i} z) \right).$$

Proof. It follows from Corollary 11.0.7 that

$$l_2(z)_p(\sigma) = \kappa_z^2(\sigma)_p - \frac{1}{2}\kappa_z^0(\sigma)_p \cdot \kappa_z^1(\sigma)_p.$$

Hence it follows from Lemma 11.1.2 that

$$l_2(z^m)_{f(p)} = m\left(\sum_{i=0}^{m-1} \nu_i(z)\right) + \sum_{i=0}^{m-1} i\mu_i(z) - \frac{1}{2}m\lambda(z)\left(\sum_{i=0}^{m-1} \mu_i(z)\right).$$

Let us calculate $l_2(\xi_m^{-i}z)_{f_i(pq_i)\cdot x^{\frac{i}{m}}}.$ We have

$$\mathfrak{f}_{f_i(pq_i)\cdot x^{\frac{i}{m}}}(\sigma) = x^{-\frac{i}{m}} \cdot \mathfrak{f}_{f_i(pq_i)}(\sigma) \cdot x^{\frac{i}{m}\chi(\sigma)}.$$

Hence it follows from Lemma 11.1.3 that

$$l_2(\xi_m^{-i}z)_{f_i(pq_i)x^{\frac{i}{m}}} = \nu_i(z) + \frac{i}{m}\mu_i(z) - \frac{1}{2}\lambda(z)\mu_i(z).$$

Comparing formulas for $l_2(z^m)_{f(p)}$ and $l_2(\xi_m^{-i}z)_{f_i(pq_i)\cdot x^{\frac{i}{m}}}$ we get

$$l_2(z^m)_{f(p)} = m \left(\sum_{i=0}^{m-1} l_2(\xi_m^{-i} z)_{f_i(pq_i) \cdot x^{\frac{i}{m}}} \right).$$

The classical dilogarithm satisfy the functional equation

$$Li_2\left(\frac{(1-y)z}{z-1}\right) - Li_2(yz) + Li_2\left(\frac{(z-1)y}{1-y}\right) - Li_2\left(\frac{y}{y-1}\right) + Li_2(z)$$
= lower degree terms.

We shall prove its l-adic analog.

Let $V = \mathbf{P}_K^1 \setminus \{0, 1, \infty\}$ and let $Y = \mathbf{P}_K^1 \setminus \{0, 1, \frac{1}{y}, \infty\}$, where $y \in K \setminus \{0, 1\}$. Let $\xi, \zeta \in \hat{V}(K)$ and let π be a path from ξ to ζ and let ρ be a path from 01 to ξ (see Picture 5).

Picture 5

Let us set

$$x' = \rho \cdot x \cdot \rho^{-1}$$
 and $y' = \rho \cdot y \cdot \rho^{-1}$

where x, y are generators of $\pi_1(V_{\bar{K}}; \overrightarrow{01})$ as in 11.0. We define functions $\mathfrak{k}(\pi)$, $\mathfrak{k}_1(\pi)$ and $\mathfrak{k}_2(\pi)$ from G_K to \mathbf{Z}_l by the following congruence

$$\mathfrak{f}_{\pi} \equiv x'^{\mathfrak{k}(\pi)} \cdot y'^{\mathfrak{k}_1(\pi)} \cdot (y', x')^{\mathfrak{k}_2(\pi)} \mod \Gamma^3 \pi_1(V_{\bar{K}}; \xi).$$

Lemma 11.1.5. i) We have

$$l_2(\zeta)_{\pi\rho} - l_2(\xi)_{\rho} = \mathfrak{k}_2(\pi) - \frac{1}{2}\mathfrak{k}(\pi)\mathfrak{k}_1(\pi) - \frac{1}{2}\kappa_{\zeta}^0\kappa_{\xi}^1 + \frac{1}{2}\kappa_{\xi}^0\kappa_{\zeta}^1.$$

ii) If we replace ρ by $\rho_1 = \rho \cdot x^a$ then in terms of new generators $x'' = \rho_1 \cdot x \cdot \rho_1^{-1}$, $y'' = \rho_1 \cdot y \cdot \rho_1^{-1}$ the triple $\mathfrak{k}(\pi)$, $\mathfrak{k}_1(\pi)$, $\mathfrak{k}_2(\pi)$ is replaced by the triple $\mathfrak{k}(\pi)$, $\mathfrak{k}_1(\pi)$, $\mathfrak{k}_2(\pi) + a\mathfrak{k}_1(\pi)$.

Proof. It follows from the formula $\mathfrak{f}_{\pi\rho} = \rho^{-1}\mathfrak{f}_{\pi}\rho \cdot \mathfrak{f}_{\rho}$ (see Lemma 1.0.6) that $\Lambda_{\pi\rho}(\sigma) = \Lambda_{\pi}(\sigma) \cdot \Lambda_{\rho}(\sigma)$, where $\Lambda_{\pi}(\sigma)$ is the image of \mathfrak{f}_{π} by the embedding of $\pi_1(V_{\bar{K}};\xi)$ into $\mathbf{Q}_l\{\{X,Y\}\}$ sending x' to e^X and y' to e^Y . Applying logarithm we get

$$\log \Lambda_{\pi\rho}(\sigma) \bigcirc (-\log \Lambda_{\rho}(\sigma)) = \log \Lambda_{\pi}(\sigma).$$

Comparing coefficient at [Y, X] we get

$$l_2(\zeta)_{\pi\rho} - l_2(\xi)_{\rho} = \mathfrak{k}_2(\pi) - \frac{1}{2}\mathfrak{k}(\pi)\mathfrak{k}_1(\pi) - \frac{1}{2}\kappa_{\zeta}^0\kappa_{\xi}^1 + \frac{1}{2}\kappa_{\xi}^0\kappa_{\zeta}^1.$$

The second part of the lemma follows from the congruence $y'' = x'^a \cdot y' \cdot x'^{-a} \equiv y' \cdot (y', x')^{-a} \mod \Gamma^3 \pi_1(V_{\overline{K}}; \xi)$.

Definition 11.1.6. Let us set

$$K(\zeta,\xi):=-\kappa_\zeta^0\kappa_\xi^1+\kappa_\xi^0\kappa_\zeta^1.$$

Observe that $K(\zeta, \xi)$ is a function from G_K to \mathbf{Q}_l . After the restriction to $G_{K(\mu_{l^{\infty}})}$ the function $K(\zeta, \xi)$ does not depend on a choice of paths from $\overline{01}$ to ξ and ζ .

Now we start to look for l-adic analog of the 5-term functional equation of the classical dilogarithm. Let $f(z) = \frac{(1-y)z}{z-1}$, g(z) = yz, $h(z) = \frac{(z-1)y}{1-y}$ and k(z) = z. Observe that f, g, h and k define regular maps from Y to V.

Picture 6

Let v be a tangential base point at 0 corresponding to the local parameter yz at 0. Let x_0, x_1, x_y, x_∞ be geometric generators of $\pi_1(Y_{\bar{\mathbf{Q}}}; v)$ – loops around 0, 1, $\frac{1}{v}$ and ∞ respectively (see Picture 6).

We assume that

$$x_{\infty} \cdot x_{y} \cdot x_{1} \cdot x_{0} = 1.$$

Let $z \in \hat{Y}(K)$ and let $p \in \pi(Y_{\overline{K}}; z, v)$. We introduce functions $\lambda(z)$, $\mu(z)$, $\nu(z)$, $\alpha(z)$, $\beta(z)$ and $\gamma(z)$ from G_K to \mathbf{Z}_l by the following congruence

$$(11.1.7) \quad \mathfrak{f}_p \equiv x_0^{\lambda(z)} \cdot x_1^{\mu(z)} \cdot x_y^{\nu(z)} \cdot (x_1, x_0)^{\alpha(z)} \cdot (x_y, x_0)^{\beta(z)} \cdot (x_y, x_1)^{\gamma(z)}$$

$$\mod \Gamma^3 \pi_1(Y_{\bar{\nu}}; v).$$

We recall that $f: Y \to V$ is given by $f(z) = \frac{(1-y)z}{z-1}$. Observe that $f_*(v) = w$, where w is a tangential base point at 0 corresponding to the local parameter $\frac{y}{y-1} \cdot z$ at 0. Let us set $x' := f_*(x_0)$ and $y' := f_*(x_y)$. Observe that $f(\infty) = 1 - y$. This implies that $f_*(x_\infty) = 1$. Therefore $f_*(x_1) = y'^{-1} \cdot x'^{-1}$. Let q be a path from $\overrightarrow{01}$ to $f_*(v)$ such that $q \cdot x \cdot q^{-1} = x'$ and $q \cdot y \cdot q^{-1} = y'$ (see Picture 7).

By the definition of functions \mathfrak{k} and \mathfrak{k}_i we have

$$\mathfrak{f}_{f(p)} \equiv x'^{\mathfrak{k}(f(p))} \cdot y'^{\mathfrak{k}_1(f(p))} \cdot (y', x')^{\mathfrak{k}_2(f(p))} \mod \Gamma^3 \pi_1(V_{\bar{K}}, f_*(v)).$$

Picture 7

Applying f_* to (11.1.7) we get

$$f_* \mathfrak{f}_p \equiv x'^{\lambda(z) - \mu(z)} \cdot y'^{\nu(z) - \mu(z)} \cdot (y', x')^{-\alpha(z) + \beta(z) - \gamma(z) + \frac{1}{2}\mu(z)^2 + \frac{1}{2}\mu(z)}$$

$$\mod \Gamma^3 \pi_1(V_{\bar{K}}, f_*(v)).$$

The equality $f_*\mathfrak{f}_p=\mathfrak{f}_{f(p)}$ implies

(11.1.8)
$$\mathfrak{k}(f(p)) = \lambda(z) - \mu(z), \quad \mathfrak{k}_1(f(p)) = \nu(z) - \mu(z)$$

and

(11.1.8)
$$\mathfrak{k}_2(f(p)) = -\alpha(z) + \beta(z) - \gamma(z) + \frac{1}{2}\mu(z)^2 + \frac{1}{2}\mu(z).$$

We recall that $g: Y \to V$ is given by g(z) = yz. Observe that $g_*(v) = \overrightarrow{01}$, $g_*(x_0) = x$, $g_*(x_1) = 1$ and $g_*(x_y) = y$. Comparing coefficients of $\mathfrak{f}_{g(p)}$ and $g_*\mathfrak{f}_p$ we get

(11.1.9)
$$\mathfrak{k}(g(p)) = \lambda(z), \quad \mathfrak{k}_1(g(p)) = \nu(z), \quad \mathfrak{k}_2(g(p)) = \beta(z).$$

We recall that $h: Y \to V$ is given by $h(z) = \frac{(z-1)y}{1-y}$. Observe that $h_*(v) = \frac{y}{y-1}$. Let us set $x_h := h_*(x_1)$ and $y_h := h_*(x_y)$. Notice that $h_*(x_0) = 1$. Let r be a path from $\overrightarrow{01}$ to $\frac{y}{y-1}$ such that $r \cdot x \cdot r^{-1} = x_h$ and $r \cdot y \cdot r^{-1} = y_h$ (see Picture 8).

Picture 8

Comparing coefficients of $\mathfrak{f}_{h(p)}$ and $h_*\mathfrak{f}_p$ we get

(11.1.10)
$$\mathfrak{k}(h(p)) = \mu(z), \quad \mathfrak{k}_1(h(p)) = \nu(z), \quad \mathfrak{k}_2(h(p)) = \gamma(z).$$

We recall that $k: Y \to V$ is given by k(z) = z. Observe that $k_*(v) = v$. Let us set $x_k := k_*(x_0)$ and $y_k := k_*(x_1)$. We have $k_*(x_y) = 1$. Let s be a path from $\overrightarrow{01}$ to v such that

$$s \cdot x \cdot s^{-1} = x_k$$
 and $s \cdot y \cdot s^{-1} = y_k$

(see Picture 9).

Comparing coefficients of $\mathfrak{f}_{k(p)}$ and $k_*\mathfrak{f}_p$ we get

(11.1.11)
$$\mathfrak{k}(k(p)) = \lambda(z), \quad \mathfrak{k}_1(k(p)) = \mu(z), \quad \mathfrak{k}_2(k(p)) = \alpha(z).$$

Picture 9

It follows from the equalities (11.1.8)–(11.1.11) that

$$\begin{split} \mathring{\mathfrak{k}}_{2}(f(p)) - \frac{1}{2} \mathring{\mathfrak{k}}(f(p)) \mathring{\mathfrak{k}}_{1}(f(p)) - \mathring{\mathfrak{k}}_{2}(g(p)) + \frac{1}{2} \mathring{\mathfrak{k}}(g(p)) \mathring{\mathfrak{k}}_{1}(g(p)) \\ + \mathring{\mathfrak{k}}_{2}(h(p)) - \frac{1}{2} \mathring{\mathfrak{k}}(h(p)) \mathring{\mathfrak{k}}_{1}(h(p)) + \mathring{\mathfrak{k}}_{2}(k(p)) - \frac{1}{2} \mathring{\mathfrak{k}}(k(p)) \mathring{\mathfrak{k}}_{1}(k(p)) = \frac{1}{2} \mu(z). \end{split}$$

Lemma 11.1.13. On $G_{K(\mu_{l^{\infty}})}$ we have the following equality

$$K(f(z), f_*(v)) - K(g(z), g_*(v)) + K(h(z), h_*(v)) + K(k(z), k_*(v)) = 0.$$

Proof. We recall that $\kappa_0(z) = \kappa_z^0$ and $\kappa_1(z) = \kappa_z^1$. Hence we have

$$\begin{split} K(f(z),f_{*}(v)) - K(g(z),g_{*}(v)) + K(h(z),h_{*}(v)) + K(k(z),k_{*}(v)) \\ &= K(f(z),w) - K(g(z),\overrightarrow{01}) + K\Big(h(z),\frac{y}{y-1}\Big) + K(k(z),v) \\ &= -\kappa_{0}\Big(\frac{(1-y)z}{z-1}\Big)\kappa_{1}(w) + \kappa_{0}(w)\kappa_{1}\Big(\frac{(1-y)z}{z-1}\Big) + \kappa_{0}(yz)\kappa_{1}(\overrightarrow{01}) \\ &- \kappa_{0}(\overrightarrow{01})\kappa_{1}(yz) - \kappa_{0}\Big(\frac{(z-1)y}{1-y}\Big)\kappa_{1}\Big(\frac{y}{y-1}\Big) \\ &+ \kappa_{0}\Big(\frac{y}{y-1}\Big)\kappa_{1}\Big(\frac{(z-1)y}{1-y}\Big) - \kappa_{0}(z)\kappa_{1}(v) + \kappa_{0}(v)\kappa_{1}(z). \end{split}$$

One checks that $\kappa_0(\overrightarrow{0a}) = \kappa_0(a)$ and $\kappa_1(\overrightarrow{0a}) = 0$. The lemma follows from the fact that $\kappa_0(x \cdot y) = \kappa_0(x) + \kappa_0(y)$ and $\kappa_1(z) = \kappa_0(1-z)$ on $G_{K(\mu_l \infty)}$.

THEOREM 11.1.14. There are paths (\mathbf{Q}_2 -paths if l=2) from $\overrightarrow{01}$ to points $\frac{(1-y)z}{z-1}$, yz, $\frac{(z-1)y}{1-y}$, $\frac{y}{y-1}$ and z such that on $G_{K(\mu_{l^{\infty}})}$ for l-adic dilogarithms calculated along these paths we have

$$l_2\left(\frac{(1-y)z}{z-1}\right) - l_2(yz) + l_2\left(\frac{(z-1)y}{1-y}\right) - l_2\left(\frac{y}{y-1}\right) + l_2(z) = 0.$$

Proof. It follows from Lemma 11.1.5, the equality (11.1.12) and Lemma 11.1.13 that

$$l_2(f(z)) - l_2(f_*(v)) - l_2(g(z)) + l_2(g_*(v))$$

+ $l_2(h(z)) - l_2(h_*(v)) + l_2(k(z)) - l_2(k_*(v)) = \frac{1}{2}\mu(z).$

To eliminate $\frac{1}{2}\mu(z)$ we replace the path s by $s'=s\cdot x^{-1/2}$. Then $x'_k=s'\cdot x\cdot s'^{-1}=x_k$ and $y'_k=(s\cdot x^{-1/2})\cdot y\cdot (s\cdot x^{-1/2})^{-1}=s\cdot y\cdot (y,x)^{1/2}\cdot s^{-1}=y_k\cdot (y_k,x_k)^{1/2}$. In terms of generators x'_k and y'_k of $\pi_1(V_{\bar{K}};v)$ we have

$$\mathfrak{k}_2(k(p)) = \alpha(z) - \frac{1}{2}\mu(z).$$

Observe that $l_2(\overrightarrow{0a}) = 0$. Hence we get

$$l_2\left(\frac{(1-y)z}{z-1}\right) - l_2(yz) + l_2\left(\frac{(z-1)y}{1-y}\right) - l_2\left(\frac{y}{y-1}\right) + l_2(z) = 0$$

for *l*-adic dilogarithms calculated along the paths $f(p) \cdot q$, g(p), $h(r) \cdot r$, r and $k(p) \cdot s \cdot x^{-1/2}$ respectively.

It would be interesting to choose paths in such a way that we get the Abel equation on G_K without lower degree terms.

11.2. Now we shall discuss functional equations of arbitrary l-adic polylogarithms. The next result is a corollary of Theorem 10.0.7. We recall that a subgroup G_{n+1} of $\pi_1(V_{\bar{\mathbf{Q}}}; \overrightarrow{01})$ was defined at the end of Subsection 11.0.

We are not able to show that after a suitable choice of paths l-adic polylogarithms satisfy functional equations without lower degree terms. We have only the following result.

THEOREM 11.2.1. Let K be a number field and let $V = \mathbf{P}_K^1 \setminus \{0, 1, \infty\}$. Let a_1, \ldots, a_{m+1} be K-points of \mathbf{P}_K^1 and let $Y = \mathbf{P}_K^1 \setminus \{a_1, \ldots, a_{m+1}\}$. Let $n_i \in \mathbf{Z}$ for i = 1, ..., N and let $f_i : Y \to V$ be regular maps defined over K for i = 1, ..., N. Let $z, v \in \hat{Y}(K)$. Let us assume that $\sum_{i=1}^{N} n_i(f_i)_* = 0$ in

$$\operatorname{Hom}(\Gamma^n \pi_1(Y_{\bar{K}}; v) / \Gamma^{n+1} \pi_1(Y_{\bar{K}}; v); \Gamma^n \pi_1(V_{\bar{\mathbf{Q}}}; \overrightarrow{01}) / G_{n+1}).$$

Then we have a functional equation

$$\sum_{i=1}^{N} n_i (\mathcal{L}_n(f_i(z)) - \mathcal{L}_n(f_i(v))) = 0$$

on the subgroup $H_n(Y; z, v)$ of G_K .

Proof. The theorem follows from Theorem 10.0.7 and Proposition 11.0.15.

COROLLARY 11.2.2. Let ξ_m be a primitive m-th root of 1. Then we have

$$m^{n-1}\left(\sum_{k=0}^{m-1} \mathcal{L}_n(\xi_m^k z)\right) = \mathcal{L}_n(z^m)$$

on the subgroup $H_n(\mathbf{P}^1_{\mathbf{Q}(\mu_m)} \setminus \{0, \mu_m, \infty\}; z, \overrightarrow{01})$ of $G_{\mathbf{Q}(\mu_m)}$.

In Part III we shall need a special case of the equality from Corollary 11.2.2.

COROLLARY 11.2.3. Let ξ_m be a primitive m-th root of 1. Then we have

$$m^{n-1}\left(\sum_{k=0}^{m-1} \mathcal{L}_n(\xi_m^k)\right) = \mathcal{L}_n(1)$$

on the subgroup $H_n(\mathbf{P}_{\mathbf{Q}(\mu_m)}\setminus\{0,\mu_m,\infty\};\overrightarrow{10},\overrightarrow{01})$ of $G_{\mathbf{Q}(\mu_m)}$, where $\mathcal{L}_n(1):=\mathcal{L}_n(\overrightarrow{10})$.

Both corollaries follow immediately from Theorem 11.2.1. We give however a detailed proof of Corollary 11.2.3 because of it importance in Part III.

Proof of Corollary 11.2.3. We shall use the notation of Subsection 11.1, where we discussed the *l*-adic analog of the functional equation $Li_2(z^m) = m(\sum_{i=0}^m Li_2(\xi_m^i z))$. We shall use also the following notation. If a and b are

elements of a group then $(a, b^1) := (a, b) = a \cdot b \cdot a^{-1} \cdot b^{-1}$ and $(a, b^n) := ((a, b^{n-1}), b)$ for n > 1.

We recall that $Y = \mathbf{P}^1_{\mathbf{Q}(\mu_m)} \setminus \{0, \mu_m, \infty\}$ and $f: Y \to V$ is given by $f(z) = z^m$. Let p be a path from $\overrightarrow{01}$ to $\overrightarrow{10}$, the interval [0,1]. Let $\sigma \in H_n(Y; \overrightarrow{10}, \overrightarrow{01})$. Then we have

$$\mathfrak{f}_{p}(\sigma) \equiv (y_{0}, x'^{n-1})^{\nu_{0}^{n}(\overrightarrow{10})(\sigma)} \cdot \dots \cdot (y_{m-1}, x'^{n-1})^{\nu_{m-1}^{n}(\overrightarrow{10})(\sigma)}$$

modulo a subgroup generated by $\Gamma^{n+1}\pi_1(Y_{\overline{K}}; \overrightarrow{01})$ and commutators which contain at least two y's. Observe that f(p) is a path from $\overrightarrow{01}$ to $m \cdot \overrightarrow{10}$. Then for any $\sigma \in H_n(V; \overrightarrow{10}, \overrightarrow{01})$, and therefore also for any $\sigma \in H_n(Y; \overrightarrow{10}, \overrightarrow{01})$ we have

$$\mathfrak{f}_{f(p)}(\sigma) \equiv (y, x^{n-1})^{\kappa_{\overrightarrow{10}}^n(\sigma)} \mod G_{n+1}.$$

It follows from the equality $f_*\mathfrak{f}_p=\mathfrak{f}_{f(p)}$ that

(11.2.4)
$$m^{n-1}(\nu_0^n(\overrightarrow{10}) + \dots + \nu_{m-1}^n(\overrightarrow{10})) = \kappa_{\overrightarrow{10}}^n$$

on $H_n(Y; \overrightarrow{10}, \overrightarrow{01})$. We recall that $f_i: Y \to V$ is given by $f_i(z) = \xi_m^{-i} \cdot z$. Observe that $(f_i)_* \mathfrak{f}_{pq_i}(\sigma) \equiv (y, x^{n-1})^{\nu_i(\overrightarrow{10})(\sigma)} \mod G_{n+1}$ for $\sigma \in H_n(Y; \overrightarrow{10}, \overrightarrow{01}) = H_n(Y; \overrightarrow{10}, \overrightarrow{01})$ and $\mathfrak{f}_{f_i(pq_i)}(\sigma) \equiv (y, x^{n-1})^{\kappa_{\xi_m^{-i}}^n(\sigma)} \mod G_{n+1}$ for $\sigma \in H_n(Y; \overrightarrow{t0}, \overrightarrow{01}) = H_n(Y; \overrightarrow{10}, \overrightarrow{01})$, where q_i is a path from $0 \in G_m$ to $0 \in G_m$ as on Picture 4. Hence we get

(11.2.5)
$$\nu_i^n(\overrightarrow{10}) = \kappa_{\xi_m^{-i}}^n$$

on $H_n(Y; \overline{\xi_n^{-i}0}, \overrightarrow{01}) = H_n(Y; \overrightarrow{10}, \overrightarrow{01})$. It follows from (11.2.4) and (11.2.5) that

$$m^{n-1}\left(\sum_{i=0}^{m-1}\kappa_{\xi_m^{-i}}^n\right) = \kappa_{10}^n$$

on $H_n(Y; \overrightarrow{\xi_n^{-i}0}, \overrightarrow{01}) = H_n(Y; \overrightarrow{10}, \overrightarrow{01})$. For $\sigma \in H_n(Y; \overrightarrow{10}, \overrightarrow{01})$ we have $\kappa_{\xi_m^{-i}}^n(\sigma) = \mathcal{L}_n(\xi_m^{-i})(\sigma)$ and $\kappa_{\overrightarrow{10}}^n(\sigma) = \mathcal{L}_n(\overrightarrow{10})(\sigma)$. This finishes the proof of Corollary 11.2.3.

One of the most useful functional equations of classical polylogarithms is the relation between $Li_n(z)$ and $Li_n(\frac{1}{z})$. For l-adic polylogarithms we have the following result.

COROLLARY 11.2.6. For any $z \in V(K)$, we have

$$\mathcal{L}_n(z) + (-1)^n \mathcal{L}_n\left(\frac{1}{z}\right) = 0$$

on the subgroup $H_n(V_{\bar{\mathbf{Q}}}; z, \overrightarrow{01})$.

Proof. It follows from Theorem 11.2.1 that

$$\mathcal{L}_n(z) - \mathcal{L}_n(\overrightarrow{01}) + (-1)^n \left(\mathcal{L}_n\left(\frac{1}{z}\right) - \mathcal{L}_n(\overrightarrow{\infty 1}) \right) = 0.$$

 $\mathcal{L}_n(\overrightarrow{01})$ vanishes. Hence we have to calculate $\mathcal{L}_n(\overrightarrow{\infty 1})$. Let p a path from $\overrightarrow{01}$ to $\overrightarrow{10}$ and let s a path from $\overrightarrow{10}$ to $\overrightarrow{1\infty}$ as on the picture.

Picture 10

Let $g: V \to V$ be given by $g(z) = \frac{1}{z}$. Let us set $q:=g(p)^{-1} \cdot s \cdot p$. We denote by π'' the subgroup $[\Gamma^2 \pi_1(V_{\bar{K}}; \overrightarrow{01}), \Gamma^2 \pi_1(V_{\bar{K}}; \overrightarrow{01})]$ of $\pi_1(V_{\bar{K}}; \overrightarrow{01})$. Let $(\Gamma^{n+1}\pi_1(V_{\bar{K}}; \overrightarrow{01}), \pi'')$ be a normal subgroup of $\pi_1(V_{\bar{K}}; \overrightarrow{01})$ generated by $\Gamma^{n+1}\pi_1(V_{\bar{K}}; \overrightarrow{01})$ and π'' .

Let $\sigma \in H_n(V_{\bar{\mathbf{O}}}; z, \overrightarrow{01})$. Then we have

(11.2.7)
$$\mathfrak{f}_{q}(\sigma) = \prod_{i+j=n, i \geq 1, j \geq 1} (((y, x)x^{i-1})y^{j-1})^{\kappa_{i,j}(\overrightarrow{\infty 1})(\sigma)} \mod (\Gamma^{n+1}\pi_{1}(V_{\bar{K}}, \overrightarrow{01}), \pi'').$$

for some $\kappa_{i,j}(\overrightarrow{\infty 1})(\sigma) \in \mathbf{Z}_l$. It follows from Lemma 1.0.6 and from equality (10.0.1) that

(11.2.8)
$$\mathfrak{f}_q = q^{-1} \cdot g_*(\mathfrak{f}_p)^{-1} \cdot q \cdot p^{-1} \cdot \mathfrak{f}_s \cdot p \cdot \mathfrak{f}_p.$$

Observe that

(11.2.9)
$$q^{-1} \cdot g_*(y) \cdot q = y$$
 and $q^{-1} \cdot g_*(x) \cdot q = x^{-1} \cdot y^{-1}$.

Let $\sigma \in H_n(V_{\bar{\mathbf{Q}}}; z, \overrightarrow{01})$. Then we have

$$(11.2.10) \quad \mathfrak{f}_{p}(\sigma) = \prod_{i+j=n, i \ge 1, j \ge 1} (((y, x)x^{i-1})y^{j-1})^{\kappa_{i,j}(\overrightarrow{10})(\sigma)}$$
$$\mod (\Gamma^{n+1}\pi_{1}(V_{\overline{K}}, \overrightarrow{01}), \pi'')$$

for some $\kappa_{i,j}(\overrightarrow{10})(\sigma) \in \mathbf{Z}_l$. It follows from (11.2.7)–(11.2.10) that

$$\kappa_{n-1,1}(\overrightarrow{\infty 1}) = (-1)^n \kappa_{n-1,1}(\overrightarrow{10})(\sigma) + \kappa_{n-1,1}(\overrightarrow{10})(\sigma).$$

Hence $\kappa_{n-1,1}(\overrightarrow{\infty 1}) = 0$ if n is odd.

We shall show that $\kappa_{n-1,1}(\overrightarrow{10})$ vanishes for n even. Let x, y and z be generators of $\pi_1(V_{\overline{K}}; \overrightarrow{01})$ as on the picture.

Picture 11

Then we have $z \cdot y \cdot x = 1$. It follows from Proposition 2.2.1 that

$$(\mathfrak{f}_q(\sigma)(x,y))^{-1} \cdot z^{\chi(\sigma)} \cdot (\mathfrak{f}_q(\sigma)(x,y)) \cdot (\mathfrak{f}_p(\sigma)(x,y))^{-1} \cdot y^{\chi(\sigma)} \cdot (\mathfrak{f}_p(\sigma)(x,y)) \cdot x^{\chi(\sigma)} = 1.$$

Let $\sigma \in H_n(V_{\overline{K}}; z, \overrightarrow{01})$. It follows from (11.2.8) and (11.2.9) that

$$\mathfrak{f}_q(\sigma)(x,y) = (\mathfrak{f}_p(\sigma)(x^{-1}y^{-1},y))^{-1} \cdot (\mathfrak{f}_p(\sigma)(x,y)).$$

Hence we get

$$(\mathfrak{f}_p(\sigma)(x,y))^{-1} \cdot (\mathfrak{f}_p(\sigma)(x^{-1}y^{-1},y)) \cdot x^{-1} \cdot y^{-1} \cdot (\mathfrak{f}_p(\sigma)(x^{-1}y^{-1},y))^{-1} \cdot (\mathfrak{f}_p(\sigma)(x,y)) \cdot (\mathfrak{f}_p(\sigma)(x,y))^{-1} \cdot y \cdot (\mathfrak{f}_p(\sigma)(x,y)) \cdot x = 1.$$

Comparing exponents at (y, x^n) we get $(1 + (-1)^n)\kappa_{n-1,1}(\overrightarrow{10}) = 0$. Hence $\kappa_{n-1,1}(\overrightarrow{10}) = 0$ for n even (see also [I1], [I2] and [D], where the element $\mathfrak{f}_p(\sigma)$ is studied). Therefore $\kappa_{n-1,1}(\overrightarrow{\infty 1}) = 0$ for any n. The equality $\kappa_{n-1,1}(\overrightarrow{\infty 1}) = \mathcal{L}_n(\overrightarrow{\infty 1})$ implies the corollary.

The fact that $\kappa_{n-1,1}(\overrightarrow{10})$ vanishes for n even implies the following well known result.

Corollary 11.2.11.

$$\mathcal{L}_{2n}(\overrightarrow{10}) = 0.$$

§12. Monodromy of *l*-adic iterated integrals and *l*-adic polylogarithms

12.0. We shall show here that suitable defined l-adic polylogarithms form a local system with the similar shape of the monodromy representation as the local system of classical polylogarithms given in [BD]. We start with the discussion of the monodromy of arbitrary l-adic iterated integrals. The notation is the same as in Section 10.

Let p be a path from v to z on $X_{\bar{K}}$ and let $S \in \pi_1(X_{\bar{K}}; v)$. Then we have

(12.0.0)
$$\mathfrak{f}_{pS}(\sigma) = S^{-1} \cdot \mathfrak{f}_{p}(\sigma) \cdot S \cdot \mathfrak{f}_{S}(\sigma).$$

Let Map $(G_K; \pi_1(X_{\bar{K}}; v))$ be the set of all maps from G_K to $\pi_1(X_{\bar{K}}; v)$. We define a map

$$r_{z,v;p}: \pi_1(X_{\bar{K}};v) \longrightarrow \operatorname{Aut}_{set}(\operatorname{Map}(G_K;\pi_1(X_{\bar{K}};v)))$$

setting

$$r_{z,v;p}(S)(w)(\sigma) := S^{-1} \cdot w(\sigma) \cdot S \cdot \mathfrak{f}_S(\sigma),$$

for $S \in \pi_1(X_{\bar{K}}; v)$, $w \in \text{Map}(G_K; \pi_1(X_{\bar{K}}; v))$ and $\sigma \in G_K$. Further we drop the indices z, v; p to simplify the notation.

Lemma 12.0.1. The map $r_{z,v;p}$ is a representation of $\pi_1(X_{\bar{K}};v)$.

Proof. Let $S,T \in \pi_1(X_{\bar{K}};v)$. We have $r(T)(r(S)w)(\sigma) = T^{-1}(S^{-1} \cdot w(\sigma) \cdot S \cdot \mathfrak{f}_S(\sigma)) \cdot T \cdot \mathfrak{f}_T(\sigma) = (S \cdot T)^{-1} \cdot w(\sigma) \cdot (S \cdot T) \cdot (T^{-1} \cdot \mathfrak{f}_S(\sigma) \cdot T \cdot \mathfrak{f}_T(\sigma)) = (S \cdot T)^{-1} \cdot w(\sigma) \cdot (S \cdot T) \cdot \mathfrak{f}_{ST}(\sigma) = r(S \cdot T)(w)(\sigma)$. We recall that in our notation $S \cdot T$ means that first we go along T and then along S. Therefore T is a representation of $\pi_1(X_{\bar{K}};v)$.

We recall that $k_x : \pi_1(X_{\bar{K}}; v) \to \mathbf{Q}_l\{\{\mathbf{X}\}\}$ is a continous multiplicative embedding given by $k_x(x_i) = e^{X_i}$ for i = 1, ..., n and that for a path p from v to z we set $\Lambda_p(\sigma) := k_x(\mathfrak{f}_p(\sigma))$.

Let $\operatorname{Map}(G_K; \mathbf{Q}_l\{\{\mathbf{X}\}\})$ be the set of all maps from G_K to $\mathbf{Q}_l\{\{\mathbf{X}\}\}$. Observe that $\operatorname{Map}(G_K; \mathbf{Q}_l\{\{\mathbf{X}\}\})$ is a vector space over \mathbf{Q}_l . We denote by $GL(\operatorname{Map}(G_K; \mathbf{Q}_l\{\{\mathbf{X}\}\}))$ the group of linear automorphisms of the vector space $\operatorname{Map}(G_K; \mathbf{Q}_l\{\{\mathbf{X}\}\})$.

Let us define a map

$$R_{z,v;p}: \pi_1(X_{\bar{K}};v) \longrightarrow GL(\operatorname{Map}(G_K; \mathbf{Q}_l\{\{\mathbf{X}\}\}))$$

setting

$$R_{z,v;p}(S)(W)(\sigma) := k_x(S)^{-1} \cdot W(\sigma) \cdot k_x(S) \cdot \Lambda_S(\sigma).$$

PROPOSITION 12.0.2. The map $R_{z,v;p}$ is a representation of $\pi_1(X_{\bar{K}};v)$.

Proof. To simplify the notation let us set $R = R_{z,v;p}$. Let $S,T \in \pi_1(X_{\bar{K}};v)$. We have $R(T)(R(S)(W))(\sigma) = k_x(T)^{-1} \cdot (R(S)(W)(\sigma)) \cdot k_x(T) \cdot \Lambda_T(\sigma) = k_x(T)^{-1} \cdot (k_x(S)^{-1} \cdot W(\sigma) \cdot k_x(S) \cdot \Lambda_S(\sigma)) \cdot k_x(T) \cdot \Lambda_T(\sigma) = k_x(S \cdot T)^{-1} \cdot W(\sigma) \cdot k_x(S \cdot T) \cdot k_x(T)^{-1} \cdot \Lambda_S(\sigma) \cdot k_x(T) \cdot \Lambda_T(\sigma) = R(S \cdot T)(W)(\sigma)$.

It follows from Lemma 10.3.1 that the embedding $k_x: \pi_1(X_{\bar{K}}; v) \to \mathbf{Q}_l\{\{\mathbf{X}\}\}$ extends uniquely to a continous multiplicative embedding $\bar{k}_x: \pi_1(X_{\bar{K}}; v) \otimes \mathbf{Q} \to \mathbf{Q}_l\{\{\mathbf{X}\}\}.$

Proposition 12.0.3. The representation $R_{z,v;p}$ extends to the representation

$$\bar{R}_{z,v;p}: \pi_1(X_{\bar{K}};v) \otimes \mathbf{Q} \longrightarrow GL(\operatorname{Map}(G_K; \mathbf{Q}_l\{\{\mathbf{X}\}\})).$$

Let $S \in \pi_1(X_{\bar{K}}; v) \otimes \mathbf{Q}$. Then we have

$$\bar{R}_{z,v;p}(S)(W)(\sigma) = \bar{k}_x(S)^{-1} \cdot W(\sigma) \cdot \bar{k}_x(S) \cdot \bar{R}_{z,v;p}(S)(1)(\sigma).$$

Proof. We define an increasing filtration $\{W_{-i}\}_{i\in\mathbb{N}}$ of the \mathbf{Q}_l -vector space $\mathrm{Map}(G_K; \mathbf{Q}_l\{\{\mathbf{X}\}\})$ setting

$$W_{-2k} = W_{-2k-1}$$
 to be a set of all maps from G_K to I^k ,

where I^k is a k-th power of the augmentation ideal of $\mathbf{Q}_l\{\{\mathbf{X}\}\}$. Let $S \in \pi_1(X_{\bar{K}}; v)$ and let $W \in \mathcal{W}_{-2k}$. Then we have

$$R_{z,v;p}(S)(W) \equiv W \mod \mathcal{W}_{-2(k+1)}.$$

Hence the image of $R_{z,v;p}$ is in the subgroup of pro-unipotent automorphisms of the vector space $\operatorname{Map}(G_K; \mathbf{Q}_l\{\{\mathbf{X}\}\})$. This implies that the representation $R_{z,v;p}$ extends to the representation

$$\bar{R}_{z,v;p}: \pi_1(X_{\bar{K}};v) \otimes \mathbf{Q} \to GL(\mathrm{Map}(G_K;\mathbf{Q}_l\{\{\mathbf{X}\}\})).$$

Let $S \in \pi_1(X_{\bar{K}}; v) \otimes \mathbf{Q}$ be such that $S^{l^m} \in \pi_1(X_{\bar{K}}; v)$. Then we have

$$R_{z,v;p}(S^{l^m})(W)(\sigma) = k_x(S^{l^m})^{-1} \cdot W(\sigma) \cdot k_x(S^{l^m}) \cdot \Lambda_{S^{l^m}}(\sigma),$$

where $\Lambda_{S^{lm}}(\sigma) = R_{z,v;p}(S^{l^m})(1)(\sigma)$. This implies that

$$\bar{R}_{z,v;p}(S)(W)(\sigma) = \bar{k}_x(S)^{-1} \cdot W(\sigma) \cdot \bar{k}_x(S) \cdot \bar{R}_{z,v;p}(S)(1)(\sigma).$$

The elements $S \in \pi_1(X_{\bar{K}}; v) \otimes \mathbf{Q}$ such that $S^{l^m} \in \pi_1(X_{\bar{K}}; v)$ for some m are dense in $\pi_1(X_{\bar{K}}; v) \otimes \mathbf{Q}$ hence the last formula holds for any $S \in \pi_1(X_{\bar{K}}; v) \otimes \mathbf{Q}$. This finishes the proof of the proposition.

12.1. Now we shall study monodromy of l-adic polylogarithms, more exactly, we shall study monodromy of coefficients at $X^{n-1}Y$ of the power series $\Lambda_p(\sigma)$. Let $V = \mathbf{P}_K^1 \setminus \{0, 1, \infty\}$ and let p be a path from $\overrightarrow{01}$ to z. From now on the notation is the same as in Subsection 11.0.

We define functions $\lambda_i(z)_p$, $\mu_j(z)_p$ and $\nu_{i,j}(z)_p$ from G_K to \mathbf{Q}_l by the congruence

$$\Lambda_p(\sigma) \equiv 1 + \sum_{k=1}^{\infty} \frac{(l(z)_p(\sigma))^k}{k!} X^k + \sum_{i=1}^{\infty} \lambda_i(z)_p(\sigma) X^{i-1} Y$$
$$+ \sum_{i=2}^{\infty} \mu_j(z)_p(\sigma) Y X^{j-1} + \sum_{i=1}^{\infty} \nu_{i,j}(z)_p(\sigma) X^i Y X^j$$

modulo the ideal generated by monomials with at least two Y's.

The function $\lambda_1(z)_p = l_1(z)_p$ and the *l*-adic polylogarithms $l_k(z)_p$ can be expressed by the function $\lambda_k(z)_p$ and the functions $l(z)_p$ and $\lambda_i(z)_p$ with i < k.

PROPOSITION 12.1.1. The monodromy transformation of functions $l(z)_p$ and $\lambda_n(z)_p$ is as follows:

$$x: l(z)_p \longrightarrow l(z)_p + (\chi - 1), \quad \lambda_n(z)_p \longrightarrow \lambda_n(z)_p + \sum_{i=1}^{n-1} \frac{(-1)^{n-i}}{(n-i)!} \lambda_i(z)_p,$$
$$\mu_n(z)_p \longrightarrow \mu_n(z)_p + \sum_{i=2}^{n-1} \frac{\chi^{n-i}}{(n-i)!} \mu_i(z)_p + \frac{\chi^{n-1}}{(n-1)!} \lambda_1(z)_p$$

and

$$y: l(z)_p \longrightarrow l(z)_p, \quad \lambda_1(z)_p \longrightarrow \lambda_1(z)_p + (\chi - 1),$$

$$\lambda_n(z)_p \longrightarrow \lambda_n(z)_p + \chi \frac{(l(z)_p)^{n-1}}{(n-1)!}$$

for
$$n > 1$$
 and $\mu_n(z)_p \to \mu_n(z)_p - \frac{(l(z)_p)^{n-1}}{(n-1)!}$.

Proof. The proposition follows from the formula

$$\Lambda_{p \cdot S}(\sigma) = k(S)^{-1} \cdot \Lambda_p(\sigma) \cdot k(S) \cdot \Lambda_S(\sigma),$$

which for S = x gives

$$\Lambda_{p \cdot x}(\sigma) = e^{-X} \cdot \Lambda_p(\sigma) \cdot e^{\chi(\sigma)X}.$$

For S = y the formula is more complicated, however when we restrict our attention to coefficients with only one Y then the formula have the same simple form.

References

- [B] N. Bourbaki, Eléments de mathématiques, Groupes et algèbres de Lie, Diffusion C.C.L.S., Paris, 1972.
- [BD] A. A. Beilinson and P. Deligne, Interprétation motivique de la conjecture de Zagier reliant polylogarithmes et régulareurs, Motives (U. Jannsen, S. L. Kleiman and J.-P. Serre, eds.), Proc. of Symp. in Pure Math. 55, Part II, AMS (1994), pp. 97–121.
- [Ch] K. T. Chen, Iterated integrals, fundamental groups and covering spaces, Trans. of the Amer. Math. Soc., 206 (1975), 83–98.
- [D] P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois Groups over Q (Y. Ihara, K. Ribet and J.-P. Serre, eds.), Mathematical Sciences Research Institute Publications, no 16 (1989), pp. 79–297.
- Y. Ihara, Profinite braid groups, Galois representations and complex multiplications, Annals of Math., 123 (1986), 43–106.
- [I2] Y. Ihara, Braids, Galois Groups and Some Arithmetic Functions, Proc. of the Int. Cong. of Math. Kyoto (1990), 99–119.
- [W1] Z. Wojtkowiak, The Basic Structure of Polylogarithmic Functional Equations, Structural Properties of Polylogarithms (L. Lewin, ed.), Mathematical Surveys and Monographs, Vol 37, pp. 205–231.

Université de Nice-Sophia Antipolis Département de Mathématiques Laboratoire Jean Alexandre Dieudonné U.R.A. au C.N.R.S., No 168 Parc Valrose - B.P.N° 71 06108 Nice Cedex 2 France wojtkow@math.unice.fr