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1. Introduction. Let Lo be a differential operator of even order n = 2v on 
the half open interval 0 < t < °o which is formally self adjoint and satisfies 
the conditions of Kodaira (5, p. 503). We consider a perturbed operator of 
the form L€ = Lo + eq where q(t) is a real-valued bounded function and e 
is a real parameter. The object of this paper is to set up conditions on the 
operator L0 and the function q(t) such that L€ determines a self-adjoint 
operator H€ and such that the spectral resolution operator E€(A) corresponding 
to He is analytic in a neighbourhood of e = 0, where A is a closed bounded 
interval. 

Our conditions are a natural generalization of conditions considered by 
Moser for the case n = 2(6). Moser has given a number of examples showing 
that when his conditions do not hold Ee(A) need not be analytic. However, 
Moser's conditions are not necessary. Brownell has demonstrated analyticity 
of E*(A) for second order differential operators (in En) under conditions 
different from Moser's (2). 

Our main result is Theorem 4 which gives sufficient conditions that Ee(A) 
be analytic. Theorem 4 is an easy consequence of Theorem 3. The proof 
of Theorem 3 hinges upon the Neumann expansion for the resolvent kernel 
of the perturbed operator H€ and on the behaviour of the resolvent kernel 
of the unperturbed operator H0 under change of boundary conditions at 
t = 0. We discuss the former of these topics in § 4 and the latter in § 3. Section 
2 is devoted to definitions and needed facts. The restrictions that we impose 
on Lo, q are stated at the end of § 2. 

The assumption that q{t) is bounded can be removed. In § 6 we indicate 
briefly how this may be done. 

The significance of analyticity of the spectral measure E€(A') for A ' C A , 
A a fixed bounded interval, is that it implies that points in the spectrum of 
H€ which lie inside A remain fixed under the perturbation (6; 7). Our assump­
tions imply that A contains only points of the continuous spectrum of H0 

(cf. assumption (h)). Therefore, our results may be interpreted as sufficient 
conditions that the continuous spectrum remain fixed under perturbation. 

The author wishes to thank F. H. Brownell for many helpful suggestions 
•n the preparation of this paper. 
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2. Bas ic de f in i t ions a n d a s s u m p t i o n s . We shall use the s tandard 
notat ion from the theory of ordinary differential operators (3 ; 5). T h e notat ion 
(u, v) will mean the inner product of two functions in L 2 (0 , ° ° ) . T h e norm of 
u is ||w|| = (u,u)*. Let [u, v](t) be the bilinear form associated with the 
differential operator L 0 such t h a t 

(2.1) I (Louv - u~L0v) dt = [u,v]{t) - [u,v](0). 
Jo 

Since t = 0 is a regular point there exists a complete canonical set of boundary 
functions \[/oj(t) and regular solutions Sj(t, X) of L0u = \u, j = 1, . . . , n such 
t h a t 

(2.2) [*o„*o*](0) = tyoj,sk](0) = [*„**] (0) = ejk 

and ejk = + 1, k = j + v, eJ/c = — 1, k = j — v, e1k = 0 otherwise (4; 5, 
p. 505). We shall suppose the differential problem 

(2.3) Lou = \u, [fat, u](0) = 0, j = 1, p 

is self adjoint (5, p. 521). In the case n = 2 this reduces to the limit point 
case a t t = oo. 

Repeated indices will mean summat ion unless the contrary is explicitly 
s ta ted. Lat in indices are to be summed over 1, . . . , n and Greek over 1, . . . , v. 

Let ^ be the set of functions in L2(0,oo) such t h a t for u f & we have 
u{i)(t) G ^ [ 0 , ° o ) , i = 1, . . . , n — 1, u(n~l)(t) is absolutely cont inuous in 
every closed subinterval of [0, «>), and L0u f L 2 (0 , ° ° ) . Let &œ be the set of 
functions in & which vanish outside some closed bounded interval . T h e 
operator L0 determines a self-adjoint operator H$ as follows: We define &Ho 

to be the set of functions 

%0 = {u\u e ® and [^o;, M ] ( 0 ) = 0,j = 1, . . . , V] 

and define H0u = L0u for u £ ^H0 (5, p. 521). Since we are assuming q(t) 
bounded it follows a t once t h a t Le = L 0 + eq determines a self-adjoint 
operator H€ with 

^ r . = %o 

and 

Heu = Leu, u Ç ^ r 0 . 

T h e assumption t h a t the boundary value problem (2.3) is self-adjoint 
implies the following facts (which are all derived from (5)) : There exist v 
vectors fp(X) = (/p1, . . . ,fpn), fi = v + 1, . . . , n such t h a t w&(t, X) = fpjSj are 
the eigenfunctions of LQU = Xu,^(\) ^ 0,wB(t, X) Ç L 2 (0 ,°o) . Corresponding 
to the boundary conditions [^0?, w](0) = 0 we may choose vectors 
/« = (5a1, . . . , 5a

w), a: = 1, . . . , v. Then 7i>« = fa
jsj satisfy [\l/0j, wa}(0) = 0, 

j = 1, . . . , „ , a = 1, . . . , . by (2.2). 
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The Green's function corresponding to HQ may be constructed as follows. 
Define the characteristic matrix Mlj by 

where a = 1, . . . , v, (3 = v + 1, . . . , n and Fap is the inverse matrix of 
[wa, w$](t). The Green's function is by (5, p. 511) 

(2.4) G°(t, r, X) = Mjk(\)sj(t, \)sk{ry X), / > r. 

The spectral resolution operator £°(A) corresponding to i7° is defined in 
terms of the Green's function* by 

(2.5) E°(A)u = - - . lim «/< f (G°(*,-,X), û)dXf , M Ç ^L 

where r(5) is the polygonal path connecting the points a + iô, a + 2i<5, 
/3 + 2i5, 0 + iô, A = {Z|a < / < /3}. Formula (2.5) may be written (5, p. 528) 

(2.6) E(0)(A)« = J^ *,(/, l)(skl û)dpj\l) u e $L 

where 

(2.7) P
jk(A) = ~ lim A [ Mj\\)d\ 

Ziri 5^0+ w r ( « ) 

For two arbitrary /-measurable vector functions </>*(/), ^*(/), z" = 1, . . . , n 
we have the inequality 

I /»co 2 /»oo 

*,(/)ÏMJjV*(J) < 4>,~<h4p'\D 
« / - c o I * ^ - c o 

If « G ^oo, 0, = (s,, «) then by (5, p. 537) 
/»oo 

(2.9) ||«||* = J_J *,(/)| V*(/)-
The following assumptions are basic for the theorems to be given below. 

We shall requiref that L0 and q are such that, for / in a fixed finite interval A, 

«/o 
$\t)\q(t)\dt < y < oo 

o 
where $(t) = sup|^-(£, X)|, j = 1, . . . , n, / Ç A , 0 < ô < <50, X = / + iô. 

(ii) lim |Af'*(Z + i«)| < X 

for / Ç A, 0 < ô < Ôo, i, & = 1, . • • , n. 

*We assume the end points of A are not in the point spectrum. 
fThis assumption is weakened in § 6. 
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(iii) for all vector functions <£'(/) denned on A,* 

(2.10) c^/)?W*(A') - ^(l)VU)pjj(Af) > 0 
for I f A ' C A . 

(iv) if sj+p are permutations of the regular solutions Sj according to the 
rules sj+p' = sj+p for j + p < n and s3+p

r — sj+p-n for j + p > n, then for 
p = 1, . . . , n 

(2.11) jyj+ps'k+PdP
j\l) 

is the kernel of a bounded operator with bound P 2 . 
The assumptions (i) and (ii) reduce to ones considered by Moser for the 

case n = 2 (6, pp. 367, 388). Assumption (i) asserts roughly that the operator 
q. is relatively bounded with respect to L0. Assumption (ii) implies that Mjk 

does not have any poles in A so that A contains only continuous spectrum. 
Assumptions (iii) and (iv) are unnecessary in the case n = 2 as they are 
automatically satisfied. Assumption (iii) is a definiteness condition on the 
bilinear form associated with the matrix pjk(Af). This condition is trivially 
satisfied if p^(A') is diagonal and for that reason holds when n = 2. Assump­
tion (iv) is the key assumption upon which our proof of Theorem 4 depends. 
The fact that (iv) holds when n = 2 is also used by Moser in his paper (6, 
p. 382). In § 3 we shall discuss the meaning of assumption (iv) and show 
that it is valid for a broad class of operators L0. 

3. Changes in boundary conditions at t = 0. In this section we shall 
study kernels 

corresponding to self-adjoint boundary value problems of the form 

(3.1) Lou = X«, Mo* tf](0) = 0 j = 1, . . . , v 

where the functions \pQj are linear combinations of \l/0j. The object of this 
section is to show that, under certain restrictions on L0, and by appropriate 
choice of the boundary functions \poiy that the kernels (2.11) of assumption 
(iv) may be written in terms of the kernel 

f*i(UK(r,W*(/). 

Therefore we will have a means of testing when assumption (iv) holds. The 
theorem is the following: 

*Ibid. 
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THEOREM 1. If L0 is a differential operator satisfying assumption (ii) and if 
the functions fpj(X) corresponding to L0 satisfy the property that for X = / + iô, 
l Ç A, 0 < 8 < <$o, the determinants of the {y X v) minors of the matrix 

//Ux).../:+i(A)\ 
(3.2) . . . 

V^(X).../^(X)/ 
have moduli greater than k\ and less than ki, 0 < k\ < k<i, and the difference 
of the arguments a of any two {y X v) minors lies in a sector such that 
O < 0 < o : < 7 r — 6 < IT, sin 6 > ki, then for some function ajk(l) 

(3.3) f s'j+p(tJ)s'k+ArJW\l) = ( 3^1,1)5^, l)aij(l)dpik (I) 
•/A «/A 

where ajk(l) are uniformly bounded and psk(A) is the spectral density matrix 
corresponding to a self-adjoint problem L0u = \u, [̂ 0;-, u](0) = 0, j = 1, . . . , v. 

Proof. First we introduce the notation jP,jP',jp' for permutations of 
j = 1, . . . , n defined by: 

fp =J-pJ>P+hjP = n+j-pJ<p 
jp = j + P + V,j + P < Vjjp = j + P ~ V,j + P > V. 

Define 

^0;- = 8k
jpi/ok, j = 1, . . . , v. 

Using (2.2) we get 

(3.4) tfo,,#o*](0) = 0 , j , k = 1 , . . . ,V. 

Formula (3.4) shows that the problem (3.1) is self adjoint when $QJ — ôjp
k\pok. 

Let Mjk(\) be the characteristic matrix corresponding to (3.1). Then Mjk(\) 
can be explicitly constructed (cf. § 2) as follows: 

(3.5) Mjk(\) = £ Paeh'tt, a=l,...,v,p = v+l,...,n 
a./S 

where 

fa3 = 54, a = 1, . . . , v 

and /y = fp\ f3 = v + 1, . . • , n, Fap is the inverse of [wa, wp](t),wa = fa
3Sj(t, X), 

wp = fpjSj(t, X). Using (2.2) we have 

(3.6) [«„, «,] = ± sjjr - bivii = {n+Z;,-, ap J " 
By (3.5), (3.6) iGf'*(X) may be written* 

*The sign is positive if k K v and negative if k > v. 
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(3.7) Mik(\) = ( ± ) det Â(j, *)/det B, k = 1„ 2P Vp 

where B is the matrix 

/flu(\)...f:u(\)\ 
(3.8) B= . . . 

\f%:(\)...f:Cw/ 
and Â(j, k) is the matrix obtained from B by replacing the elements of the 
&/th column with the terms fv+i3, fv+2j, ••• ,fv+vj- The hypothesis of the 
theorem implies that for j , k = 1PJ 2P, . . . , ^ , i£i < det |-4 (j, k)\ < &2-

Now that Mj1c has been constructed the remainder of the proof consists 
in demonstrating that (3.3) holds for some ajjc(l). By the definition of j v ' we 
may write 

(3.10) s'j+P(t, l)sf
k+P(r, l)S{Mj*(\)} = Sj(t, Z)s*(r, l)J{Mj,*k'*(\)\. 

(Note that 

J{Mj'pk'p(\)} = 0, 7, k 9* 1P1 2P, . . . , vv.) 

Now define ajJc(\) by the equation 

(3.11) ajk(\) = lV{MJ 'p*'p(X)}/{./M i*(X)}, j , k = 1„ 2Pf . . . , „p 

( 0, otherwise. 

Since if?'* = ± det l ( j , ft)/det 5 we have by (ii), (3.9) 

(3.12) |a,*(X)| < Kk2/k1 sin 6 < Kk2/k1
2 

so that aJk(\) are uniformly bounded, / 6 A, 0 < 8 < <50. By using (2.7), (3.11) 
and the theorem of Helly-Bray (8, p. 164) it follows that for A ' C A 

(3.13) /*'*(*!) = lim -- ( J{Mrvk'p{\)) dl 
$_^0+ 7T J A' 

= lim-1- ( ajlc(X)J{Mik(\)\ dl. 

From (3.12), (3.13) we have 

(3.14) \/pk'p(A') I < K k2/ki2 (variation P
jk(A')), A' C A. 

The inequality (3.14) implies that functions a2/(/) exist (8, p. 215) such that 

(3.15) p''**'"(A') = (ditdW*®, A' C A. 
J A' 

By (3.10), (3.15) we obtain (3.3). 
Theorem 1 leads to a sufficient condition that assumption (iv) should hold ; 

if the hypothesis of Theorem 1 is satisfied and if 

J\,(U)s*(r,/)M')<*p'*(/) 
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is the kernel of a bounded operator then assumption (iv) holds. One can 
easily show by direct calculation that in the case n = 2 the hypothesis of 
Theorem 1 is satisfied and 

J[sXUKM)M/)dp*(*) 
is the kernel of a bounded operator. Therefore, assumption (iv) holds auto­
matically when n = 2 (6, p. 382). 

4. Neumann series for the resolvent. Following (1, p. 560) we define 
functions G(v)(t, r, X) by setting G(0) = G(0) and 

(4.1) G<"> = [+ G<*-»q] • [G<°>] = [+ G°qY • [G°], ? = 1, 2, . . . , 

where the brackets indicate integration as follows 

J»oo 

G\t, £, \)qW\ï, T, X) dl. 
0 

The object of this section is to show that Ge = ]C(~~ t)vG{v) is the kernel of 
the resolvent of the operator H€. 

LEMMA 1. / / G{v) is defined by (4.1) and assumptions (i) and (ii) hold, then 
for |e| < (yKn2)~l, l Ç A, 0 < 8 < <50 the series Ge = ]C( — e)vG{v) converges 
uniformly and absolutely and 

(4.2) \G^\<$(t)Ht)yv(Kn2yH, v = 0, 1, 2 . . . . 

Proof. The inequality (4.2) holds for v = 0 by assumption (ii) and (2.4). 
Suppose (4.2) true for (y — 1). Then by (4.1) 

J"» CO 

G(0)(U.X)g(É)G('-1)(É,T,X)dÉ. 
0 

Using assumptions (i), (ii), and (2.4) we get 

Z My*(X)|s3«, X) J \ ( É , X)g(?)G(^1,(?, r, X) # 

+5*«, X) J stf, \)q^)G^\^ r, X) <% 

J»oo 

*(£) l«(£) | T " _ 1 * ( ? ) $ ( T ) {Kn)vd$ 
0 

(4.4) | G l " | < 

«/0 
< 

< (Kn2y+y$(t)<s>(T). 

This proves (4.2). The absolute convergence of the series for G€ follows 
from (4.2). We also need the following lemma: 
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LEMMA 2. If 

J*co 

G(v)udr 
o 

where G(v) is defined by (4.1) and if assumptions (i) and (ii) hold, then #'{v) (X) 
is a bounded operator and 

(4.5) || Igl^'Ml < ( T * » 2 ) ' 2 ^ " |M| v = 0, 1, 2, . . . , 

Proof. For v = 0 

|! |g|*â?(0)(X)«|| < m a x | g ! i | | | ^ ( 0 ) ( X ) | | ! | |« | | < max | < / | 4 - ^ | |« | | . 

Suppose (4.5) true for (v — 1). Then using (2.4) and assumptions (i) and (ii), 

(4.6) | |g|*^(F)(X)«| < £ |M^|{|g(0|^,(;, X)| J['|st(l, X ) ^ ) ^ " 1 ^ 

+ |g(0|*|s*«, X)| Jjs,(É, X ^ ) ^ - 1 ^ } 

J*co 

*tt)l2(l)^('"1>«|^. 
0 

From (4.6) it follows 

J*oo 

I l a l%w«l2* 
0 

J»co /*co /*co 

**(*)k(0l<ft *2(?)l<ztt)l# la«)ll^('"1)«l^ 
0 «7 0 t / 0 

2x2 2/ ^ 2x2.-2 jmax [<7[2l 
< (Kn ) T (T^W ) 1 —T7TT- ( I lM 

I >(X) f 
|2 

. / v 2x2^/max |g|2l <(yKn) \-jftj-f 2 « I I 2 . 

Lemma 1 and Lemma 2 imply: 

THEOREM 2. If G(v) is defined by (4.1) and assumptions (i) and (ii) Zw/d, //ze/z 
/or |e| < (yKn2)-1, l G A, 0 < 8 < <50 the series G€ = £ ( — e)vG(v) represents 
the kernel of the resolvent Re(X) = (He — XI) - 1 of the operator He. 

Proof. Let 
oo 

®\\) = i + (+q) E (-*r+1^w(x). 
By Lemma 2 the series for ^6(X) converges uniformly in norm for |e| < (yKn2)~l 

and defines a bounded operator. Since ^ e(X) = ^ ( 0 ) (X)^€(X) and both ^(0) (X), 
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^ e ( X ) are bounded operators it follows ^ € (X) is a bounded operator. In order 
to show t h a t ^ € (X) is the resolvent it is sufficient to show the range of ^ e ( X ) 
is in @Ho and 

(4.8) (Le - \l)^<(\)u = u} ^ C L 2 ( 0 , o o ) 

(4.9) ^<«>(X)(Z,e - \l)u = u, u £ %0. 

Since the range of ^°(X) is ^Ho and since ^ C (X) is bounded it follows the 
range ^ e (X) is contained in @Ho. Formula (4.8) can be proved by direct 
calculation using the définition of G{v) and Lemmas 1 and 2 (we shall omit 
the computat ion as it is s tandard (1 , p. 562)). T o prove (4'9) set 

w = u - &*(\)(Le - Xl)u, u e %,. 

Since w is the difference of two elements of ^Ho it follows 

Then 

(He - \l)w = (Le - \l)w = (Le - \l)u - (Le - X1)^C(X)(L€ - \l)u = 0. 

This implies w = {Ht - XI)"1 0 = 0. 
For later use define the modified resolvent kernels G(v)(t, r, X) by 

(4.5) G<°> = Mjk(l + iô)sj(t, I) sk(ry / ) , t > r 

(4.6) G<"> = [G«»q]'. [G°] v = 1, 2 . . . . 

Since Sj(t, X) are entire in X the functions G(v) have the same type of singu­
larities along the real axis as G(v). Also (?(l/) satisfy Lemmas 1 and 2. 

5. A n a l y t i c i t y of Ee(A). In this section we show tha t the spectral measure 
Ee(A) corresponding to H€ is an analyt ic operator in a neighbourhood of 
e = 0. Define the function <^(v)(£, r) by 

(5.1) «f('>= lim - A f GMd\}. 

We shall show t h a t ^ ( l ° are kernels of bounded operators E(v) (A) and t h a t 
E ( f ) (A) = ^evEM(A) for sufficiently small e. To do this first consider the 
approximate kernel (ff^v) defined by 

(5.2) i{v) = l im- f S(Ô™)dl 

where G w is defined by (4.6). We shall first prove t h a t #<"> = (^
v)*\ 

L E M M A 3. / / <^(,,)(A), SHv)(A) are defined by (5.1) and (5.2) and if assump­
tions (i), (ii), and (iii) AoW, Jfcew *?<">(A) = # ( " } (A) . 

*The existence of g{v) is insured by (4.5), (4.6), and (ii) cf. (9, p. 346, 22.23). 
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Proof. By a routine calculation which will be omitted one can show using 
(h), (2.4), (4.1), and (4.6) that for X = / + id, I G A, 0 < 8 < <50, 

(5.3) |G<">(*, r, X) - (?<">(*, r, X)| < Miô, 

where Afi depends on (/, r) but is independent of X. Using (5.3) we have 

(5.4) <f (0(A) = lim - - / { f G ( F )d\[ = lim - A f G{v)d\\ . 

Next (4.2) implies 

(5.5) lim - A f (? (^Xf = lim - f . / ' (G{p))dl = £{v\ 

By (5.4) and (5.5) <s?<')(A) = i^(A). 

THEOREM 3. If <^(,,)(A) zs defined by (5.2) awrf if assumptions (i), (ii), (iii), 
a ^ (iv) /w/d JAew <?f(l,)(A) is the kernel of a bounded operator E{v) (A) and 

(5.6) |(£<">(A)tt,fl)| < ^2(4^)(7i^n2)^3 | |^ | | ||z/|| u, v <E L2(0,œ). 

Proof. From the definition of G(,/) one can show by induction that 

(5.7) -/(GU)) = S lë^qr-^fG0)-[qGW]x. 

Next by (2.4) and (4.5) ./(G°) = ./(M'*)s,(*, J)S*{T, l),t> r and (5.7) may 
be written 

(5.8) , / (G (") = £ Hf{t)H^\r)J\MiU) 

where 

G (M-2>(?1,b,X)gfe)5,fe )ZVb 

Joo /»oo 

<«1 J o Smttl, 02ttl)^°"2 )(5l, !*, X)(?(?2)5,(b, J )# 2 

= Ç *,(U){JO'IJ&(«, x)# + J™fffex)^}-
The integrals in (5.9) converge absolutely and may be estimated using (4.2). 
Define for fixed values of j , p, \x (no summation) 

(5.10) !#.,(«, X) = 5,(t, /) f'fâd-, X)# 

/»oo 

(5.11) *#.,(*, X) = *,(*, 0 J tf'fo X)#. 
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Using (ii) and (4.2) it is easily seen that 

319 

(5.12) f *£(*, \)di 
I Jo 

/»oo 

tfJ& X)d: 

< ( T ^ W 2 ) " 

With the notation jP introduced in Theorem 1 equation (5.8) becomes 

(5.13) AGM) = E E («.$.,) G.tf.x)-'(M'*) 

= E É UQUU$,,X)^W*). 

When (5.13) is inserted in (5.2) and operations of limit and integration are 
interchanged we get for u, v Ç ^œ 

(5.14) (EM(A)u,v) = E Ê H m - f U Q ^ . ^ U Q Î ^ . û î . / C J I f ^ X ) ^ . 

The interchange of limit operations in (5.14) is justified since the integrand 
is less than an absolutely integrable function (the integrand is less than 
<f>(t)\v(t)\$>(T)\u(r)\(yKn2)v2K by (5.12) and (ii) and this function is inte­
grable for u,v(z &œ). The remainder of the proof consists in estimating the 
term of (5.14). For p, r, n, i\, i2 fixed (no summation) we have by the Schwarz 
inequality 

(5.15) f ( „ # , , „ v) (iqQl.x, û)AMik(\)dl 2 

< f U0U «OUQU v)J\M'\X))dl 
•/A 

X f UQi.x,û)UQl,x,u)y(Mlk(\))dl 
*/A 

since J^(Mjk(\)) is a non-negative matrix (of (5, p. 534)). 
Again since S(Mik) is a non-negative matrix \^{Mjk{\))\ < (*f(Mjj))* 

{J{Mkk)f*, and we have 

(5.16) ( UQl,„v)(tlQlP,,v)^(Mik(X))dl\ 
I J A I 

< JA K,1eu«)ii(i.C")i(«/(ii^))*(^(jtftt))*d/ 

< 

< M 
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By (5.10) and the Schwarz inequality 

i /»oo /»oo ! 2 

r,f\t,-K)dt sh(t,l)v{m\ 
«/o *J t \ 

J*oo /»oo /*cn 2 

0 t / 0 I t / / I 

where |Î?(M)(0I = sup^j, |^,P | . Now apply assumptions (iii) and (iv), and 
(5.12), (5.16), and (5.17) to obtain 

(5.18) lim - f {,QUrv){Mv.*,v)J{Mik{\))dl 

J'oo 1 /* I Cœ 

\f\t)\ lim- * W (UM«)# 
0 3^0+ 7T t /A I «/ f 

J»oo /» I /»oo 2 

0 t /A 1 t / « I 

S(,M"(\)dl dt 

spk(t,i)vm dP
3K(i)dt 

<n(yKnyp2\\v\\2, v e ^L 

The identity 

1 2 

iim - r n w ( u M ^ -/(M#(x))d/ = r r*wtt,o»(s)^ dp"(0 

is by the theorem of Helly-Bray (8, pp. 163, 209). In exactly the same manner 
as (5.18) was obtained we get 

(5.19) lim f G<2lM, v)(iQj
hllf v)J\Mik)dl < (yKn2)2"p2\\v\\2n 

0 ^ 0 + «/A 

(5.20) 

i = 1,2. 

Using (5.14), (5.14), (5.19), and (5.20) we have 

(5.21) |(E<'>(A)«,«0| < ^ P 2 ( 7 ^ » 2 ) F ( 4 » 8 ) | | M | | |H| , 

lim (t<£r.x,u)(tQ!lr.x,ti)S(Mjk)dl< (yKn2)2xp2\\u\\2n 
ô^0+A 

«, » e &„. 

The inequality (5.20) must hold for all u, v in L2(0, oo) and £(l,)(A) determines 
a bounded operator by a theorem by Frechet (6, p. 385). 

Now we shall state our main theorem: 

THEOREM 3. If Le = Lo + eq is a differential operator such that the problem 
LQu = \u, [̂ 0.7, w](0) = 0, j = 1, . . . , v is self adjoint and satisfies conditions 
(i), (ii), (iii), and (iv) then for |e| < {yKn2)~lLe determines a self-adjoint 
operator He and the spectral measure E€(A) corresponding to H€ is an analytic 
operator. 
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Proof. For |e| < (yKri2)~l we have the equalities 

(5.22) £ e\E{v\A)u}v) = £ (~e)v lim - J \ f (&iv)u,v)d\\ 
5_>o+ 7T w r ( ô ) / 

= lim ±j{ f £ (-«)'(S?l"«,»)4 
«_>o+.. 7T w r ( 5 ) y 

= lim - . / i f (^€«,i;)dXr 
8-»0+ 7T \JT(8) / 

The first two equalities in (5.21) follow from (5.1) and the fact that the 
function G{v)(t, r, \)u(r)v(t) is less than an integrable function for u,v£ Dœ. 
(By Lemma 1 

\G{v\t, r, X)«(T)V(Ô| < TX^^ 2 )"+ 1*W^(r)k(T) | |HÔ| 

and 3>(£)<E(T)|«(T)||Z;(£)| is integrable when u, v Ç Z>œ.) The third equality in 
(5.22) is by Theorem 2 and the fourth equality in (5.21) is by (2.5). From 
(5.6) and (5.22) it follows that E€(A) is a bounded analytic operator by a 
theorem of Frechet (6, p. 385). 

6. Weakened assumptions. The restrictions placed on q in preceding 
sections may be weakened. In fact Theorems 3 and 4 remain valid when 
assumption (i) is replaced by 

0)' J"»co 

$l(t)\q(t)\'dt < yi < » v = 1,2, . 
o 

where 3>i(£) = sup \sj(t, l)\,j = 1, . . . , n, / Ç A. It is not necessary to assume 
g bounded. We shall omit giving the details of the proof of how Theorems 3 
and 4 follow from (i)' but simply outline the necessary steps in the argument: 
First of all one observes, by reviewing the proof of Theorems 3 and 4, that 
the series Et (A) = ^ e ' E ^ A ) represents a bounded operator for |e| < (yiKn2)"1. 
It remains to redefine He, show it self adjoint with domain &Ho, and show 
that Ee(A) is the spectral measure of H€. To define H€ one shows that ^6(X), 
defined in Theorem 2, is a bounded operator for |e| < (yiKn2)~l, -/(X) > 4 
using (i)'. Then He — XI is defined to be the inverse of ^€(X). Using proper­
ties of ^e(X) one shows Ht is self adjoint, 

%e = %0J Ltu = Heuy u e %0. 

Finally to show that Ee(A) is the spectral measure corresponding to H€ we 
use a limiting argument. Define operators Le(a, b) = L0 + eq(a, b, t) where 

(6.1) «z(a,6,0 = { X ( 0 * î ( 0 / * î ( 0 ' ï < O 
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and $b(t) = sup |s;-(/, X)|, j = 1, . . . , n, / Ç A , 0 < <5 < b. The operators 
Le(a, b) satisfy assumption (i) so that Theorems 2, 3, and 4 hold for L€(a, b), 
|e| < (yiKn2)~l. Now the resolvent ^€(X, a, b) of Ht(a, b) converges strongly 
to the resolvent ^e(X) of H€J a—»», 6 —> 0. By a well-known theorem of 
Rellich the spectral measure E€(A, a, b) converges strongly to £e(A), a —><», 
6—» 0. On the other hand, E€(A,a,b) converges strongly to Êe(A) so 
£€(A) = £<(A). 

Note that the results of § 5 hold if LQ has a singular point at t = 0 since 
the boundary conditions there are given in the abstract form (6). 

It is important to consider weakening assumption (iii). An alternative 
assumption is the following: 

(iii)' There exists a unimodular matrix Vk(\) which is analytic in X, 
/ G A, - ôo < ô < Ôo, 7,*(X) = F/(X) such that the spectral density matrix 
pjk(l) denned by 

'(6.2) pjk(l) = £vT\l)Vs\l)dpTS{l) A = [a, 0] 

s a diagonal matrix. We may derive Theorem 3 using (in)' in place of (iii) 
simply by using pjk in place of pjk and also ^ = Uksk, Mjk = Vr

3Vs
kMrs in 

place of ^ , ikf^. (27/ means the inverse of Vk
j (5, p. 536). 

An alternative to assumption (iv) is the following set of three conditions: 
(iv)' Mjk = 0, j = r + 1, . . . , n. 
(iv)" if sJ+p

f are permutations of the regular solutions sj} j = 1, . . . , r 
according to the rules s 7 + / = s^pi j + /> < r, s]+v' = S/+p_n j + p > r then 
for /> = 1, . . . , r 

are kernels of bounded operators with bound P2. 
(iv)'" for k = r + 1, . . . , n. 

j^ iM^iis^y V*i2*)) igi* < p̂2, / e A. 

We may derive Theorem 3 with (iv)', (iv)", and (iv)'" in place of assumption 
(iv) by minor modifications of the argument. Formulas (5.19) and (5.20) 
must be re-proved using (iv)" when i = 1 and (iv)'" when i = 2. 

For the case n = 4 and L0 = d4/dt4, ^0i = t, aAo2 = tz/?>\ assumptions (ii), 
(hi)', (iv)', (iv)", and (iv)'" are satisfied with r = 3 provided A = [a, /3] is 
any interval of the form 0 < a < / < £ < o o . The expansion theorem for this 
case has been obtained by Windau (10). Using Windau's results one may 
easily verify that assumptions (ii), (iii)', (iv)', (iv)", (iv)'" hold. 
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