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Abstract
We show that the universal minimal proximal flow and the universal minimal strongly proximal flow of a discrete
group can be realized as the Stone spaces of translation-invariant Boolean algebras of subsets of the group
satisfying a higher-order notion of syndeticity. We establish algebraic, combinatorial and topological dynamical
characterizations of these subsets that we use to obtain new necessary and sufficient conditions for strong amenability
and amenability. We also characterize dense orbit sets, answering a question of Glasner, Tsankov, Weiss and Zucker.

Contents

1 Introduction 2
2 Preliminaries 3

2.1 Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Unital commutative C*-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Higher-order syndeticity 5
3.1 Higher-order syndeticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Stone–Čech compactification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Subshift dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Strongly complete syndeticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Algebraically irreducible affine flows 12
5 Highly proximal extensions and injectivity 13

5.1 Injectivity and essentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Maximally highly proximal flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Maximally affinely highly proximal flows . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Realizations of universal flows 19
6.1 Totally disconnected point transitive flows . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Universal minimal proximal flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Universal minimal strongly proximal flow . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4 Symmetric higher-order syndeticicity . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Strong amenability and amenability 23

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2022.11 Published online by Cambridge University Press

doi:10.1017/fms.2022.11
https://orcid.org/0000-0002-9188-9890
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2022.11&domain=pdf
https://doi.org/10.1017/fms.2022.11


2 Matthew Kennedy et al.

7.1 Strong amenability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Amenability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Dense orbit sets 25

1. Introduction

Recently, several breakthrough results have been obtained that clarify the relationship between certain
important algebraic and dynamical properties of discrete groups. Among the most prominent are
the characterization of strongly amenable groups by Frisch, Tamuz and Vahidi Ferdowsi [8] (see
also [11]) and the characterization of Choquet–Deny groups by Frisch, Hartman, Tamuz and Vahidi
Ferdowsi [7] (see also [6]). Both classes were identified with the algebraic notion of FC-hypercentral
groups, where FC refers to finite conjugacy classes.

In this paper, we continue this line of research from a slightly different perspective. A key technical
idea is the use of a device that we view as a kind of ‘topological Furstenberg correspondence’ that allows
us to give algebraic descriptions of the universal minimal proximal flow and the universal minimal
strongly proximal flow associated to a group.

The descriptions are in terms of subsets of the group that we call completely syndetic and strongly
complete syndetic, respectively, because they are higher-order variants of syndetic subsets. These subsets
have very interesting algebraic, combinatorial and topological dynamical properties. In addition, it turns
out that the existence of disjoint subsets with these properties completely characterizes both strong
amenability and amenability.

Specifically, for a discrete group G, we say that a subset 𝐴 ⊆ 𝐺 is completely syndetic if for every
𝑛 ∈ N finitely many translates of the Cartesian product 𝐴𝑛 by elements in G cover 𝐺𝑛, where G acts
diagonally on𝐺𝑛. Equivalently and more succinctly, if there is a finite subset 𝐹 ⊆ 𝐺 such that 𝐹𝐴𝑛 = 𝐺𝑛.
The definition of a strongly completely syndetic subset is similar, and every strongly completely syndetic
subset is, as the name suggests, completely syndetic.

The next result, which is Theorem 6.5, realizes the universal minimal proximal flow 𝜕p 𝐺 as the
Stone space of a translation-invariant Boolean algebra of completely syndetic subsets of G. This is an
analogue of a result of Balcar and Franek [3] that realizes the universal minimal G-flow 𝜕m 𝐺 as the
Stone space of a translation-invariant Boolean algebra of syndetic subsets of G. We note that 𝜕p 𝐺 and
𝜕m 𝐺 are sometimes denoted by Π(𝐺) and 𝑀 (𝐺) in existing literature.

Theorem 1.1. Let G be a discrete group. Then the universal minimal proximal G-flow 𝜕p 𝐺 is isomorphic
to the Stone space of any translation-invariant Boolean subalgebra of 2𝐺 that is maximal with respect
to the property that every nonempty element is completely syndetic.

The main result in [8] is that a discrete group is strongly amenable if and only if it is FC-hypercentral,
meaning that it has no nontrivial ICC quotient, i.e., no nontrivial quotient with the property that every
nontrivial conjugacy class is infinite. We show directly in Section 7.1 that the main technical step in their
paper, which consists of constructing a family of subshifts satisfying certain disjointedness conditions,
is equivalent to the construction of completely syndetic subsets.

Since the strong amenability of G is equivalent to the triviality of 𝜕p 𝐺, as a consequence of this
observation and the previous theorem, we obtain, in Theorem 7.1, a new characterization of strong
amenability (and hence of FC-hypercentrality).

Corollary 1.2. Let G be a discrete group. Then G is not strongly amenable if and only if there is a proper
normal subgroup 𝐻 � 𝐺 such that, for every finite subset 𝐹 ⊆ 𝐺 \ 𝐻, there is a completely syndetic
subset 𝐴 ⊆ 𝐺 such that 𝐹𝐴 ∩ 𝐴 = ∅.

The next result, which is Theorem 6.8, is a similar realization of the universal minimal strongly
proximal flow 𝜕sp 𝐺 as the Stone space of a Boolean algebra of strongly completely syndetic subsets
of G. See Definition 3.1 for the latter notion. In existing literature 𝜕sp 𝐺 is sometimes denoted by
Π𝑠 (𝐺).
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Theorem 1.3. Let G be a discrete group. Then the universal minimal strongly proximal G-flow 𝜕sp 𝐺 is
isomorphic to the Stone space of any translation-invariant Boolean subalgebra of 2𝐺 that is maximal
with respect to the property that every nonempty element is strongly completely syndetic.

Since the amenability of G is equivalent to the triviality of 𝜕sp 𝐺, we also obtain, in Theorem 7.5, a
new characterization of amenability that seems to have a different flavor than existing characterizations
in terms of paradoxical subsets and Følner sequences.

Corollary 1.4. Let G be a discrete group. Then G is not amenable if and only if there is a subset 𝐴 ⊆ 𝐺
such that both A and 𝐺 \ 𝐴 are strongly completely syndetic.

A key idea in our paper is the correspondence between between totally disconnected G-flows and
translation-invariant Boolean subalgebras of 2𝐺 that we view as a kind of ‘topological Furstenberg
correspondence.’ Zucker [26] showed that the G-flows 𝜕p 𝐺 and 𝜕sp 𝐺 are maximally highly proximal,
implying that they are extremally disconnected (and therefore totally disconnected).

An important observation in [22] is that the C*-algebra C(𝜕sp 𝐺) of continuous functions on 𝜕sp 𝐺 is
G-injective in a certain strong sense. One consequence is the existence of relatively invariant measures
in the sense of [12], which proves to be particularly useful when used in combination with the above-
mentioned correspondence.

More generally, we show that for a G-flow X, the C*-algebra C(𝑋) is G-injective in the above sense
if and only if X is what we call maximally affinely highly proximal, which is a strengthening of the
property of being maximally highly proximal. We prove in Theorem 5.12 that in addition to the G-flow
𝜕sp 𝐺, the G-flows 𝜕m 𝐺 and 𝜕p 𝐺 also have this property.

Theorem 1.5. Let G be a discrete group. Then the Stone–Čech compactification 𝛽𝐺, the universal
minimal G-flow 𝜕m 𝐺, the universal minimal proximal G-flow 𝜕p 𝐺 and the universal strongly proximal
G-flow 𝜕sp 𝐺 are all maximally affinely highly proximal.

The perspective we take in this paper allows us to answer a question of Glasner, Tsankov, Weiss
and Zucker from [11]. They asked for a characterization of dense orbit sets, which are subsets 𝐴 ⊆ 𝐺
with the property that for every minimal G-flow X and every point 𝑥 ∈ 𝑋 , the set 𝐴𝑥 is dense in X.
The following characterization of dense orbit sets, which is implied by Theorem 8.2 and the results in
Section 8, provides an answer to this question in terms of syndetic sets.

Theorem 1.6. Let G be a discrete group. A subset 𝐴 ⊆ 𝐺 is a dense orbit set if and only if there is
no subset 𝐵 ⊆ 𝐴𝑐 with the property that for every pair of finite subsets 𝐹1 ⊆ 𝐵 and 𝐹2 ⊆ 𝐵𝑐 , the set
(∩ 𝑓1∈𝐹1 𝑓

−1
1 𝐵) ∩ (∩ 𝑓2∈𝐹2 𝑓

−1
2 𝐵𝑐) is syndetic.

Other results in Section 8 may also be of interest. For example, we establish a characterization of
dense orbit sets in terms of the semigroup structure of the Stone–Čech compactification of G.

2. Preliminaries

In this section, we will briefly review some of the basic facts that we will require from the theory
of topological dynamics and the theory of C*-algebras. For a reference on topological dynamics, we
direct the reader to Glasner’s monograph [13]. For a reference on C*-algebras, we direct the reader to
Arveson’s monograph [1].

2.1. Flows

Let G be a discrete group. A nonempty compact Hausdorff space X is a G-flow if it is endowed with
an action of G by homeomorphisms. For 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑋 , we will write 𝑔𝑥 for the image of x under
the homeomorphism corresponding to g. We will consider the category of G-flows with equivariant
continuous maps as morphisms.
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A G-flow Y is an extension of X, and X is a factor of Y if there is an equivariant continuous surjective
map 𝛼 : 𝑌 → 𝑋 . We will refer to the map 𝛼 as an extension.

Almost all of the flows that we will consider in this paper will be minimal. A G-flow X is minimal if
for every point 𝑥 ∈ 𝑋 , the orbit 𝐺𝑥 = {𝑔𝑥 : 𝑔 ∈ 𝐺} is dense. There is a unique minimal G-flow 𝜕m 𝐺
that is universal in the sense that every minimal G-flow is a factor of 𝜕m 𝐺.

Proximal and strongly proximal flows will also play an important role. A G-flow X is proximal if,
for any two points 𝑥, 𝑦 ∈ 𝑋 , there is a net (𝑔𝑖) in G such that lim 𝑔𝑖𝑥 = lim 𝑔𝑖𝑦. It is strongly proximal
if, for any probability measure 𝜇 ∈ P(𝑋), there is a net (𝑔𝑖) in G such that lim 𝑔𝑖𝜇 ∈ 𝑋 . Here we have
identified points in X with the corresponding Dirac measures in P(𝑋). It is not hard to show that this
definition is equivalent to the proximality of the G-flow P(𝑋). There is a unique minimal proximal G-
flow 𝜕p 𝐺 that is universal in the sense that every minimal proximal G-flow is a factor of 𝜕p 𝐺. Similarly,
there is a unique universal minimal strongly proximal G-flow.

A G-flow X is point transitive if there is a transitive point 𝑥 ∈ 𝑋 , i.e., a point such that the orbit
𝐺𝑥 = {𝑔𝑥 : 𝑔 ∈ 𝐺} is dense in X. The Stone–Čech compactification 𝛽𝐺 is the unique universal point
transitive G-flow, meaning that if X is a G-flow with a transitive point x, then there is an extension
𝛼 : 𝛽𝐺 → 𝑋 such that 𝛼(𝑒) = 𝑥. Here 𝑒 ∈ 𝐺 denotes the unit in G, identified in a canonical way with
an element of 𝛽𝐺.

For a subset 𝐴 ⊆ 𝐺, we will let 𝐴 denote the closure of A in 𝛽𝐺. The set 𝐴 is clopen, and every
clopen subset of 𝛽𝐺 is of this form. Moreover, the family of clopen subsets of 𝛽𝐺 form a basis for
the topology on 𝛽𝐺. These facts follow from the fact that 𝛽𝐺 can be realized as the Stone space of
the Boolean algebra of subsets of G. We will discuss the relationship between G-flows and Boolean
subalgebra of G in more detail in Section 6.

We will consider 𝛽𝐺 as a compact right topological semigroup, meaning that for 𝑦 ∈ 𝛽𝐺 the map
𝛽𝐺 → 𝛽𝐺 : 𝑥 → 𝑥𝑦 is continuous. Many aspects of the structure of 𝛽𝐺 are well understood (see, e.g.,
[20]). For example, 𝛽𝐺 contains idempotents and has minimal left ideals.

Let L be a minimal left ideal in 𝛽𝐺. Then L is closed. Let 𝐸 ⊆ 𝐿 denote the set of idempotents in
L. Then L decomposes as a disjoint union 𝐿 = �𝑢∈𝐸𝑢𝐿. In particular, L contains idempotents, which
are said to be minimal. Note that L is a compact G-flow with respect to the left multiplication action
of G. We will frequently use the fact that L is isomorphic as a G-flow to the universal minimal flow
𝜕m 𝐺. In fact, whenever X is a G-flow there is an action of 𝛽𝐺 on X obtained by extending the maps
𝐺 → 𝑋 : 𝑥 → 𝑔𝑥 to maps 𝛽𝐺 → 𝑋 .

For a G-flow X, a subset 𝑆 ⊆ 𝑋 and a point 𝑥 ∈ 𝑋 , the corresponding return set 𝑆𝑥 ⊆ 𝐺 is defined
by 𝑆𝑥 = {𝑔 ∈ 𝐺 : 𝑔𝑥 ∈ 𝑆}. We will frequently make use of the following characterization of the closure
of the return set of a clopen subset.

Lemma 2.1. Let X be a G-flow, and let 𝑈 ⊆ 𝑋 be a clopen subset. Then for 𝑥 ∈ 𝑋 , 𝑈𝑥 = {𝑦 ∈ 𝛽𝐺 :
𝑦𝑥 ∈ 𝑈}.

Proof. Suppose that 𝑦 ∈ 𝑈𝑥 . Then there is a net (𝑔𝑖) in 𝑈𝑥 such that lim 𝑔𝑖 = 𝑦. Then lim 𝑔𝑖𝑥 = 𝑦𝑥.
Since 𝑔𝑖𝑥 ∈ 𝑈 for each i and U is closed, it follows that 𝑦𝑥 ∈ 𝑈.

Conversely, suppose that 𝑦𝑥 ∈ 𝑈. Let (𝑔𝑖) be a net in G such that lim 𝑔𝑖 = 𝑦. Then lim 𝑔𝑖𝑥 = 𝑦𝑥 ∈ 𝑈.
Since U is open, eventually 𝑔𝑖𝑥 ∈ 𝑈. Hence, eventually 𝑔𝑖 ∈ 𝑈𝑥 and therefore 𝑦 ∈ 𝑈𝑥 . �

2.2. Unital commutative C*-algebras

The category of compact Hausdorff spaces with continuous maps as morphisms is dually equivalent
to the category of unital commutative C*-algebras with unital *-homomorphisms as morphisms. For
a compact Hausdorff space X, the corresponding dual object is the C*-algebra C(𝑋) of continuous
functions on X.

If Y is another compact Hausdorff space, then a continuous map 𝛼 : 𝑌 → 𝑋 corresponds to the
*-homomorphism 𝜋 : C(𝑋) → C(𝑌 ) defined by 𝜋( 𝑓 ) (𝑦) = 𝑓 (𝛼(𝑦)) for 𝑓 ∈ C(𝑋) and 𝑦 ∈ 𝑌 . We will
frequently use the fact that the map 𝛼 is surjective if and only if the map 𝜋 is injective.
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Let G be a discrete group. We will say that the unital commmutative C*-algebra C(𝑋) is a G-C*-
algebra if there is an action of G on C(𝑋) by automorphisms. For 𝑔 ∈ 𝐺 and 𝑓 ∈ C(𝑋), we will write
𝑔 𝑓 for the image of f under the automorphism corresponding to f.

The category of G-flows with equivariant continuous maps as morphisms is dually equivalent to
the category of unital commutative G-C*-algebras. If X is a G-flow, then the C*-algebra C(𝑋) is a
G-C*-algebra with respect to the corresponding action of G defined by 𝑔 𝑓 (𝑥) = 𝑓 (𝑔−1𝑥) for 𝑔 ∈ 𝐺
and 𝑓 ∈ C(𝑋). We will discuss the relationship between G-flows and G-C*-algebras in more detail in
Section 5.

3. Higher-order syndeticity

3.1. Higher-order syndeticity

Let G be a discrete group. Recall that a subset 𝐴 ⊆ 𝐺 is (left) syndetic if there is a finite subset 𝐹 ⊆ 𝐺
such that 𝐹𝐴 = 𝐺. In this section, we will introduce a ‘higher-order’ notion of syndeticity for subsets
of G and consider several characterizations of sets with this property. In later sections, we will establish
connections with the topological dynamics of G. In particular, we will see that the structure of the
completely syndetic subsets of a group is closely related to the problem of the existence of minimal
proximal flows for the group.

Definition 3.1. Let G be a discrete group. For 𝑛 ∈ N, a subset 𝐴 ⊆ 𝐺 is (left) n-syndetic if there is
a finite subset 𝐹 ⊆ 𝐺 such that 𝐹𝐴𝑛 = 𝐺𝑛. We will say that A is completely (left) syndetic if it is
n-syndetic for all 𝑛 ∈ N.

The next result follows immediately from Definition 3.1, and provides a useful reformulation of the
definition of an n-syndetic subset.

Lemma 3.2. Let G be a discrete group and 𝑛 ∈ N. A subset 𝐴 ⊆ 𝐺 is n-syndetic if and only if there is
a finite subset 𝐹 ⊆ 𝐺 such that for every finite subset 𝐾 ⊆ 𝐺 with |𝐾 | = 𝑛, there is 𝑓 ∈ 𝐹 such that
𝑓 𝐾 ⊆ 𝐴.

The next proposition provides another characterization of n-syndetic subsets.

Proposition 3.3. Let G be a discrete group. A subset 𝐴 ⊆ 𝐺 is n-syndetic if and only if there is a finite
subset 𝐹 ⊆ 𝐺 such that, whenever F is partitioned as 𝐹 = 𝐹1 � · · · � 𝐹𝑛, then 𝐹𝑖𝐴 = 𝐺 for some i.

Proof. For 𝑛 ∈ N and a finite subset 𝐹 ⊆ 𝐺,

(𝐹 (𝐴𝑛))𝑐 =
⋂
𝑓 ∈𝐹

𝑓 (𝐴𝑛)𝑐

=
⋂
𝑓 ∈𝐹

𝑓 ((𝐴𝑐 × 𝐺𝑛−1) ∪ (𝐺 × 𝐴𝑐 × 𝐺𝑛−2) ∪ · · · ∪ (𝐺𝑛−1 × 𝐴𝑐))

=
⋃

𝐹=𝐹1�···�𝐹𝑛

���
⋂
𝑓 ∈𝐹1

𝑓 𝐴𝑐 × · · · ×
⋂
𝑓 ∈𝐹𝑛

𝑓 𝐴𝑐��	
=

⋃
𝐹=𝐹1�···�𝐹𝑛

(𝐹1𝐴)
𝑐 × · · · × (𝐹𝑛𝐴)

𝑐 ,

where the union is taken over all partitions 𝐹 = 𝐹1 � · · · � 𝐹𝑛, with the convention that, if 𝐹𝑖 = ∅, then
∩ 𝑓 ∈𝐹𝑖 𝑓 𝐴

𝑐 = 𝐺 and 𝐹𝑖𝐴 = ∅. It follows that 𝐹𝐴𝑛 = 𝐺𝑛 if and only if whenever F is partitioned as
𝐹 = 𝐹1 � · · · � 𝐹𝑛, then 𝐹𝑖𝐴 = 𝐺 for some i. �

Recall that a subset 𝐵 ⊆ 𝐺 is (right) thick if for every finite subset 𝐹 ⊆ 𝐺 there is ℎ ∈ 𝐺 such that
𝐹ℎ ⊆ 𝐵. One can see right from the definitions that a subset 𝐴 ⊆ 𝐺 is syndetic if and only if 𝐴𝑐 is not
thick. This correspondence can be expressed in terms of dual families.
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Let F be a family of subsets of G. The dual family F∗ is the family of subsets of G having nonzero
intersection with every element of F, i.e.,

F∗ = {𝐵 ⊆ 𝐺 : 𝐴 ∩ 𝐵 ≠ ∅ for all 𝐴 ∈ F}.

An important property of the family of thick subsets of G is that it is dual to the family of syndetic
subsets of G. This fact will be generalised to n-syndetic subsets in Corollary 3.6 below.

We first identify the complements of n-syndetic subsets.

Definition 3.4. Let G be a discrete group. For 𝑛 ∈ N, we will say that a subset 𝐵 ⊆ 𝐺 is (right) 1/𝑛-thick
if for every finite subset 𝐹 ⊆ 𝐺 there is (ℎ1, . . . , ℎ𝑛) ∈ 𝐺

𝑛 such that

𝐹 (ℎ1, . . . , ℎ𝑛) ⊆
𝑛⋃
𝑖=1

𝐺𝑛−𝑖 × 𝐵 × 𝐺𝑖−1.

We will say that B is fractionally (right) thick if it is 1/𝑛-thick for some 𝑛 ∈ N.

We observe that also 1/𝑛-thickness admits a characterization in terms of partitions of sets, in
analogy with Proposition 3.3. Indeed, a subset 𝐵 ⊆ 𝐺 is 1/𝑛-thick if for every finite subset 𝐹 ⊆ 𝐺
there are elements ℎ1, . . . , ℎ𝑛 ∈ 𝐺 such that for every element 𝑓 ∈ 𝐹 at least one of the elements
𝑓 ℎ𝑖 , 𝑖 ∈ {1, . . . , 𝑛} lies in B. Phrased differently, there is a partition 𝐹 = 𝐹1 � · · · � 𝐹𝑛 and element
ℎ1, . . . , ℎ𝑛 ∈ 𝐺 such that 𝐹𝑖ℎ𝑖 ⊆ 𝐵 for all i.

Proposition 3.5. Let G be a discrete group. For 𝑛 ∈ N, a subset 𝐴 ⊆ 𝐺 is n-syndetic if and only if 𝐴𝑐

is not 1/𝑛-thick. Hence, A is completely syndetic if and only if 𝐴𝑐 is not fractionally thick.

Proof. For a finite subset 𝐹 ⊆ 𝐺,

(𝐹𝐴𝑛)𝑐 = ∩ 𝑓 ∈𝐹 𝑓 (𝐴
𝑛)𝑐 =

⋂
𝑓 ∈𝐹

𝑓

(
𝑛⋃
𝑖=1

𝐺𝑛−𝑖 × 𝐴𝑐 × 𝐺𝑖−1

)
.

Therefore, 𝐹𝐴𝑛 ≠ 𝐺𝑛 if and only if the intersection on the right is nonempty. This is equivalent to the
condition that there is (ℎ1, . . . , ℎ𝑛) ∈ 𝐺

𝑛 such that

𝐹−1 (ℎ1, . . . , ℎ𝑛) ⊆
𝑛⋃
𝑖=1

𝐺𝑛−𝑖 × 𝐴𝑐 × 𝐺𝑖−1. �

Corollary 3.6. Let G be a discrete group. For 𝑛 ∈ N, the dual to the family of n-syndetic subsets is the
family of 1/𝑛-thick sets. Hence, the dual to the family of completely syndetic subsets is the family of
fractionally thick subsets.

Proof. Suppose 𝐵 ⊆ 𝐺 is a subset satisfying 𝐴 ∩ 𝐵 ≠ ∅ for all n-syndetic subsets 𝐴 ⊆ 𝐺. Then since
𝐵 ∩ 𝐵𝑐 = ∅, 𝐵𝑐 is not n-syndetic. Hence, by Proposition 3.5, B is 1/𝑛-thick.

Conversely, suppose that 𝐴 ∩ 𝐵 = ∅ for some n-syndetic subset A. Then 𝐴 ⊆ 𝐵𝑐 , and since any set
containing an n-syndetic subset is itself n-syndetic, 𝐵𝑐 is n-syndetic. Hence by Proposition 3.5, B is not
1/𝑛-thick. �

Example 3.7. It is well known that a subset 𝐴 ⊆ Z is syndetic if and only if it has ‘bounded gaps’,
meaning that there is 𝑘 ∈ N such that, for any 𝑎 ∈ Z, {𝑎, 𝑎 + 1, . . . , 𝑎 + 𝑘} ∩ 𝐴 ≠ ∅.

For 𝑛 ∈ N, a subset 𝐴 ⊆ Z is n-syndetic if and only if 𝐴𝑛 has ‘bounded diagonal gaps’, meaning that
there is 𝑘 ∈ N such that, for any n-tuple (𝑎1, . . . , 𝑎𝑛) ∈ Z

𝑛,

{(𝑎1, . . . , 𝑎𝑛), (𝑎1 + 1, . . . , 𝑎𝑛 + 1) . . . , (𝑎1 + 𝑘, . . . , 𝑎𝑛 + 𝑘)} ∩ 𝐴𝑛 ≠ ∅. (3.1)
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Figure 1. The subgroup 2Z ⊆ Z is syndetic but not 2-syndetic since there are arbitrarily long diagonal
segments in Z × Z that do not intersect 2Z × 2Z.

To see this, recall that A is n-syndetic if and only if 𝐴𝑐 is not 1/𝑛-thick, meaning that there is a finite
subset 𝐹 ⊆ Z such that, for every n-tuple (𝑎1, . . . , 𝑎𝑛) ∈ Z

𝑛, (𝐹+(𝑎1, . . . , 𝑎𝑛)) �
⋃𝑛

𝑖=1 Z
𝑛−𝑖×𝐴𝑐×Z𝑖−1.

Equivalently, (𝐹+ (𝑎1, . . . , 𝑎𝑛))∩𝐴
𝑛 ≠ ∅. Therefore, if A is n-syndetic and 𝐹 ⊆ Z satisfies 𝐹+𝐴𝑛 = Z𝑛,

then equation (3.1) is satisfied for 𝑘 = max(𝐹) − min(𝐹) + 1. Conversely, if there is 𝑘 ∈ N such that
equation (3.1) is satisfied, then for 𝐹 = {0, 1, . . . , 𝑘}, 𝐹 + 𝐴𝑛 = Z𝑛, showing that A is n-syndetic.

Since a subgroup is syndetic if and only if it is finite index and since every subgroup of Z is of the
form 𝑚Z for 𝑚 ∈ N and so is of finite index, every subgroup of Z is syndetic. However, no subgroup of
Z is 2-syndetic since, for any 𝑚 ∈ N \ {1}, there are arbitrarily long diagonal segments in Z2 that do not
intersect (𝑚Z)2. This can be seen, for example, in Figure 1.

Now fix 𝑛 ∈ Nwith 𝑛 > 2. We will show that the set 𝐴 = Z\𝑛Z is (𝑛−1)-syndetic but not n-syndetic.
To see that A is (𝑛 − 1)-syndetic, first note that, for 𝑎 ∈ Z, there is exactly one multiple of n in the set
{𝑎, 𝑎 + 1 . . . , 𝑎 + (𝑛 − 1)}. Hence, for an (𝑛 − 1)-tuple (𝑎1, . . . , 𝑎𝑛−1) ∈ Z

𝑛−1, at most 𝑛 − 1 elements of
the set

{(𝑎1, . . . , 𝑎𝑛−1), (𝑎1 + 1, . . . , 𝑎𝑛−1 + 1), . . . , (𝑎1 + (𝑛 − 1), . . . , 𝑎𝑛−1 + (𝑛 − 1))}

have an entry that is a multiple of n. Therefore, at least one element in the set has no entries that are
multiples of n, and this element belongs to 𝐴𝑛−1.

To see that A is not n-syndetic, note that, for 𝑘 ∈ N, every member of the set

{(1, 2, . . . , 𝑛), (2, 3, . . . , 𝑛 + 1), . . . , (1 + 𝑘, 2 + 𝑘, . . . , 𝑛 + 𝑘)}

has an entry that is a multiple of n. Therefore, the set does not intersect 𝐴𝑛.
Finally, we will construct an example of a nontrivial completely syndetic set. Let B denote the

complement of the set of powers of 2 in Z. Fix 𝑛 ∈ N, and let 𝑘 = 2𝑛−1 + 1. Then, for 𝑎 ∈ Z, there are
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Figure 2. The subset Z \ 3Z ⊆ Z is 2-syndetic but not 3-syndetic since, for 𝑘 ∈ N, every element in the
set {(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), . . . , (1 + 𝑘, 2 + 𝑘, 3 + 𝑘)} has an entry that is a multiple of 3,
implying that the set does not intersect 𝐴3.

at most n powers of 2 in the subset {𝑎, 𝑎 + 1, . . . , 𝑎 + 𝑘}. Hence, for every n-tuple (𝑎1, . . . , 𝑎𝑛) ∈ Z
𝑛,

there are at most 𝑛2 elements of the set

{(𝑎1, . . . , 𝑎𝑛), (𝑎1 + 1, . . . , 𝑎𝑛 + 1), . . . , (𝑎1 + 𝑘, . . . , 𝑎𝑛 + 𝑘)}

with an entry that is a power of 2. Since 𝑛2 < 2𝑛 + 2 = 𝑘 + 1, this implies that at least one element of
the set has no entries that are a power of 2, and this element belongs to 𝐵𝑛. Therefore, B is n-syndetic.
Since n was arbitary, it follows that B is completely syndetic.

The next result is a generalization of the criterion that was used in Example 3.7.

Lemma 3.8. Let G be a discrete group. For 𝑛 ∈ N, a subset 𝐴 ⊆ 𝐺 is n-syndetic if and only if there is a
finite subset 𝐹 ⊆ 𝐺 such that, for any finite subset 𝐾 ⊆ 𝐺 with |𝐾 | = 𝑛, 𝐹 ∩ (∩𝑘∈𝐾 𝐴𝑘) ≠ ∅.

Proof. If A is n-syndetic, then there is a finite subset 𝐹 ⊆ 𝐺 such that 𝐹𝐴𝑛 = 𝐺𝑛. For finite 𝐾 ⊆ 𝐺 with
|𝐾 | = 𝑛, write 𝐾 = {𝑘1, . . . , 𝑘𝑛}. Then there is 𝑓 ∈ 𝐹 such that (𝑘−1

1 , . . . , 𝑘−1
𝑛 ) ∈ 𝑓 𝐴𝑛. Equivalently,

𝑓 −1 ∈ ∩𝑛
𝑖=1𝐴𝑘𝑖 . In particular, 𝐹−1 ∩ (∩𝑘∈𝐾 𝐴𝑘) ≠ ∅.

Conversely, if there is a finite subset 𝐹 ⊆ 𝐺 such that for any finite subset 𝐾 ⊆ 𝐺 with |𝐾 | = 𝑛,
𝐹 ∩ (∩𝑘∈𝐾 𝐴𝑘) ≠ ∅, then it is easy to check that 𝐹−1𝐴𝑛 = 𝐺𝑛. Hence, A is n-syndetic. �

Example 3.9. Let G be a discrete group. Let 𝐴, 𝐵 ⊆ 𝐺 be subsets with A syndetic and B thick. Then the
set 𝐴𝐵 satisfies the property that

⋂
𝑓 ∈𝐹 𝑓 𝐴𝐵 is syndetic for every finite subset 𝐹 ⊆ 𝐺. Equivalently,

𝐴𝐵 ⊆ 𝛽𝐺 contains every minimal ideal. Such sets are called thickly syndetic in the literature. We claim
that the product set 𝐴𝐵 is also completely syndetic. To see this, choose a finite subset 𝐹 ⊆ 𝐺 such that
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Figure 3. The complement of the set of powers of 2 in Z is completely syndetic and, in particular, is
2-syndetic.

𝐹𝐴 = 𝐺. Given 𝐾 ⊆ 𝐺 finite, the assumption on B implies that there is ℎ ∈ ∩𝑘∈𝐾 𝐵𝑘 ≠ ∅. Then Lemma
3.8 applied for 𝑛 = 1, says that 𝐹−1 ∩ 𝐴ℎ ≠ ∅. Therefore,

∅ ≠ 𝐹−1 ∩ 𝐴ℎ ⊆ 𝐹−1 ∩ 𝐴(∩𝑘∈𝐾 𝐵𝑘) ⊆ 𝐹−1 ∩ (∩𝑘∈𝐾 𝐴𝐵𝑘),

so Lemma 3.8 implies that 𝐴𝐵 is completely syndetic.

In later sections we will be interested in subsets 𝐴 ⊆ 𝐺 that “avoid” a given finite subset of 𝐹 ⊆ 𝐺,
in the sense that 𝐹𝐴 ∩ 𝐴 = ∅. For 𝑛 ∈ N, let 2𝐺𝑛 denote the family of subsets of G of size n. Then
n-syndetic subsets of G with this property correspond to certain “colorings” of 2𝐺𝑛 .

Definition 3.10. Let G be a countable discrete group. For a finite subset 𝐹 ⊆ 𝐺 and 𝑛 ∈ N, an (𝐹, 𝑛)-
coloring of G is a pair (𝐾, 𝑘) consisting of a finite subset 𝐾 ⊆ 𝐺 and a function 𝑘 : 2𝐺𝑛 → 𝐾 such that,
for any pair of subsets 𝐸1, 𝐸2 ∈ 2𝐺𝑛 , we have 𝐹𝑘 (𝐸1)𝐸1 ∩ 𝑘 (𝐸2)𝐸2 = ∅.

Proposition 3.11. Let G be a discrete group and 𝐹 ⊆ 𝐺 finite. There is a surjection from (𝐹, 𝑛)-
colorings of G onto n-syndetic subsets 𝐴 ⊆ 𝐺 satisfying 𝐹𝐴 ∩ 𝐴 = ∅. For an (𝐹, 𝑛)-coloring (𝐾, 𝑘),
the corresponding n-syndetic subset is 𝐴 =

⋃
𝐸 ∈2𝐺𝑛 𝑘 (𝐸)𝐸 .

Proof. Let (𝐾, 𝑘) be an (𝐹, 𝑛)-coloring of G, and let 𝐴 = ∪𝐸 ∈2𝐺𝑛 𝑘 (𝐸)𝐸 . Then by the definition of an
(𝐹, 𝑛)-coloring,

𝐹𝐴 ∩ 𝐴 ⊆
⋃

𝐸1 ,𝐸2∈2𝐺𝑛

𝐹𝑘 (𝐸1)𝐸1 ∩ 𝑘 (𝐸2)𝐸2 = ∅.

Furthermore, for 𝐸 ∈ 2𝐺𝑛 , we have the inclusion 𝑘 (𝐸)𝐸 ⊆ 𝐴, implying that A is n-syndetic.
Conversely, let 𝐴 ⊆ 𝐺 be an n-syndetic subset such that 𝐹𝐴 ∩ 𝐴 = ∅. Then there is a finite subset

𝐾 ⊆ 𝐺 such that 𝐾𝐴𝑛 = 𝐺𝑛. Write 𝐾 = {𝑘1, . . . , 𝑘𝑚}, and define 𝑘 : 2𝐺𝑛 → 𝐾−1 by 𝑘 (𝐸) = 𝑘−1
𝑖 for
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𝐸 ⊆ 2𝐺𝑛 , where 𝑖 = min{𝑖 : 𝐸 ⊆ 𝑘𝑖𝐴}. Then, for 𝐸1, 𝐸2 ⊆ 2𝐺𝑛 , the fact that 𝑘 (𝐸1)𝐸1, 𝑘 (𝐸2)𝐸2 ⊆ 𝐴
implies that 𝐹𝑘 (𝐸1)𝐸1 ∩ 𝑘 (𝐸2)𝐸2 = ∅. Therefore, the pair (𝑘, 𝐾−1) is an (𝐹, 𝑛)-coloring of G. �

Remark 3.12. Since the choice of the enumeration of K in the second part of the proof of Proposition
3.11 is arbitrary, this correspondence will not generally be a bijection.

3.2. Stone–Čech compactification

Let G be a discrete group. There is an important characterization of syndetic subsets in terms of the
Stone–Čech compactification 𝛽𝐺 of G. Namely, a subset 𝐴 ⊆ 𝐺 is syndetic if and only if for every
minimal left ideal L of 𝛽𝐺, 𝐴 ∩ 𝐿 ≠ ∅. In this section, we will establish a characterization of higher-
order syndetic subsets in terms of 𝛽𝐺. This characterization will be important in later sections when we
consider the topological dynamical structure of G.

For a subset 𝐴 ⊆ 𝐺 and a point 𝑥 ∈ 𝛽𝐺, the corresponding return set is 𝐴𝑥 = {𝑔 ∈ 𝐺 : 𝑔𝑥 ∈ 𝐴}.

Proposition 3.13. Let G be a discrete group. A subset 𝐴 ⊆ 𝐺 is n-syndetic if and only if, for every finite
subset 𝐾 ⊆ 𝛽𝐺 with |𝐾 | ≤ 𝑛, there is 𝑔 ∈ 𝐺 such that 𝑔𝐾 ⊆ 𝐴. Equivalently, ∩𝑥∈𝐾 𝐴𝑥 ≠ ∅.

Proof. Suppose that A is n-syndetic. Then there is a finite subset 𝐹 ⊆ 𝐺 such that 𝐹𝐴𝑛 = 𝐺𝑛, and
taking closures on both sides with respect to the product topology implies 𝐹𝐴

𝑛
= (𝛽𝐺)𝑛. Let 𝐾 ⊆ 𝛽𝐺

be a finite subset with |𝐾 | ≤ 𝑛. Then from above, 𝐾 ⊆ 𝑓 𝐴 for some 𝑓 ∈ 𝐹. Hence, 𝑓 −1𝐾 ⊆ 𝐴.
Conversely, suppose that, for every finite subset 𝐾 ⊆ 𝛽𝐺 with |𝐾 | ≤ 𝑛, there is 𝑔 ∈ 𝐺 such that

𝑔𝐾 ⊆ 𝐴. Then
⋃

𝑔∈𝐺 𝑔𝐴
𝑛
= (𝛽𝐺)𝑛. Since 𝐴 is clopen and 𝛽𝐺 is compact, 𝐴

𝑛
is clopen and (𝛽𝐺)𝑛

is compact with respect to the product topology. Hence, there is a finite subset 𝐹 ⊆ 𝐺 such that
𝐹𝐴

𝑛
= (𝛽𝐺)𝑛. It follows that 𝐹𝐴𝑛 = 𝐺𝑛, so A is n-syndetic. �

Proposition 3.14. Let G be a discrete group. A subset 𝐴 ⊆ 𝐺 is completely syndetic if and only if the
closure 𝐴 ⊆ 𝛽𝐺 contains a closed right ideal of 𝛽𝐺.

Proof. Suppose that 𝐴 contains a right ideal R. Then for 𝑥 ∈ 𝑅 and a finite subset 𝐾 ⊆ 𝛽𝐺, 𝑥𝐾 ⊆ 𝑅 ⊆ 𝐴.
Let (𝑔𝑖) be a net in G such that lim 𝑔𝑖 = 𝑥. Then, since 𝐴 is clopen, eventually 𝑔𝑖𝐾 ⊆ 𝐴 since the
product on 𝛽𝐺 is continuous in the first variable. Hence, by Proposition 3.13, A is completely syndetic.

Conversely, suppose that A is completely syndetic. Then by Proposition 3.13, the family of sets
{𝐴𝑦}𝑦∈𝛽𝐺 has the finite intersection property. Hence, the family {𝐴𝑦}𝑦∈𝛽𝐺 of clopen subsets also has
the finite intersection property. Therefore, by the compactness of 𝛽𝐺, there is 𝑥 ∈ ∩𝑦∈𝛽𝐺𝐴𝑦 . Then
𝑥𝑦 ∈ 𝐴 for all 𝑦 ∈ 𝛽𝐺, implying that the right ideal 𝑅 = 𝑥𝛽𝐺 satisfies 𝑅 ⊆ 𝐴.

If 𝐴 contains a right ideal, then, since the closure of every right ideal in 𝛽𝐺 is a right ideal (see, e.g.,
[20, Theorem 2.15]), 𝐴 necessarily contains a closed right ideal. �

If G is amenable, then syndetic subsets of G can be characterized in terms of left invariant means
on G. Specifically, a subset 𝐴 ⊆ 𝐺 is syndetic if and only if, for every left invariant mean m on G,
𝑚(𝐴) > 0 (see, e.g., [4, Theorem 2.7]). The next result generalizes this characterization.

Lemma 3.15. Let G be an amenable discrete group. For 𝑛 ∈ N, a subset 𝐴 ⊆ 𝐺 is n-syndetic if and
only if for every mean m on 𝐺𝑛 that is invariant under left translation by G we have 𝑚(𝐴𝑛) > 0.

Proof. Suppose that A is n-syndetic, and let m be a mean on 𝐺𝑛 that is invariant under left translation
by G. Since A is n-syndetic, there is a finite subset 𝐹 ⊆ 𝐺 such that 𝐹𝐴𝑛 = 𝐺𝑛. Then 𝑚(𝐹𝐴𝑛) = 1. By
the translation invariance of m, it follows that 𝑚(𝐴𝑛) > 0.

Conversely, suppose that 𝐴 ⊆ 𝐺 is not n-syndetic. Then, by Proposition 3.5, for every finite subset
𝐹 ⊆ 𝐺 there is ℎ𝐹 = (ℎ1, . . . , ℎ𝑛) ∈ 𝐺

𝑛 such that 𝐹ℎ𝐹 ⊆ (𝐴𝑛)𝑐 . The net (ℎ𝐹 )𝐹 ⊆𝐺 indexed by finite
subsets 𝐹 ⊆ 𝐺 is directed by inclusion. Let 𝑥 ∈ 𝛽(𝐺𝑛) be a cluster point. Then 𝑔𝑥 ∈ (𝐴𝑛)𝑐 for all 𝑔 ∈ 𝐺.

From above, letting 𝛿𝑥 denote the Dirac measure on 𝛽(𝐺𝑛) corresponding to x, (𝑔𝛿𝑥) (𝐴𝑛) = 0 for
all 𝑔 ∈ 𝐺. Since G is amenable, there is a probability measure 𝜇 on 𝛽(𝐺𝑛) contained in the closed

https://doi.org/10.1017/fms.2022.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.11


Forum of Mathematics, Sigma 11

convex hull of the set {𝑔𝛿𝑥}𝑔∈𝐺 that is invariant under left translation by G. By construction, 𝜇(𝐴𝑛) = 0.
Therefore, letting m denote the corresponding mean on 𝐺𝑛, m is invariant under left translation by G
and satisfies 𝑚(𝐴𝑛) = 0. �

3.3. Subshift dynamics

Let G be a countable discrete group, and let 2𝐺 denote the family of subsets of G. Fix an enumeration
of G as𝐺 = {𝑔𝑘 : 𝑘 ∈ N}, and equip 2𝐺 with the metric 𝑑 : 2𝐺 ×2𝐺 → R defined by 𝑑 (𝐴, 𝐵) = 1/𝑛 for
𝐴, 𝐵 ∈ 2𝐺 , where 𝑛 = inf{𝑘 ∈ N : 𝐴 ∩ {𝑔𝑘 } ≠ 𝐵 ∩ {𝑔𝑘 }}. Then 2𝐺 is compact and the right translation
action on 2𝐺 defines a G-flow called the Bernoulli shift.

A subflow of the Bernoulli shift is called a subshift. In this section, we will establish a characterization
of higher-order syndetic subsets in terms of a property of the subshifts that they generate. We will apply
this result in later sections when we discuss strong amenability.

For a subset 𝐴 ⊆ 𝐺, let 𝑋 ⊆ 2𝐺 denote the subshift generated by A. Then it is well known that A is
syndetic if and only if ∅ ∉ 𝑋 and 𝐴𝑐 is syndetic if and only if 𝐺 ∉ 𝑋 . The next result is a generalization
of this fact.

Proposition 3.16. Let G be a countable discrete group, let 𝐴 ⊆ 𝐺 be a subset of G and let 𝑋 ⊆ 2𝐺
denote the subshift generated by A. Then, for 𝑛 ∈ N, A is n-syndetic if and only if for any 𝐵1, . . . , 𝐵𝑛 ∈ 𝑋 ,
𝐵1 ∩ · · · ∩ 𝐵𝑛 ≠ ∅. Also, 𝐴𝑐 is n-syndetic if and only if for any 𝐵1, . . . , 𝐵𝑛 ∈ 𝑋 , 𝐵1 ∪ · · · ∪ 𝐵𝑛 ≠ 𝐺.

Proof. Suppose that A is n-syndetic. Then by Lemma 3.8 there is a finite subset 𝐹 ⊆ 𝐺 such that,
for any finite subset 𝐾 ⊆ 𝐺 with |𝐾 | = 𝑛, 𝐹 ∩ (∩𝑘∈𝐾 𝐴𝑘) ≠ ∅. Choose 𝐵1, . . . , 𝐵𝑛 ∈ 𝑋 , and for each
𝑖 ∈ {1, . . . , 𝑛} let (𝑔𝑖𝑘 ) be a sequence in G such that lim𝑘 𝐴𝑔

𝑖
𝑘 = 𝐵𝑖 . Then from above, 𝐹∩(∩𝑛

𝑖=1𝐴𝑔
𝑖
𝑘 ) ≠ ∅

for each k. Since F is finite, by passing to subsequences we can assume that there is 𝑓 ∈ 𝐹 such that
𝑓 ∈ 𝐴𝑔𝑖𝑘 for all k and i. Then 𝑓 ∈ 𝐵1 ∩ · · · ∩ 𝐵𝑛, and in particular 𝐵1 ∩ · · · ∩ 𝐵𝑛 ≠ ∅.

Conversely, suppose there is 𝐵1, . . . , 𝐵𝑛 ∈ 𝑋 such that 𝐵1 ∩ · · · ∩ 𝐵𝑛 = ∅. Let (𝑔𝑖𝑘 ) be sequences in
G such that lim𝑘 𝐴𝑔

𝑖
𝑘 = 𝐵𝑖 . Then for any finite subset 𝐹 ⊆ 𝐺, eventually 𝐹 ∩ (∩𝑛

𝑖=1𝐴𝑔
𝑖
𝑘 ) = ∅. Indeed,

otherwise we could argue as above that 𝐵1 ∩ · · · ∩ 𝐵𝑛 ≠ ∅. Hence, by Lemma 3.8, A is not n-syndetic.
For subsets 𝐵1, . . . , 𝐵𝑛 ⊆ 𝐺, 𝐵1, . . . , 𝐵𝑛 are in the subshift generated by A if and only if 𝐵𝑐

1 , . . . , 𝐵
𝑐
𝑛

are in the subshift generated by 𝐴𝑐 . It follows from above that 𝐴𝑐 is n-syndetic if and only if for any
𝐵1, . . . , 𝐵𝑛 ∈ 𝑋 , 𝐵1 ∪ · · · ∪ 𝐵𝑛 ≠ 𝐺. �

3.4. Strongly complete syndeticity

In this section, we will introduce a slightly stronger notion of complete syndeticity for subsets of a
discrete group inspired by the proof of [13, Chapter VII, Proposition 2.1]. We will see later that, just
as the structure of the completely syndetic subsets of a group is closely related to the problem of the
existence of minimal proximal flows for the group, the structure of the subsets satisfying this stronger
property is closely related to the problem of the existence of minimal strongly proximal flows.

Recall that a multiset is a set with multiplicity. Formally, a multiset is a pair 𝑋 = (𝐴, 𝑚) consisting
of a set A and a multiplicity function 𝑚 : 𝐴 → N≥1. The cardinality of X is |𝑋 | =

∑
𝑎∈𝐴𝑚(𝑎). For an

ordinary set Y, we will write 𝑋 ⊆ 𝑌 if 𝐴 ⊆ 𝑌 , and we will write 𝑋 ∩𝑌 for the multiset (𝐴 ∩𝑌, 𝑚 |𝐴∩𝑌 ).
Finally, for a discrete group G, a multiset 𝑋 = (𝐴, 𝑚) ⊆ 𝐺 and 𝑔 ∈ 𝐺, we will write 𝑔𝑋 = (𝑔𝐴, 𝑔𝑚),
where 𝑔𝑚 : 𝑔𝐴 → N≥1 is defined by 𝑔𝑚(𝑔𝑎) = 𝑚(𝑎) for 𝑎 ∈ 𝐴. Note that, if X is an ordinary
set, identified with a multiset in the obvious way, then these definitions will coincide with the usual
definitions.

Definition 3.17. Let G be a discrete group. We will say that a subset 𝐴 ⊆ 𝐺 is strongly completely (left)
syndetic if for every 𝜖 > 0 there is a finite subset 𝐹 ⊆ 𝐺 such that, for every finite multiset 𝐾 ⊆ 𝐺, there
is 𝑓 ∈ 𝐹 such that | 𝑓 𝐾 ∩ 𝐴| ≥ (1 − 𝜖) |𝐾 |.

Remark 3.18. We will see in Section 6.3 that it is essential that the set K in the above definition is
allowed to be a multiset.
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Remark 3.19. Recall from Definition 3.1 and Lemma 3.2 that a subset 𝐴 ⊆ 𝐺 is completely syndetic if
for every 𝑛 ∈ N there are finitely many translates of A such that any sequence 𝑔1, . . . , 𝑔𝑛 in G belongs
all together to at least one of the translates. One possible attempt to strengthen this notion is to drop
the bound on the number of elements from G, but then 𝐴 = 𝐺 is the only set satisfying this definition.
Strong complete syndeticity provides a probabilistic version of this idea. Indeed, a subset 𝐴 ⊆ 𝐺 is
strongly completely syndetic if and only if for every 𝜖 > 0 there are finitely many translates of A such
that of any sequence 𝑔1, . . . , 𝑔𝑛 in G at least (1 − 𝜖)𝑛 of its members belong to one of the translates.

Lemma 3.20. Let G be a discrete group. If a subset 𝐴 ⊆ 𝐺 is strongly completely syndetic, then it is
completely syndetic.

Proof. Suppose that A is strongly completely syndetic. For 𝑛 ∈ N, let 𝜖 = 1
2𝑛 . Then there is a finite

subset 𝐹 ⊆ 𝐺 such that for every finite subset 𝐾 ⊆ 𝐺 with |𝐾 | = 𝑛 there is 𝑓 ∈ 𝐹 such that
| 𝑓 𝐾 ∩ 𝐴| ≥ (1 − 𝜖) |𝐾 | = 𝑛 − 1

2 . Hence, | 𝑓 𝐾 ∩ 𝐴| = 𝑛, implying 𝑓 𝐾 ⊆ 𝐴. Therefore, A is left n-
syndetic. �

We will see later that not every completely syndetic subset is strongly completely syndetic.

Example 3.21. Consider the free group on two generators F2 = 〈𝑎, 𝑏〉, and let 𝐴 ⊆ F2 denote the set
of all elements in F2 with reduced form beginning with a. We will show that A is strongly completely
syndetic. To this end, choose 𝜖 > 0 and 𝑛 ∈ N with 𝑛 ≥ 1/(2𝜖) + 1.

For a reduced word w in {𝑎, 𝑏}, let 𝐵𝑤 ⊆ F2 denote the subset of elements such that the corresponding
reduced word begins with w. Then there are reduced words 𝑤2, . . . , 𝑤2𝑛 such that setting 𝑤1 = 𝑎,
F2 \ {𝑒} = 𝐵𝑤1 � 𝐵𝑤2 � · · · � 𝐵𝑤2𝑛 and there is a finite subset 𝐹 ⊆ F2 with the property that, for each
2 ≤ 𝑖 ≤ 2𝑛, there is 𝑓 ∈ 𝐹 satisfying 𝑓 𝐵𝑤𝑗 ⊆ 𝐵𝑎 = 𝐵𝑤1 if 𝑗 ≠ 𝑖.

For example, if 𝑛 = 2, we can take 𝑤2 = 𝑎−1, 𝑤3 = 𝑏, 𝑤4 = 𝑏−1 and 𝐹 = {𝑎, 𝑎𝑏−1, 𝑎𝑏}. Then, for all
𝑗 ≠ 2, 𝑎𝐵𝑤𝑗 ⊆ 𝐵𝑎; for all 𝑗 ≠ 3, 𝑎𝑏−1𝐵𝑤𝑗 ⊆ 𝐵𝑎 and for all 𝑗 ≠ 4, 𝑎𝑏𝐵𝑤𝑗 ⊆ 𝐵𝑎. Similiarly, for 𝑛 = 3, we
can take 𝑤2 = 𝑎−2, 𝑤3 = 𝑎−1𝑏, 𝑤4 = 𝑎−1𝑏−1, 𝑤5 = 𝑏, 𝐵6 = 𝑏−1 and 𝐹 = {𝑎2, 𝑎𝑏−1𝑎, 𝑎𝑏𝑎, 𝑎𝑏−1, 𝑎𝑏}.

Then, for a finite multiset 𝐾 ⊆ 𝐺, |𝐾 ∩ 𝐵𝑤𝑖 | ≤ |𝐾 |/(2𝑛 − 1) for some 𝑖 ≠ 1. By construction there is
𝑓 ∈ 𝐹 such that 𝑓 𝐵𝑤𝑗 ⊆ 𝐵𝑎 for 𝑗 ≠ 𝑖. Then

| 𝑓 𝐾 ∩ 𝐴| ≥
(
1 − 1

2𝑛−1

)
|𝐾 | ≥ (1 − 𝜖) |𝐾 |.

Therefore, A is strongly completely syndetic.

4. Algebraically irreducible affine flows

Let G be a discrete group and let X be a G-flow. If X is minimal and strongly proximal, then the affine flow
P(𝑋) of probability measures on X is irreducible, meaning that it has no proper affine subflow. Indeed,
an affine subflow of P(𝑋) necessarily contains X, and hence, by the Krein–Milman theorem, contains
all of P(𝑋). Furstenberg proved (see, e.g., [13, Theorem 2.3]) a kind of converse: If K is any irreducible
affine G-flow, then the closure of the set of extreme points of K is a minimal strongly proximal G-flow.

Zorn’s lemma implies that every affine G-flow L contains an irreducible affine G-flow K. It follows
from above that for a G-flow X, the affine flow P(𝑋) always contains a minimal strongly proximal G-
flow. Consequently, there is always a continuous equivariant map from the universal minimal strongly
proximal G-flow 𝜕sp 𝐺 to P(𝑋). The existence of this map along with more general ‘boundary maps’
has played an important role in recent applications of topological dynamics to C*-algebras (see, e.g.,
[22] and [23]).

In this section, we will establish a similar result for minimal proximal flows. We will utilize this
result in later sections. However, in general it does not seem to be as useful as the corresponding result
for minimal strongly proximal flows. For the next definition, recall that 𝜕𝐾 denotes the set of extreme
points of a convex set K.
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Definition 4.1. Let G be a discrete group, and let K be an affine G-flow. We will say that K is algebraically
irreducible if whenever 𝐿 ⊆ 𝐾 is an affine G-subflow with the property that 𝐿 ∩ conv(𝜕𝐾) ≠ ∅, then
𝐿 = 𝐾 .

Proposition 4.2. Let G be a discrete group, let K be an algebraically irreducible affine G-flow and let
𝑋 = 𝜕𝐾 . Then X is a minimal proximal G-flow, and it is the unique minimal subflow of K with the
property that 𝑋 ∩ conv(𝜕𝐾) ≠ ∅.

Proof. We prove a statement from which both minimality and proximality of X can be deduced. Choose
𝑥, 𝑦 ∈ 𝑋 , and let 𝑤 = 1

2 (𝑥 + 𝑦) ∈ 𝐾 . Let 𝐿 ⊆ 𝐾 denote the closed convex hull of the orbit 𝐺𝑤. Then
L is an affine subflow with 𝐿 ∩ conv(𝜕𝐾) ≠ ∅. Since K is algebraically irreducible, 𝐿 = 𝐾 . Hence, by
Milman’s partial converse to the Krein–Milman theorem, 𝜕𝐾 ⊆ 𝐺𝑤. It follows that 𝑋 ⊆ 𝐺𝑤.

Taking 𝑥 = 𝑦 in the previous paragraph implies that X is minimal. To see that X is proximal, choose a
point 𝑧 ∈ 𝜕𝐾 . Then from above there is a net (𝑔𝑖) in G such that 𝑧 = lim 𝑔𝑖𝑤 = lim 1

2 (𝑔𝑖𝑥 + 𝑔𝑖𝑦). Since
X is compact, by passing to a subnet we can assume there are points 𝑥 ′, 𝑦′ ∈ 𝑋 such that lim 𝑔𝑖𝑥 = 𝑥 ′

and lim 𝑔𝑖𝑦 = 𝑦′. Then 𝑧 = 1
2 (𝑥

′ + 𝑦′). Since z is an extreme point, it follows that 𝑥 ′ = 𝑦′ = 𝑧. Hence, X
proximal.

Finally, to see that X is unique, let 𝑌 ⊆ 𝐾 be a minimal subflow of K such that 𝑌 ∩ conv(𝜕𝐾) ≠ ∅.
Then the closed convex hull L of Y is an affine G-flow with 𝐿 ∩ conv(𝜕𝐾) ≠ ∅. Since K is algebraically
irreducible, 𝐿 = 𝐾 . Hence, by Milman’s partial converse to the Krein–Milman theorem, 𝜕𝐾 ⊆ 𝑌 . Since
𝜕𝐾 is invariant, the minimality of Y implies that 𝑌 = 𝜕𝐾 = 𝑋 . �

Theorem 4.3. Let G be a discrete group. A G-flow X is minimal and proximal if and only if the affine
G-flow P(𝑋) is algebraically irreducible.

Proof. Suppose that P(𝑋) is algebraically irreducible. Then Proposition 4.2 implies 𝑋 = 𝜕P(𝑋) is
minimal and proximal. Conversely, suppose that X is minimal and proximal. Let 𝐾 ⊆ P(𝑋) be an
affine G-flow with 𝐾 ∩ conv(𝑋) ≠ ∅. Then there is 𝜇 ∈ 𝐾 of the form 𝜇 = 𝛼1𝛿𝑥1 + · · · + 𝛼𝑛𝛿𝑥𝑛 for
𝛼1, . . . , 𝛼𝑛 > 0 and 𝛼1 + · · · + 𝛼𝑛 = 1 and 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 . By the proximality of x there is a net (𝑠𝑖) in
G and 𝑦 ∈ 𝑋 such that lim 𝑠𝑖𝑥𝑖 = 𝑦 for all i. Hence, lim 𝑠𝑖𝜇 = 𝛿𝑦 . Thus, 𝑋 ⊆ 𝐾 and 𝐾 = P(𝑋). Hence,
P(𝑋) is algebraically irreducible. �

We wonder whether Theorem 4.3 could be used to establish the existence of nontrivial minimal
proximal flows for non-FC-hypercentral groups, thereby giving a new proof of the main result in
[8]. We will return to the question of the existence of nontrivial minimal proximal flows in later
sections.

5. Highly proximal extensions and injectivity

Zucker recently showed in [26] that, if G is a Polish group, then the universal minimal G-flow 𝜕m 𝐺,
the universal minimal proximal G-flow 𝜕p 𝐺 and the universal strongly proximal G-flow 𝜕sp 𝐺 are all
maximally highly proximal (see Section 5.2). If G is discrete, then it turns out that a G-flow X is
maximally highly proximal if and only if the C*-algebra C(𝑋) is injective in the category of unital
commutative C*-algebras.

Injectivity is an important and well-studied property of C*-algebras. However, a key observation in
[22] is that the C*-algebra C(𝜕sp 𝐺) is actually injective in a much stronger sense. Specifically, it is
injective in the category of function systems equipped with a G-action. Here, a function system refers
to a closed unital self-adjoint subspace of a unital commutative C*-algebra.

In this section, we will consider a property of G-flows that corresponds to this stronger notion of
injectivity. We will show that, in addition to the universal minimal strongly proximal G-flow 𝜕sp 𝐺,
the universal pointed G-flow (i.e., the Stone–Čech compactification) 𝛽𝐺, the universal minimal G-flow
𝜕m 𝐺 and the universal minimal proximal G-flow 𝜕p 𝐺 also have this property.
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5.1. Injectivity and essentiality

Since we will be considering injective objects in two different categories, it will be convenient to give
a broad overview of the basic category theory that we will require.

Let C be a category with objects Obj(C) and morphisms Mor(C). We fix a class of morphisms
𝐸 ⊆ Mor(C). We will refer to the morphisms in E as embeddings. For the categories that we will
consider, E will consist of morphisms that are ‘embeddings’ in an appropriate sense.

For example, in the next section, we will consider the category of unital commutative C*-algebras with
unital *-homomorphisms as morphisms. In this setting, the class E will be the unital *-monomorphism.

An object 𝐼 ∈ Obj(C) is injective if, for any objects 𝐴, 𝐵 ∈ Obj(C), any embedding 𝜄 : 𝐴 → 𝐵 and
any morphism 𝜙 : 𝐴 → 𝐼, there is a morphism 𝜓 : 𝐵 → 𝐼 such that 𝜓 ◦ 𝜄 = 𝜙, or equivalently, such that
the following diagram commutes.

𝐵

𝐴 𝐼

𝜄

𝜙

∃ 𝜓

For an object 𝐴 ∈ Obj(C), we will be interested in finding an injective object 𝐼 ∈ Obj(C) along with
an embedding 𝜄 : 𝐴 → 𝐼 that is minimal in the sense that, if 𝐽 ∈ Obj(C) is injective and 𝜅 : 𝐴 → 𝐽 is
an embedding, then there is a surjective morphism 𝜙 : 𝐽 → 𝐼 such that 𝜙 ◦ 𝜅 = 𝜄. A pair (𝐴, 𝜄) with this
property is an injective hull for A. For the categories that we will consider, it is a nontrivial result that
every object has an injective hull that is unique up to isomorphism.

An embedding 𝜄 : 𝐴 → 𝐵 is essential if for every object𝐶 ∈ Obj(C) and every morphism 𝜙 : 𝐵 → 𝐶,
𝜙 is an embedding whenever 𝜙 ◦ 𝜄 is an embedding.

There is typically a close relationship between injective objects and essential embeddings. For the
categories that we will consider here, an object 𝐼 ∈ Obj(C) is injective if and only if it is maximal essen-
tial, meaning that for every object 𝐴 ∈ Obj(C), an essential embedding 𝜄 : 𝐼 → 𝐴 is an isomorphism.

5.2. Maximally highly proximal flows

The notion of a maximally highly proximal flow was introduced by Auslander and Glasner [2] (see
also [26]). Let G be a discrete group, and let X and Y be G-flows. An extension 𝜙 : 𝑌 → 𝑋 is highly
proximal if for every nonempty open subset 𝑈 ⊆ 𝑌 there is a point 𝑥 ∈ 𝑋 such that 𝜙−1(𝑥) ⊆ 𝑈. The
extension 𝑌 → 𝑋 is universally highly proximal if whenever Z is a G-flow and 𝜓 : 𝑍 → 𝑋 is a highly
proximal extension, then there is an extension 𝜌 : 𝑌 → 𝑍 such that 𝜙 = 𝜓 ◦ 𝜌. The universal highly
proximal extension is unique up to isomorphism. The G-flow X is called maximally highly proximal if
the identity map id𝑋 is the universal highly proximal extension.

Recall that the category with G-flows as objects and G-equivariant continuous maps as mor-
phisms is dually equivalent to the category with unital commutative G-C*-algebras as objects and
G-equivariant unital *-homomorphisms as morphisms. An embedding in this latter category is a unital
*-monomorphism.

A pair of G-flows X and Y correspond to the G-C*-algebras C(𝑋) and C(𝑌 ), and an extension
𝛼 : 𝑌 → 𝑋 corresponds to an embedding 𝜋 : C(𝑋) → C(𝑌 ) via the formula 𝑓 ◦ 𝛼(𝑦) = 𝜋( 𝑓 ) (𝑦) for
𝑓 ∈ C(𝑋) and 𝑦 ∈ 𝑌 . Vice versa, an embedding C(𝑋) → C(𝑌 ) leads to an extension 𝑌 → 𝑋 obtained
by considering the spectra of C(𝑌 ) and C(𝑋).

In order to identify the C*-algebras corresponding to maximally highly proximal flows, we will work
within the category of unital commutative C*-algebras. Before stating the results, we briefly review
some definitions.

For compact Hausdorff spaces X and Y, a *-homomorphism 𝜋 : C(𝑋) → C(𝑌 ) is an embedding if it
is a *-monomorphism. It follows from Zorn’s lemma that every unital commutative C*-algebra C(𝑋)
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admits an essential embedding 𝜋 : C(𝑋) → C(𝑌 ) which is maximal in the following sense: Whenever
𝜌 : C(𝑌 ) → C(𝑍) is an embedding such that 𝜌 ◦ 𝜋 is essential, then 𝜌 is a ∗-isomorphism.

Gleason [14] (see also [17]) showed that the unital commutative C*-algebra C(𝑌 ) is injective if and
only if the space Y is extremally disconnected. Gonshor [15] showed that this is equivalent to C(𝑌 )
being maximal essential. Moreover, Gleason showed that every unital commutative C*-algebra C(𝑋)
has an injective hull C(𝑌 ) that is unique up to isomorphism. The space Y is often referred to as the
Gleason cover of X.

The next result from [15] characterizes essential embeddings of unital commutative C*-algebras in
terms of the corresponding compact Hausdorff spaces.

Theorem 5.1. Let X and Y be compact Hausdorff spaces, and let 𝜋 : C(𝑋) → C(𝑌 ) be an embedding.
Let 𝜙 : 𝑌 → 𝑋 denote the corresponding continuous map. The following are equivalent:

1. The embedding 𝜋 is essential.
2. For every nonzero ideal J in C(𝑌 ), 𝐽 ∩ 𝜋(C(𝑋)) ≠ 0.
3. For every proper closed subset 𝐶 ⊆ 𝑌 , 𝜙(𝐶) ≠ 𝑋 .

Gonshor [16] showed that the Gleason cover of a compact Hausdorff space X is isomorphic to the
Stone space of the Boolean algebra of regular open subsets of X. Recall that an open subset 𝑈 ⊆ 𝑋 is
regular if it is equal to the interior of its closure. The regular open subsets of X form a Boolean algebra
with respect to the following operations:

◦ 𝑈 ∧𝑉 is𝑈 ∩𝑉 ,
◦ 𝑈 ∨𝑉 is the interior of the closure of 𝑈 ∪𝑉 and
◦ ¬𝑈 is the interior of𝑈𝑐 .

Theorem 5.2. Let G be a discrete group, and let X and Y be minimal G-flows. An extension 𝜙 : 𝑌 → 𝑋 is
highly proximal if and only if the corresponding embedding 𝜋 : C(𝑋) → C(𝑌 ) is essential. Hence, Y is
maximally highly proximal if and only if C(𝑌 ) is the injective hull of C(𝑋). In this case, Y is isomorphic
to the Stone space of the Boolean algebra of regular open subsets of X.

Proof. Suppose that 𝜙 is highly proximal. Let 𝐶 ⊆ 𝑌 be a proper closed subset. Then 𝑉 = 𝑌 \ 𝐶 is a
nonempty open subset, so there is 𝑥 ∈ 𝑋 such that 𝜙−1(𝑥) ⊆ 𝑉 . Hence 𝑥 ∉ 𝜙(𝐶). Therefore, by (3) of
Theorem 5.1, 𝜋 is essential.

Conversely, suppose that 𝜋 is essential. Fix a nonempty open subset𝑉 ⊆ 𝑌 . Let𝐶 = 𝑌 \𝑉 so that C is
a proper closed subset. Then by (3) of Theorem 5.1, 𝜙(𝐶) ≠ 𝑋 . Hence, there is 𝑥 ∈ 𝑋 with 𝜙−1(𝑥) ⊆ 𝑉 .
Therefore, 𝜙 is highly proximal.

The equivalence between Y being maximally highly proximal and C(𝑌 ) being the injective hull of
C(𝑋) is now implied by the characterization of the injective hull of C(𝑋) as maximal essential. The
final statement describing Y when C(𝑌 ) is injective is from [16]. �

Example 5.3. Let G be a discrete group and let X and Y be G-flows such that Y is maximally highly
proximal and let 𝛼 : 𝑌 → 𝑋 be an extension. By Theorem 5.2, the C*-algebra C(𝑌 ) is injective in the
category of unital commutative C*-algebras. However, it is not necessarily injective in the category of
unital commutative G-C*-algebras.

To see this, suppose that G is nontrivial and let X denote the trivial G-flow. Then X is maximally highly
proximal, so by Theorem 5.2, Cconv𝑛𝑔C(𝑋) is injective (note that this also follows from the Hahn–
Banach theorem). However, C is not G-injective in the category of unital commutative G-C*-algebras.
Otherwise the identity map idC would extend to an equivariant *-homomorphism 𝜋 : ℓ∞(𝐺) → C.
Since ℓ∞(𝐺)conv𝑛𝑔C(𝛽𝐺), such an extension would be of the form 𝜋 = 𝛿𝑥 for some 𝑥 ∈ 𝛽𝐺, where
𝛿𝑥 denotes the Dirac measure corresponding to x. However, by [5] 𝛽𝐺 has no G-fixed point, so this is
impossible. Therefore, C is not injective in the category of unital commutative G-C*-algebras.
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5.3. Maximally affinely highly proximal flows

In this section, we will work with function systems, which are closed unital self-adjoint subspaces of
unital commutative C*-algebras. For a reference on the theory of function systems, we refer the reader
to the recent paper of Paulsen and Tomforde [25].

Let R and § be function systems. A unital linear map 𝜙 : R → § is an order homomorphism if
𝜙( 𝑓 ) ≥ 0 for all 𝑓 ∈ R with 𝑓 ≥ 0. It is an order isomorphism if it has an inverse that is also an order
homomorphism.

If K is a compact convex set, then the space A(𝐾) of continuous affine functions on K is a function
system. Moreover, Kadison’s [21] representation theorem implies that every function system is isomor-
phic to a function system of this form. Specifically, let R be a function system, and let K denote the
compact convex set of states on R, i.e., the unital order homomorphisms from R to C equipped with
the weak* topology. Then the map 𝜙 : R → A(𝐾) defined by 𝜙( 𝑓 ) (𝛼) = 𝛼( 𝑓 ) for 𝑓 ∈ R and 𝛼 ∈ 𝐾 is
a unital order isomorphism.

The category with compact convex sets as objects and continuous affine maps as morphisms is dual to
the category with function systems as objects and order homomorphisms as morphisms. An embedding
in the latter category is an order monomorphism.

Let G be a discrete group. An action of G on a function system R is a group homomorphism from
G into the group of order automorphisms of R. We will refer to R as a G-function system.

It follows from the duality between the category of compact convex sets and the category of
function systems that the category with affine G-flows as objects and equivariant continuous affine
maps as morphisms is dual to the category with G-function systems as objects and equivariant or-
der homomorphisms as morphisms. An embedding in the latter category is an equivariant order
monomorphism.

Note that every unital G-C*-algebra is isomorphic (i.e., equivariantly order isomorphic to) a
G-function system. If X and Y are G-flows and 𝛼 : 𝑌 → 𝑋 is an extension, then the corresponding
equivariant unital *-monomorphism 𝜋 : C(𝑋) → C(𝑌 ) is an embedding in the category of G-function
systems.

A pair of affine G-flows K and L correspond to the G-function systems A(𝐾) and A(𝐿), and an
affine extension 𝛼 : 𝐿 → 𝐾 corresponds to an embedding 𝜙 : A(𝐾) → A(𝐿) via the formula
𝑓 ◦ 𝛼(𝑦) = 𝜙( 𝑓 ) (𝑦) for 𝑓 ∈ A(𝐾) and 𝑦 ∈ 𝐿.

Hamana [18] showed that a G-function system is injective if and only if it is maximal essential and
used this to show that every G-function system has an injective envelope that is unique up to isomorphism.
Hamana further observed that an injective G-function system is isomorphic (as a G-function system) to a
G-C*-algebra. However, as the next exmaple shows, a unital commutative G-C*-algebra that is injective
in the category of unital commutative C*-algebras may not be injective in the category of G-function
systems.

Example 5.4. Let G be a discrete group and consider the complex numbers C equipped with the trivial
G-action. Note that C is a unital commutative G-C*-algebra that is injective in the category of unital
commutative C*-algebras. In particular, it is also a function system.

It was shown in [22] that the injective hull of C in the category of G-function systems is the C*-
algebra C(𝜕sp 𝐺), where 𝜕sp 𝐺 denotes the universal minimal strongly proximal G-flow. In particular,
the embedding C ⊆ C(𝜕sp 𝐺) is essential.

Furstenberg [9] showed that 𝜕sp 𝐺 is trivial if and only if G is amenable. This can also be seen using
the ideas introduced in this section. Choose 𝑥 ∈ 𝜕sp 𝐺, and let 𝜋𝑥 : C(𝜕sp 𝐺) → ℓ∞(𝐺) denote the
equivariant unital *-homomorphism defined by 𝜋𝑥 ( 𝑓 ) (𝑔) = 𝑓 (𝑔𝑥) for 𝑓 ∈ C(𝜕sp 𝐺) and 𝑔 ∈ 𝐺. Then,
since 𝜕sp 𝐺 is minimal, 𝜋𝑥 is an embedding.

Suppose that G is amenable. Then there is an invariant state on ℓ∞(𝐺). Equivalently, there is an
equivariant order homomorphism 𝜙 : ℓ∞(𝐺) → C. Since the embedding C ⊆ C(𝜕sp 𝐺) is essential, it
follows that 𝜙|𝜋𝑥 (C(𝜕sp 𝐺)) is also an embedding. Hence, C(𝜕sp 𝐺)conv𝑛𝑔C and 𝜕sp 𝐺 is trivial, so C is
an injective G-function system.
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Conversely, if G is nonamenable, then, since C(𝜕sp 𝐺) is injective in the category of G-function
systems, there is an equivariant order homomorphism 𝜓 : ℓ∞(𝐺) → C(𝜕sp 𝐺) (see Proposition 5.11
below). However, since G is nonamenable, there is no invariant state on ℓ∞(𝐺). Therefore, the range of
𝜓 cannot be C, implying that C(𝜕sp 𝐺) � conv𝑛𝑔C. Hence, 𝜕sp 𝐺 is nontrivial, so C is not an injective
G-function system.

The next result characterizes essential embeddings of G-function systems in terms of the correspond-
ing affine G-flows. This is a special case of a more general result from [24, Theorem 7.4].

Proposition 5.5. Let G be a discrete group, and let K and M be affine G-flows. Let 𝜙 : A(𝐾) → A(𝑀)

be an embedding, and let 𝛼 : 𝑀 → 𝐾 denote the corresponding equivariant continuous affine map. The
following are equivalent:

1. The embedding 𝜙 is essential.
2. The extension 𝛼 : 𝑀 → 𝐾 is K-irreducible in the sense of [12], i.e., for every proper affine subflow

𝐿 ⊆ 𝑀 , 𝛼(𝐿) ≠ 𝐾 .

Proof. (1) ⇒ (2) Let 𝐿 ⊆ 𝑀 be an affine subflow such that 𝛼(𝐿) = 𝐾 . Let 𝜓 : A(𝑀) → A(𝐿) denote
the restriction map. Then 𝜓 is an equivariant order homomorphism and 𝜓 ◦ 𝜙 is isometric and therefore
is an equivariant order isomorphism. The essentiality of 𝜙 implies that 𝜓 is an order isomorphism.
Hence, 𝐿 = 𝑀 .

(2) ⇒ (1) Let N be an affine G-flow, and let 𝜓 : A(𝑀) → A(𝑁) be an equivariant order homo-
morphism such that 𝜓 ◦ 𝜙 is an isomorphism. Let 𝛽 : 𝑁 → 𝑀 denote the corresponding equivariant
continuous affine map and let 𝐿 = 𝛽(𝑁). Then L is an affine subflow and 𝛼(𝐿) = 𝐾 . Hence, 𝐿 = 𝑀 , so
𝜓 is an isomorphism. Therefore, 𝜙 is essential. �

Definition 5.6. Let G be a discrete group.

1. Let K and M be affine G-flows. We will say that an extension 𝛼 : 𝑀 → 𝐾 is affinely highly proximal
if for every proper affine G-subflow 𝐿 ⊆ 𝑀 , there is a point 𝑥 ∈ 𝐾 such that 𝛼−1(𝐺𝑥) ⊆ 𝑀 \ 𝐿.
Equivalently, 𝛼 |𝐿 is not surjective.

2. Let X and Y be G-flows. We will say that an extension 𝛼 : 𝑌 → 𝑋 is affinely highly proximal if the
corresponding affine extension 𝛼̃ : P(𝑌 ) → P(𝑋) is affinely highly proximal.

Universally affinely highly proximal extensions and maximally affinely highly proximal affine G-flows
are defined as they were for G-flows in Section 5.2. We will say that a G-flow Y is maximally affinely
highly proximal if the corresponding affine G-flow P(𝑌 ) is maximally affinely highly proximal.

We observe directly that an affinely highly proximal extension of a minimal G-flow 𝛼 : 𝑌 → 𝑋
automatically is minimal. Indeed, if 𝑍 ⊆ 𝑌 is a subflow, then 𝛼̃(P(𝑍)) = P(𝑋) by minimality so that
P(𝑍) = P(𝑌 ), and hence, 𝑍 = 𝑌 follows from the assumption that 𝛼 is affinely highly proximal.

Remark 5.7. Note that there is no ambiguity in Definition 5.6, since if K and M are affine G-flows and 𝛼 :
𝑀 → 𝐾 is an affinely highly proximal extension, then the corresponding extension 𝛼̃ : P(𝑀) → P(𝐾)
is also affinely highly proximal. To see this, let 𝐿 ⊆ P(𝑀) be an affine G-subflow. Let 𝛽𝐾 : P(𝐾) → 𝐾
and 𝛽𝑀 : P(𝑀) → 𝑀 denote the barycenter maps. Then 𝛽𝐾 and 𝛽𝑀 are equivariant and continuous,
and 𝛽𝐾 ◦ 𝛼̃ = 𝛼 ◦ 𝛽𝑀 .

It follows from above that 𝛽(𝐿) ⊆ 𝑀 is an affine G-subflow, so by assumption there is 𝑥 ∈ 𝐾 such
that 𝛼−1(𝐺𝑥) ⊆ 𝑀 \ 𝛽𝑀 (𝐿). Applying 𝛽−1

𝑀 to both sides gives

𝛼̃−1(𝐺𝑥) ⊆ (𝛼̃)−1 ◦ 𝛽−1
𝐾 (𝐺𝑥) = 𝛽−1

𝑀 ◦ 𝛼−1(𝐺𝑥) ⊆ 𝛽−1
𝑀 (𝑀 \ 𝛽𝑀 (𝐿))

= P(𝑀) \ 𝛽−1
𝑀 (𝛽𝑀 (𝐿)) ⊆ P(𝑀) \ 𝐿.

Hence, 𝛼̃ is affinely highly proximal.
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Theorem 5.8. Let G be a discrete group, and let K and M be affine G-flows. Let 𝛼 : 𝑀 → 𝐾 be an
extension, and let 𝜙 : A(𝐾) → A(𝑀) denote the corresponding embedding. Then 𝛼 is affinely highly
proximal if and only if 𝜙 is essential. Hence, M is maximally affinely highly proximal if and only if
A(𝑀) is the injective hull of A(𝐾).

Proof. Suppose that 𝛼 is affinely highly proximal. Let 𝐿 ⊆ 𝑀 be a proper affine subflow. Then there is
𝑥 ∈ 𝐾 such that 𝛼−1(𝐺𝑥) ⊆ 𝑀 \ 𝐿. In particular, 𝛼(𝐿) is proper. Hence, by (2) of Proposition 5.5, 𝜙 is
essential.

Conversely, suppose that 𝜙 is essential. Let 𝐿 ⊆ 𝑀 be a proper affine subflow. Then by (2) of
Proposition 5.5, 𝛼(𝐿) ≠ 𝐾 . Since 𝐾 \𝛼(𝐿) is invariant, there is 𝑥 ∈ 𝐾 such that 𝐺𝑥 ∈ 𝐾 \𝛼(𝐿). Hence,
𝛼−1 (𝐺𝑥) ⊆ 𝑀 \ 𝐿. Therefore, 𝛼 is affinely highly proximal.

The final statement follows from the characterization of the injective hull of A(𝐾) as maximal
essential. �

Since every unital commutative G-C*-algebra is also (equivariantly order isomorphic to) a G-function
system, and since an equivariant *-monomorphism is an embedding in the category of G-function
systems, Theorem 5.8 immediately implies the following result.
Corollary 5.9. Let G be a discrete group, and let X and Y be G-flows. Let 𝛼 : 𝑌 → 𝑋 be an extension,
and let 𝜋 : C(𝑋) → C(𝑌 ) denote the corresponding equivariant unital *-monomorphism. Then 𝛼 is
affinely highly proximal if and only if 𝜋 is an essential embedding in the category of G-function systems.
Hence, Y is maximally affinely highly proximal if and only if C(𝑌 ) is the injective hull of C(𝑋) in the
category of G-function systems.
Remark 5.10. The notion of an affinely highly proximal extension is related to Glasner’s [12] notion of
a strongly proximal extension. Let X and Y be G-flows. An extension 𝛼 : 𝑌 → 𝑋 is strongly proximal
if the corresponding extension 𝛼̃ : P(𝑌 ) → P(𝑋) has the property that, whenever 𝜇 ∈ P(𝑌 ) satisfies
𝛼̃(𝜇) ∈ 𝑋 , then there is a net (𝑔𝑖) in G such that lim 𝑔𝑖𝜇 ∈ 𝑌 .

If X is minimal and 𝛼 is affinely highly proximal, then by Proposition 5.5 and Corollary 5.9, 𝛼̃
is P(𝑋)-irreducible. Hence, by [12, Theorem 2.1], 𝛼 is strongly proximal. On the other hand, if Y is
minimal and 𝛼 is strongly proximal, then by [12, Proposition 2.2], 𝛼̃ is P(𝑋)-irreducible. Hence by
Proposition 5.5 and Corollary 5.9, 𝛼 is affinely highly proximal.

If X is a maximally affinely highly proximal G-flow, then Corollary 5.9 implies that C(𝑋) is injective
as a G-function system. Hamana observed in [18, Remark 2.3] that this implies that C(𝑋) is also injective
in the category of commutative C*-algebras. Hence by Theorem 5.2, X is maximally highly proximal.
However, Example 5.4 shows that the converse is not true in general.

The next result implies the existence of relatively invariant measures in the sense of Glasner [12]
for maximally affinely highly proximal affine G-flows. However, since not every G-function system is
isomorphic to a G-C*-algebra, the present setting is slightly more general than the setting considered
by Glasner. In the theory of operator algebras, relatively invariant measures are typically referred to as
conditional expectations.
Proposition 5.11. Let G be a discrete group, and let K and L be affine G-flows. Let 𝛼 : 𝐿 → 𝐾 be an
extension with corresponding embedding 𝜙 : A(𝐾) → A(𝐿).

1. If K is maximally affinely highly proximal, then there is an equivariant order homomorphism 𝜓 :
A(𝐿) → A(𝐾) such that 𝜓 ◦ 𝜙 is the identity map on A(𝐾).

2. If L is maximally affinely highly proximal and there is an equivariant order homomorphism 𝜓 :
A(𝐿) → A(𝐾) such that 𝜓 ◦ 𝜙 = idA(𝐾 ) , then K is also maximally affinely highly proximal.

Proof. (1) Since K is maximally affinely highly proximal, Theorem 5.8 implies that A(𝐾) is G-injective.
Hence, the identity map on A(𝐾) extends to an equivariant order homomorphism 𝜓 : A(𝐿) → A(𝐾),
that is 𝜓 ◦ 𝜙 = idA(𝐾 ) .

(2) Let R and § be function systems, and let 𝜌 : R → § be an embedding. Let 𝜎 : R → A(𝐾) be an
equivariant order homomorphism. Since L is maximally affinely highly proximal, Theorem 5.8 implies
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that A(𝐿) is G-injective. Hence, there is an equivariant order homomorphism 𝜏 : § → A(𝐿) such that
𝜙 ◦ 𝜎 = 𝜏 ◦ 𝜌. Then 𝜓 ◦ 𝜏 extends 𝜎 since 𝜓 ◦ 𝜏 ◦ 𝜌 = 𝜓 ◦ 𝜑 ◦ 𝜎 = 𝜎. Hence, A(𝐾) is G-injective. �

Theorem 5.12. Let G be a discrete group. Then the Stone–Čech compactification 𝛽𝐺, the universal
minimal G-flow 𝜕m 𝐺, the universal strongly proximal G-flow 𝜕sp 𝐺 and the universal minimal proximal
G-flow 𝜕p 𝐺 are all maximally affinely highly proximal. Hence, the C*-algebras C(𝛽𝐺), C(𝜕m 𝐺),
C(𝜕sp 𝐺) and C(𝜕p 𝐺) are all G-injective in the category of G-function systems.

Proof. We will show that the C*-algebras C(𝛽𝐺), C(𝜕m 𝐺), C(𝜕sp 𝐺) and C(𝜕p 𝐺) are all injective
in the category of G-function systems. The fact that the corresponding G-flows are maximally affinely
highly proximal will then follow from Theorem 5.8.

The injectivity of C(𝛽𝐺)conv𝑛𝑔ℓ∞(𝐺) as a G-function system was shown in [18], and the injectivity
of C(𝜕sp 𝐺) as a G-function system was shown in [22].

To see that C(𝜕m 𝐺) is injective as a G-function system, let L be a minimal ideal of 𝛽𝐺 and identify
L with 𝜕m 𝐺. Let 𝑢 ∈ 𝐿 be an idempotent. Since 𝜕m 𝐺 is minimal, the map 𝛽𝐺 → 𝐿 : 𝑥 ↦→ 𝑥𝑢 is
an extension. Let 𝜋𝑢 : C(𝐿) → C(𝛽𝐺) denote the corresponding equivariant unital *-monomorphism.
Then 𝜋𝑢 is an embedding in the category of G-function systems.

Let 𝜌 : C(𝛽𝐺) → C(𝐿) denote the equivariant surjective unital *-homomorphism corresponding
to the inclusion 𝐿 ⊆ 𝛽𝐺. In other words, 𝜌 is the restriction map. Then for 𝑓 ∈ C(𝐿) and 𝑥 ∈ 𝐿,
𝜌 ◦ 𝜋𝑢 ( 𝑓 ) (𝑥) = 𝑓 (𝑥𝑢) = 𝑓 (𝑥). Hence, 𝜙 ◦ 𝜋𝑢 = idC(𝐿) . Therefore, it follows from the injectivity of
C(𝛽𝐺) as a G-function system and (2) of Proposition 5.11 that C(𝐿) is also injective as a G-function
system.

Finally, to see that C(𝜕p 𝐺) is injective as a G-function system, let Y be a maximally affinely highly
proximal G-flow, and let 𝛼 : 𝑌 → 𝜕p 𝐺 be an affinely highly proximal extension. Then C(𝑌 ) is the
injective hull of C(𝜕p 𝐺). We will show that 𝛼 is an isomorphism.

Let 𝐾 = P(𝜕p 𝐺), and let 𝑀 = P(𝑌 ). Then K and M are affine G-flows, and there is an extension
𝛼̃ : 𝑀 → 𝐾 extending 𝛼. By Theorem 5.8, 𝛼̃ is affinely highly proximal.

By Theorem 4.3, K is algebraically irreducible. We claim that M is also algebraically irreducible. To
see this, let 𝐿 ⊆ 𝑀 be an affine subflow such that 𝐿 ∩ conv(𝑌 ) ≠ ∅. Then 𝛼̃(𝐿) ⊆ 𝐾 is an affine subflow
and 𝛼̃(𝐿) ∩ conv(𝜕p 𝐺) ≠ ∅. Hence, by the algebraic irreducibility of K, 𝛼̃(𝐿) = 𝐾 . Since 𝛼̃ is affinely
highly proximal, 𝐿 = 𝑀 . Therefore, M is algebraically irreducible.

By Proposition 4.2, Y is minimal and proximal. Since 𝜕p 𝐺 is the universal minimal proximal G-flow,
it follows that 𝛼 is an isomorphism. �

It is possible to give a purely dynamic proof of Theorem 5.12, using the notion of affinely highly
proximal flows directly. The proof given here makes use of the fact that the minimal injective extension
and the maximal essential extension of a G-function system agree so that we can check injectivity instead.

An important consequence of the fact that the G-flows 𝜕m 𝐺, 𝜕p 𝐺 and 𝜕sp 𝐺 are maximally highly
proximal, pointed out in [11], is that they are extremally disconnected. We will make use of this
throughout the remainder of this paper.

6. Realizations of universal flows

In this section, we will show that the universal minimal proximal flow and the universal minimal strongly
proximal flow of a discrete group are isomorphic to Stone spaces of translation-invariant Boolean
algebras of subsets of the group that are maximal with respect to the property that every nonempty
element has one of the properties considered in Section 3. For the universal minimal proximal flow, the
nonzero elements are completely syndetic, while for the universal minimal strongly proximal flow, the
elements are strongly completely syndetic.

These results are analogues of a result of Balcar and Franek [3]. They showed that the universal
minimal flow is isomorphic to the Stone space of a translation-invariant Boolean algebra of subsets of
the group that is maximal with respect to the property that every nonempty element is syndetic.
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6.1. Totally disconnected point transitive flows

Let G be a discrete group, and let 2𝐺 denote the Boolean algebra of subsets of G. We will say that a
Boolean subalgebra 𝜕sp ⊆ 2𝐺 is translation-invariant if 𝑔𝐴 ∈ 𝜕sp for every 𝐴 ∈ 𝜕sp and 𝑔 ∈ 𝐺.

Recall that the Stone space X of 𝜕sp is the space of ultrafilters on 𝜕sp equipped with a compact totally
disconnected Hausdorff topology. For 𝐴 ∈ 𝜕sp, the set {𝑥 ∈ 𝑋 : 𝐴 ∈ 𝑥} is a clopen subset of X and the
family of all such clopen subsets corresponding to elements in 𝜕sp is a basis for the topology on X. Since
𝜕sp is translation invariant, X is a G-flow with respect to the corresponding action by left translation.
Moreover, identifying 𝑒 ∈ 𝐺 with the corresponding principal ultrafilter in 𝛽𝐺, the point 𝑒 ∩ 𝜕sp ∈ 𝑋 is
transitive. Let us record the following well-known correspondence.

Proposition 6.1. Let G be a discrete group. The Stone space of a translation-invariant Boolean subalge-
bra of 2𝐺 is a totally disconnected point transitive G-flow. Conversely, every totally disconnected point
transitive G-flow is isomorphic to the Stone space of a translation-invariant Boolean subalgebra of 2𝐺 .

Proof. It follows from the introduction to this section that the Stone space of a translation-invariant
Boolean subalgebra of 2𝐺 is a totally disconnected point transitive G-flow. For the converse, suppose
that X is a totally disconnected G-flow with a transitive point 𝑥 ∈ 𝑋 . Since X is totally disconnected,
there is a Boolean algebra ℭ of clopen subsets of X that forms a basis for the topology on X. For𝑈 ∈ ℭ,
let 𝑈𝑥 = {𝑔 ∈ 𝐺 : 𝑔𝑥 ∈ 𝑈} denote the corresponding return set. Then, since x is a transitive point, the
equivariant Boolean algebra homomorphism ℭ → 2𝐺 : 𝑈 → 𝑈𝑥 is an embedding of ℭ into 2𝐺 . �

From [26], we know that the universal minimal proximal G-flow 𝜕p 𝐺 and the universal minimal
strongly proximal G-flow 𝜕sp 𝐺 are extremally disconnected (and in particular totally disconnected).
Hence, by Proposition 6.1, they are isomorphic to the Stone spaces of translation-invariant Boolean
subalgebras of 2𝐺 . In the next two sections, we will describe these subalgebras in terms of the subsets
considered in Section 3.

6.2. Universal minimal proximal flow

Lemma 6.2. Let G be a discrete group, and let X be a minimal proximal G-flow. Then, for every nonempty
open subset𝑈 ⊆ 𝑋 and every point 𝑥 ∈ 𝑋 , the return set𝑈𝑥 = {𝑔 ∈ 𝐺 : 𝑔𝑥 ∈ 𝑈} is completely syndetic.

Proof. Let 𝐾 ⊆ 𝛽𝐺 be a finite subset. Then 𝐾𝑥 ⊆ 𝑋 is also finite. Since X is minimal and proximal,
there is 𝑔 ∈ 𝐺 such that 𝑔𝐾𝑥 ⊆ 𝑈. This implies that 𝑔𝐾 ⊆ 𝑈𝑥 . Hence, by Proposition 3.13, 𝑈𝑥 is
completely syndetic. �

Proposition 6.3. Let G be a discrete group, and let 𝜕sp ⊆ 2𝐺 be a translation-invariant Boolean
subalgebra. Let X denote the Stone space of 𝜕sp. Then X is a G-flow, and X is minimal and proximal if
and only if every nonempty element in 𝜕sp is completely syndetic.

Proof. Suppose that X is minimal and proximal. Identify 𝑒 ∈ 𝐺 with the corresponding principal
ultrafilter in 𝛽𝐺, and let 𝑥 = 𝑒 ∩ 𝜕sp. Then for 𝐴 ∈ 𝜕sp, if 𝑈 = {𝑦 ∈ 𝑋 : 𝐴 ∈ 𝑦} ⊆ 𝑋 denotes the
corresponding clopen subset, 𝐴 = 𝑈𝑥 , where 𝑈𝑥 = {𝑔 ∈ 𝐺 : 𝑔𝑥 ∈ 𝑈} denotes the return set of U at x.
It follows from Lemma 6.2 that, if 𝐴 ≠ ∅, then A is completely syndetic.

Conversely, suppose that every nonempty element in 𝜕sp is completely syndetic. Choose nonempty
𝐴 ∈ 𝜕sp, and let𝑈 = {𝑥 ∈ 𝑋 : 𝐴 ∈ 𝑥} ⊆ 𝑋 denote the corresponding clopen subset. For points 𝑥, 𝑦 ∈ 𝑋 ,
let 𝑢, 𝑣 ∈ 𝛽𝐺 be ultrafilters extending x and y, respectively. Then by Proposition 3.13 there is 𝑔 ∈ 𝐺
such that 𝐴 ∈ 𝑔𝑢, 𝑔𝑣. Hence, 𝐴 ∈ 𝑔𝑥, 𝑔𝑦, so 𝑔𝑥, 𝑔𝑦 ∈ 𝑈. Therefore, X is minimal and proximal. �

Remark 6.4. It follows from the proof of Proposition 6.3 that, in order for X to be minimal and proximal,
it suffices for every nonempty element in 𝜕sp to be 2-syndetic.

Theorem 6.5. Let G be a discrete group. Then the universal minimal proximal G-flow 𝜕p 𝐺 is isomorphic
to the Stone space of any translation-invariant Boolean subalgebra of 2𝐺 that is maximal with respect
to the property that every nonempty element is completely syndetic.
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Proof. We first show that 𝜕p 𝐺 is isomorphic to the Stone space of a translation-invariant Boolean
subalgebra of 2𝐺 that is maximal with respect to the property that every nonempty element is completely
syndetic.

By [26], 𝜕p 𝐺 is extremally disconnected, so Proposition 6.1 implies that there is a translation-
invariant Boolean subalgebra 𝜕sp ⊆ 2𝐺 such that the Stone space of 𝜕sp is isomorphic to 𝜕p 𝐺. By
Proposition 6.3, every nonempty element in 𝜕sp is completely syndetic. It remains to show that 𝜕sp is
maximal with respect to this property.

Letℭ ⊆ 2𝐺 be a translation-invariant Boolean subalgebra that is maximal with respect to the property
that 𝜕sp ⊆ ℭ and every nonempty element is completely syndetic. Then by Proposition 6.3, the Stone
space Y of ℭ is a minimal proximal G-flow. The inclusion 𝜕sp ⊆ ℭ induces an extension 𝛼 : 𝑌 → 𝜕p 𝐺.
By the universality of 𝜕p 𝐺, 𝛼 must be an isomorphism. Therefore, 𝜕sp = ℭ.

Conversely, let ℭ ⊆ 2𝐺 be a translation-invariant Boolean subalgebra that is maximal with respect
to the property that every nonempty element in ℭ is completely syndetic. By Proposition 6.3, the Stone
space Y of ℭ is a minimal proximal G-flow. Hence, by the universality of 𝜕p 𝐺, there is an extension
𝛼 : 𝜕p 𝐺 → 𝑌 .

Identify 𝑒 ∈ 𝐺 with the corresponding principal ultrafilter in 𝛽𝐺, and let 𝑦 = 𝑒 ∩ ℭ ∈ 𝑌 . Choose
𝑧 ∈ 𝛼−1(𝑦), and let 𝜋𝑧 : C(𝜕p 𝐺) → C(𝛽𝐺)conv𝑛𝑔ℓ∞(𝐺) denote the equivariant *-homomorphism
defined by 𝜋𝑧 ( 𝑓 ) (𝑔) = 𝑓 (𝑔𝑧) for 𝑓 ∈ C(𝜕p 𝐺) and 𝑔 ∈ 𝐺. Then, since 𝜕p 𝐺 is minimal, 𝜋𝑧 is an
embedding. Furthermore, by the choice of z, the restriction of 𝜋𝑧 is the identity map on ℭ, when
identifying elements of ℭ with characteristic functions of clopen subsets of 𝛽𝐺. Therefore, the image
𝜕sp ⊆ 2𝐺 of the Boolean algebra of projections in 𝜕p 𝐺 under 𝜋𝑧 is a translation-invariant Boolean
subalgebra with Stone space isomorphic to 𝜕p 𝐺 such that ℭ ⊆ 𝜕sp. By Proposition 6.3, every nonempty
element in 𝜕sp is completely syndetic. Hence, by the maximality of ℭ, we conclude that 𝜕sp = ℭ. It
follows that Y is isomorphic to 𝜕p 𝐺. �

6.3. Universal minimal strongly proximal flow

Lemma 6.6. Let G be a discrete group, and let X be a minimal strongly proximal G-flow. Then for every
nonempty open subset 𝑈 ⊆ 𝑋 and every point 𝑥 ∈ 𝑋 , the return set 𝑈𝑥 = {𝑔 ∈ 𝐺 : 𝑔𝑥 ∈ 𝑈} is strongly
completely syndetic.

Proof. The proof is inspired by the proof of [13, Chapter VII, Proposition 2.1]. Fix an open subset
𝑈 ⊆ 𝑋 . For every probability measure 𝜇 ∈ P(𝑋) there is 𝑔𝜇 ∈ 𝐺 such that 1 − 𝜇(𝑔𝜇𝑈) < 𝜖 . Let
𝑉𝜇 ⊆ P(𝑋) be an open neighborhood of 𝜇 such that 1 − 𝜈(𝑔𝜇𝑈) < 𝜖 for all 𝜈 ∈ 𝑉𝜇. By compactness
there is 𝜇1, . . . , 𝜇𝑛 ∈ P(𝑋) such that 𝑉𝜇1 , . . . , 𝑉𝜇𝑛 cover P(𝑋). Hence, letting 𝐹 = {𝑔−1

𝜇1 , . . . , 𝑔
−1
𝜇𝑛 }, it

follows that for every 𝜇 ∈ P(𝑋) there is 𝑓 ∈ 𝐹 such that 1 − ( 𝑓 𝜇) (𝑈) < 𝜖 .
Let 𝐾 ⊆ 𝐺 be a finite multiset, and let 𝜆 = 1

|𝐾 |

∑
𝑘∈𝐾 𝛿𝑘 ∈ P(𝛽𝐺). Let 𝜇 ∈ P(𝑋) denote the push-

forward of 𝜆 along the unique factor map 𝛽𝐺 → 𝑋 that maps e to x. Then 𝜇 = 1
|𝐾 |

∑
𝑘∈𝐾 𝛿𝑘𝑥 . Writing

𝐴 = 𝑈𝑥 , we then have 𝜆(𝐴) = 𝜇(𝑈), and so from above there is 𝑓 ∈ 𝐹 such that 1−( 𝑓 𝜆) (𝐴) < 𝜖 . Hence,

𝜖 > 1 − ( 𝑓 𝜆) (𝐴) = 1 −
| 𝑓 𝐾 ∩ 𝐴|

|𝐾 |
,

implying | 𝑓 𝐾 ∩ 𝐴| ≥ (1 − 𝜖) |𝐾 |. Therefore, A is strongly completely syndetic. �

Proposition 6.7. Let G be a discrete group, and let 𝜕sp ⊆ 2𝐺 be a translation-invariant Boolean
subalgebra. Let X denote the Stone space of 𝜕sp. Then X is minimal and strongly proximal if and only if
every nonempty element in 𝜕sp is strongly completely syndetic.

Proof. Suppose that X is minimal and strongly proximal. Identify 𝑒 ∈ 𝐺 with the corresponding
principal ultrafilter in 𝛽𝐺, and let 𝑥 = 𝑒 ∩ 𝜕sp. Then for 𝐴 ∈ 𝜕sp, if 𝑈 = {𝑦 ∈ 𝑋 : 𝐴 ∈ 𝑦} ⊆ 𝑋 denotes
the corresponding clopen subset, 𝐴 = 𝑈𝑥 , where 𝑈𝑥 = {𝑔 ∈ 𝐺 : 𝑔𝑥 ∈ 𝑈} denotes the return set of U at
x. It follows from Lemma 6.6 that, if A is nonempty, then A is strongly completely syndetic.
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Conversely, suppose that every nonempty element in 𝜕sp is strongly completely syndetic. To show
that X is minimal and strongly proximal, it suffices to show that, for every probability measure 𝜇 ∈ P(𝑋),
every 𝜖 > 0 and every nonempty clopen subset 𝑈 ⊆ 𝑋 , there is 𝑔 ∈ 𝐺 such that (𝑔𝜇) (𝑈) > 1 − 𝜖 .

Let 𝜇 ∈ P(𝑋) be a probability measure, and choose 𝜖 > 0. Let 𝑈 ⊆ 𝑋 be a nonempty clopen
subset. Then there is 𝐴 ∈ 𝜕sp such that 𝑈 = {𝑥 ∈ 𝑋 : 𝐴 ∈ 𝑥}. From above A is strongly completely
syndetic, so there is a finite subset 𝐹 ⊆ 𝐺 such that for every finite multiset 𝐾 ⊆ 𝐺 there is 𝑓 ∈ 𝐹 with
| 𝑓 𝐾 ∩ 𝐴| ≥ (1 − 𝜖/2) |𝐾 |.

Let 𝜈 ∈ P(𝛽𝐺) be a probability measure such that 𝜈 |𝜕sp = 𝜇. Choose a finitely supported measure
𝜆 ∈ ℓ1(𝐺) such that |𝜆( 𝑓 −1𝐴) − 𝜈( 𝑓 −1𝐴) | < 𝜖/2 for all 𝑓 ∈ 𝐹. We can assume there is a finite multiset
𝐾 ⊆ 𝐺 such that 𝜆 = 1

|𝐾 |

∑
𝑘∈𝐾 𝛿𝑘 .

From above there is 𝑓 ∈ 𝐹 such that | 𝑓 𝐾 ∩ 𝐴| ≥ (1 − 𝜖/2) |𝐾 |. Then

( 𝑓 𝜆) (𝐴) =
| 𝑓 𝐾 ∩ 𝐴|

|𝐾 |
≥ 1 −

𝜖

2
.

Hence, | ( 𝑓 𝜇) (𝑈) | ≥ |( 𝑓 𝜆) (𝐴) | − |( 𝑓 𝜈) (𝐴) − ( 𝑓 𝜆) (𝐴) | > 1 − 𝜖 . Therefore, X is minimal and strongly
proximal. �

The proof of the next result is essentially the same as the proof of Theorem 6.5.

Theorem 6.8. Let G be a discrete group. Then the universal minimal strongly proximal G-flow 𝜕sp 𝐺 is
isomorphic to the Stone space of any translation-invariant Boolean subalgebra of 2𝐺 that is maximal
with respect to the property that every nonempty element is strongly completely syndetic.

6.4. Symmetric higher-order syndeticicity

In this section, we will establish a characterization of subsets of discrete groups that generate translation-
invariant Boolean algebras with the property that every nonempty element is (completely, strongly
completely) syndetic. These subsets play an important role in Section 8.

Definition 6.9. Let G be a discrete group. We will say that a subset 𝐴 ⊆ 𝐺 is symmetrically (completely,
strongly completely) syndetic if it is (completely, strongly completely) syndetic and for any finite subsets
𝐹1, 𝐹2 ⊆ 𝐺, the set (∩ 𝑓1∈𝐹1 𝑓1𝐴) ∩ (∩ 𝑓2∈𝐹2 𝑓1𝐴

𝑐) is either (completely, strongly completely) syndetic or
empty.

Observe that, if 𝐴 ⊆ 𝐺 is proper, then it is symmetrically (completely, strongly completely) syndetic
if and only if 𝐴𝑐 is. This is part of the motivation for our terminology, but we will see more motivation
in Section 8. Note that the complement of an ordinary (completely, strongly completely) syndetic subset
is not necessarily syndetic.

The next result establishes the key property of (completely, strongly completely) symmetrically
syndetic subsets.

Proposition 6.10. Let G be a discrete group, and let 𝐴 ⊆ 𝐺 be a subset. Then A is symmetrically
(completely, strongly completely) syndetic if and only if it is (completely, strongly completely) syndetic
and every nonzero element in the translation-invariant Boolean subalgebra of 2𝐺 generated by A is
(completely, strongly completely) syndetic.

Proof. Observe that, for finite subsets 𝐹1, 𝐹2 ⊆ 𝐺, the intersection (∩ 𝑓1∈𝐹1 𝑓1𝐴) ∩ (∩ 𝑓2∈𝐹2 𝑓1𝐴
𝑐) is

contained in the translation-invariant Boolean subalgebra generated by A. Moreover, every nonempty
element in the Boolean subalgebra necessarily contains a nonempty subset of this form, and the property
of being (completely, strongly completely) syndetic passes to supersets. �

Proposition 6.11. Let G be a discrete group. A subset 𝐴 ⊆ 𝐺 is symmetrically (completely, strongly
completely) syndetic if and only if the universal minimal (proximal, strongly proximal) flow contains an
open subset U and a point x such that 𝐴 = 𝑈𝑥 .
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Proof. We will first consider the syndetic case. Suppose that 𝐴 ⊆ 𝐺 is symmetrically syndetic, and let
𝜕sp ⊆ 2𝐺 denote the G-Boolean algebra generated by A. Then by Proposition 6.10, every nonempty
element in 𝜕sp is syndetic. Let ℭ be a G-Boolean subalgebra of 2𝐺 that contains 𝜕sp and is maximal
with respect to the property that every nonempty subset is left syndetic. Let X denote the Stone space of
ℭ. Then, by [3], X is a G-flow that is isomorphic to the universal minimal G-flow 𝜕m 𝐺 of G. Identify
𝑒 ∈ 𝐺 with the principal ultrafilter it generates, and let 𝑥 = 𝑒 ∩ ℭ ∈ 𝑋 . Then letting 𝑈 ⊆ 𝑋 denote the
clopen set corresponding to A, 𝐴 = 𝑈𝑥 .

Conversely, assume that there is a nonempty clopen subset 𝑈 ⊆ 𝜕m 𝐺 and some 𝑥 ∈ 𝜕m 𝐺 such that
𝐴 = 𝑈𝑥 . Let 𝜕sp denote the Boolean algebra of clopen subsets of 𝜕m 𝐺, and let ℭ = {𝑉𝑥 : 𝑉 ∈ 𝜕sp} ⊆ 2𝐺
be the G-Boolean algebra of all return sets of elements in 𝜕sp. Since 𝜕m 𝐺 is minimal, the map 𝜕sp →

ℭ : 𝑉 → 𝑉𝑥 is an equivariant isomorphism of Boolean algebras. So the Stone space of ℭ is minimal,
which implies that all nonempty elements in ℭ are syndetic. Since 𝐴 ∈ ℭ, it follows that the translation-
invariant Boolean subalgebra of ℭ generated by A has the same property. Hence, by Proposition 6.10,
A is symmetrically syndetic.

The proof for the completely syndetic case is identical, except that Theorem 6.5 is required for the
isomorphism 𝑋conv𝑛𝑔 𝜕p 𝐺. Similarly, the proof for the strongly completely syndetic case requires
Theorem 6.8 for the isomorphism 𝑋conv𝑛𝑔 𝜕sp 𝐺. �

We will reconsider symmetrically syndetic subsets in Section 8.

7. Strong amenability and amenability

7.1. Strong amenability

Let G be a discrete group. In this section, we will establish necessary and sufficient conditions, in terms
of higher-order syndetic subsets, for G to be strongly amenable.

We will utilize the results in [8], meaning that we will need to consider subshifts of the right Bernoulli
shift 2𝐺 as in Section 3.3. For a finite subset 𝐹 ⊆ 𝐺 \ {𝑒}, we will say that a subset 𝐴 ⊆ 𝐺 is F-avoiding
if 𝐹𝐴 ∩ 𝐴 = ∅. Following [8], for a finite symmetric subset 𝐹 ⊆ 𝐺, we will say that a subshift 𝑋 ⊆ 2𝐺
is an F-witness shift if every 𝐵 ∈ 𝑋 is F-avoiding and for 𝐵,𝐶 ∈ 𝑋 , we have 𝐵 ∩ 𝐶 ≠ ∅.

As emphasized by the authors of [8], the main technical effort in their paper is the construction of
F-witness shifts. It follows from Proposition 3.16 that, if 𝐴 ⊆ 𝐺 is 2-syndetic and F-avoiding, then
the subshift 𝑋 ⊆ 2𝐺 generated by A is an F-witness shift. Conversely, if X is an F-witness shift, then
every 𝐵 ∈ 𝑋 is F-avoiding from above and 2-syndetic by Proposition 3.16. Therefore, the construction
of F-witness shifts is equivalent to the construction of F-avoiding 2-syndetic subsets of G.

Theorem 7.1. Let G be a discrete group. Then G is not strongly amenable if and only if there is a proper
normal subgroup 𝐻 � 𝐺 such that for every finite subset 𝐹 ⊆ 𝐺 \ 𝐻, there is an F-avoiding completely
syndetic subset 𝐴 ⊆ 𝐺. In fact, it suffices for A to be 2-syndetic.

Proof. Suppose that G is not strongly amenable. Then the universal minimal proximal G-flow 𝜕p 𝐺 is
nontrivial. By [8], the kernel of the action on 𝜕p 𝐺 is the FC hypercenter of G, which is normal in G.
Therefore, by passing to the quotient, we can assume that the FC hypercenter is trivial. We can then
invoke [11] to see that 𝜕p 𝐺 is free.

By Theorem 6.5, 𝜕p 𝐺 is isomorphic to the Stone space of a translation-invariant Boolean subalgebra
𝜕sp ⊆ 2𝐺 consisting of completely syndetic subsets, which are in particular 2-syndetic. Since the
elements in 𝜕sp correspond to a basis for the topology on X, it follows from freeness of 𝜕p 𝐺 that, for
every finite subset 𝐹 ⊆ 𝐺 \ {𝑒}, there is an F-avoiding subset 𝐴 ∈ 𝜕sp.

Conversely, suppose that there is a proper normal subgroup 𝐻 � 𝐺 such that for every finite subset
𝐹 ⊆ 𝐺 \𝐻, there is an F-avoiding 2-syndetic subset 𝐴 ⊆ 𝐺. By passing to the quotient, we can assume
that 𝐻 = {𝑒}. Then by the remarks at the beginning of this section, A generates an F-witness subshift
𝑋 ⊆ 2𝐺 . It now follows, as in the last part of the proof of [8, Theorem 1], that G is not strongly
amenable. �
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Remark 7.2. We believe that the following statement should hold true: The group G is not
strongly amenable if and only there is a subset 𝐴 ⊆ 𝐺 such that both A and 𝐴𝑐 are completely
syndetic.

In the next section, we will give a direct proof of an analogous characterization of amenability in
terms of strongly completely syndetic subsets.

The next result follows from Theorem 7.1 and the main result in [8].

Corollary 7.3. A discrete group G is ICC if and only if for every finite subset 𝐹 ⊆ 𝐺 there is an
F-avoiding 2-syndetic subset 𝐴 ⊆ 𝐺.

The next result characterizes strong amenability in terms of the existence of a single nonempty
symmetrically completely syndetic subset.

Theorem 7.4. Let G be a discrete group. Then G is not strongly amenable if and only if it contains a
nonempty proper symmetrically completely syndetic subset.

Proof. If G is not strongly amenable, then 𝜕p 𝐺 is nontrivial, and for any nonempty clopen subset
𝑈 ⊆ 𝜕p 𝐺 and any point 𝑥 ∈ 𝜕p 𝐺, Proposition 6.11 implies that the return set𝑈𝑥 ⊆ 𝐺 is symmetrically
completely syndetic. Conversely, if 𝐴 ⊆ 𝐺 is nonempty symmetrically completely syndetic, then by
Proposition 6.11, 𝐴 = 𝑈𝑥 for a nonempty clopen subset 𝑈 ⊆ 𝜕p 𝐺 and 𝑥 ∈ 𝜕p 𝐺. If A is additional a
proper subset of G, then necessarily 𝑈 ≠ 𝜕p 𝐺. In particular, 𝜕p 𝐺 is nontrivial, so G is not strongly
amenable. �

7.2. Amenability

Theorem 7.5. Let G be a discrete group. Then G is nonamenable if and only if there is a subset 𝐴 ⊆ 𝐺
such that both A and 𝐴𝑐 are strongly completely syndetic.

Proof. Suppose that G is nonamenable. Then by [9], the universal minimal strongly proximal G-flow
𝜕sp 𝐺 is nontrivial, so there is 𝑥 ∈ 𝜕sp 𝐺 and 𝑔 ∈ 𝐺 such that 𝑔𝑥 ≠ 𝑥. Hence, there is an open subset
𝑈 ⊆ 𝜕sp 𝐺 with 𝑥 ∈ 𝑈 such that 𝑔𝑈 ∩𝑈 = ∅. Let 𝐴 = 𝑈𝑥 = {ℎ ∈ 𝐺 : ℎ𝑥 ∈ 𝑈}. Then 𝑔𝐴 ∩ 𝐴 = ∅, and
by Lemma 6.6, A is strongly completely syndetic.

Conversely, suppose that there is a subset 𝐴 ⊆ 𝐺 such that both A and 𝐴𝑐 are strongly completely
syndetic. Since 𝜕sp 𝐺 is compact and minimal, we can identify C(𝜕sp 𝐺) with a subalgebra of C(𝛽𝐺). By
Proposition 5.11 there is an idempotent equivariant unital order homomorphism 𝜙 : C(𝛽𝐺) → C(𝜕sp 𝐺).
There is a probability measure 𝜇 ∈ P(𝛽𝐺) such that 𝜙 = 𝜙𝜇, where 𝜙𝜇 : C(𝛽𝐺) → C(𝛽𝐺) is defined
by 𝜙𝜇 ( 𝑓 ) (𝑔) = 〈 𝑓 , 𝑔𝜇〉 for 𝑓 ∈ C(𝛽𝐺) and 𝑔 ∈ 𝐺.

Arguing as in the proof of Proposition 6.7, there are 𝑔, ℎ ∈ 𝐺 such that (𝑔𝜇) (𝐴) > 3/4 and
(ℎ𝜇) (𝐴

𝑐
) > 3/4. Then (ℎ𝜇) (𝐴) ≤ 1/4. Hence, letting 𝑓 = 𝜙𝜇 (𝜒𝐴), and letting 𝑥, 𝑦 ∈ 𝜕sp 𝐺 be the

points satisfying 𝛿𝑥 = 𝛿𝑔 |C(𝜕sp 𝐺) and 𝛿𝑦 = 𝛿ℎ |C(𝜕sp 𝐺) , it follows that 𝑓 (𝑥) > 3/4 and 𝑓 (𝑦) < 1/4. In
particular, 𝜕sp 𝐺 is nontrivial. �

Remark 7.6. We believe that the above proof of Theorem 7.5 is particularly interesting because it
highlights the utility of the fact from Theorem 5.12 that 𝜕sp 𝐺 is maximally affinely highly proximal.
However, the reverse implication of Theorem 7.5 can also be proved using Følner nets as we now
show.

Recall that a group G is amenable if and only if there is a Følner net for G. This is a net (𝐾𝑖) of
subsets of G such that for every 𝑔 ∈ 𝐺, lim |𝑔𝐾𝑖Δ𝐾𝑖 |/|𝐾𝑖 | = 0.

Let 𝐴 ⊆ 𝐺 be a subset such that both A and 𝐴𝑐 are strongly completely syndetic subsets. Suppose for
the sake of contradiction that G is amenable, and let (𝐾𝑖) be a Følner net for G. For each i, let 𝑚𝑖 denote
the mean on ℓ∞(𝐺) defined by 𝑚𝑖 ( 𝑓 ) = 1

|𝐾𝑖 |

∑
𝑔∈𝐾𝑖

𝑓 (𝑔) for 𝑓 ∈ ℓ∞(𝐺). Choose 𝜖 > 0. By definition,
there is a finite subset 𝐹 ⊆ 𝐺 such that for each i there is 𝑔𝑖 ∈ 𝐹 such that |𝑔𝑖𝐾𝑖 ∩ 𝐴| ≥ (1 − 𝜖) |𝐾𝑖 |.
By passing to a subnet we can assume there is 𝑔 ∈ 𝐹 such that 𝑔 = 𝑔𝑖 for each i.
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Let m be a weak* limit point of the net (𝑚𝑖). Then a standard argument shows that m is a left
invariant mean on on ℓ∞(𝐺). Letting (𝑚 𝑗 ) be a subnet such that lim𝑚 𝑗 = 𝑚, and letting 𝜒𝐴 ∈ ℓ∞(𝐺)

denote the indicator function corresponding to A,

𝑚(𝑔−1𝜒𝐴) = lim
𝑗

|𝑔𝐾 𝑗 ∩ 𝐴|

|𝐾 𝑗 |
≥ 1 − 𝜖 .

Since m is left invariant, this implies that 𝑚(𝜒𝐴) ≥ 1 − 𝜖 . Since 𝜖 was arbitrary, it follows that
𝑚(𝜒𝐴) = 1. However, since 𝐴𝑐 is also strongly completely syndetic, the same argument applied to 𝐴𝑐

implies that 𝑚(𝜒𝐴𝑐 ) = 1. Then 1 = 𝑚(𝜒𝐴) + 𝑚(𝜒𝐴𝑐 ) > 1, giving a contradiction.
Note that this argument did not require the use of multisets.

Remark 7.7. Note that, if A is strongly completely left syndetic and there is 𝑔 ∈ 𝐺 such that 𝑔𝐴∩𝐴 = ∅,
then 𝑔𝐴 ⊆ 𝐴𝑐 . Since translations and supersets of strongly completely syndetic subsets are strongly
completely syndetic, it follows that 𝐴𝑐 is also strongly completely left syndetic.

Example 7.8. Let F2 = 〈𝑎, 𝑏〉 denote the free group on two generators. Let 𝐴 ⊆ F2 denote the set of all
elements in F2 with reduced form beginning with a. Similarly, let 𝐵 ⊆ F2 denote the set of all elements
in F2 with reduced form beginning with b. Arguing as in Example 3.21, both A and B are strongly
completely syndetic. Since 𝐴 ∩ 𝐵 = ∅, Theorem 7.5 implies that F2 is nonamenable.

The next result characterizes amenability in terms of the existence of a single nonempty symmetrically
strongly completely syndetic subset. The proof is similar to the proof of Theorem 7.4.

Theorem 7.9. Let G be a discrete group. Then G is not amenable if and only if it contains a nonempty
proper symmetrically strongly completely syndetic subset.

8. Dense orbit sets

In this section, we will characterize dense orbit sets in discrete groups, answering a question of Glasner,
Tsankov, Weiss and Zucker from [11, Question 9.6].

Definition 8.1. Let G be a discrete group. A subset 𝐴 ⊆ 𝐺 is a dense orbit set for G if for every minimal
G-flow X and every point 𝑥 ∈ 𝑋 , the set 𝐴𝑥 is dense in X.

The key observation is that the family of dense orbit sets is dual to the family of symmetrically
syndetic subsets from Definition 6.9. While our characterization of dense orbit sets is not necessarily
easy to check, we will be able to shed some light on their structure using techniques similar to those from
earlier sections of this paper. We wonder, however, whether a more elementary characterization exists.

Theorem 8.2. Let G be a discrete group and 𝐴 ⊆ 𝐺 a subset. Then A is a dense orbit set if and only if
𝐴𝑐 does not contain a symmetrically syndetic subset. Hence, the dual family to the family of dense orbit
sets is the family of symmetrically syndetic subsets.

Proof. By the universality of 𝜕m 𝐺, if follows that A is a dense orbit set if and only if 𝐴𝑥 ⊆ 𝜕m 𝐺 is
dense for all 𝑥 ∈ 𝜕m 𝐺. Since 𝜕m 𝐺 is extremally disconnected (e.g., by Section 5), and in particular
totally disconnected, the topology of 𝜕m 𝐺 has a basis consisting of clopen subsets. Hence, A is a dense
orbit set if and only if for every 𝑥 ∈ 𝜕m 𝐺 and every nonempty clopen subset 𝑈 ⊆ 𝜕m 𝐺, there is 𝑔 ∈ 𝐴
such that 𝑔𝑥 ∈ 𝑈. In other words, A is a dense orbit set if and only if for every 𝑥 ∈ 𝜕m 𝐺 and every
nonempty clopen subset 𝑈 ⊆ 𝜕m 𝐺, we have 𝐴 ∩𝑈𝑥 ≠ ∅. By Proposition 6.11, sets of the form 𝑈𝑥 as
above are precisely the symmetrically syndetic subsets in G. �

Remark 8.3. We could similarly say that a subset 𝐴 ⊆ 𝐺 is a (strongly) proximally dense orbit set if
for every minimal (strongly) proximal G-flow X and every point 𝑥 ∈ 𝑋 , the set 𝐴𝑥 is dense in X. A
similar proof shows that A is a (strongly) proximally dense orbit set if and only if 𝐴𝑐 does not contain
a symmetrically (strongly) completely syndetic subset and, hence, that the dual family to the family
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of (strongly) proximally dense orbit sets is the family of symmetrically (strongly) completely syndetic
subsets.

We will now establish several characterizations of symmetrically syndetic subsets.

Lemma 8.4. Let G be a discrete group and let 𝐴 ⊆ 𝐺 be symmetrically syndetic and let L be a minimal
left ideal of 𝛽𝐺. Then there is an idempotent 𝑢 ∈ 𝐿 such that 𝐴 = (𝐴 ∩ 𝐿)𝑢 = 𝐴𝑢 .

Proof. Since A is symmetrically syndetic, Proposition 6.11 implies that there is a clopen subset 𝑈 ⊆

𝜕m 𝐺 and some 𝑥 ∈ 𝜕m 𝐺 such that 𝐴 = 𝑈𝑥 . We can identify 𝜕m 𝐺 with L. By [20, Theorem 1.42], L can
be written as a disjoint union 𝐿 =

⊔
𝑢 𝑢𝐿, where u runs through all idempotents of L. So in particular,

there is an idempotent 𝑢 ∈ 𝐿 such that 𝑢𝑥 = 𝑥. By Lemma 2.1, 𝑈𝑥 = {𝑦 ∈ 𝛽𝐺 | 𝑦𝑥 ∈ 𝑈}. Therefore,

𝐴𝑢 = {𝑔 ∈ 𝐺 | 𝑔𝑢 ∈ 𝐴} = {𝑔 ∈ 𝐺 | 𝑔𝑢 ∈ 𝑈𝑥}

= {𝑔 ∈ 𝐺 | 𝑔𝑢𝑥 ∈ 𝑈} = 𝑈𝑢𝑥 = 𝑈𝑥 = 𝐴

Since L is a left ideal, it is clear that (𝐴 ∩ 𝐿)𝑢 = 𝐴𝑢 . �

The next result provides a simpler characterization of symmetrically syndetic subsets and reveals
a connection to the notion of a central subset. Central sets in N were introduced by Furstenberg [10].
Later, central sets for general semigroups were introduced by Hindman and Maleki [19]. Both algebraic
and topological dynamical characterizations of central sets are now known. We will use the fact that,
for a discrete group G, a subset 𝐴 ⊆ 𝐺 is central if and only if the closure 𝐴 ⊆ 𝛽𝐺 contains a minimal
idempotent of 𝛽𝐺 (see, e.g., [20]).

Proposition 8.5. Let G be a discrete group. A subset 𝐴 ⊆ 𝐺 is symmetrically syndetic if and only if for
every pair of finite subsets 𝐹1 ⊆ 𝐴 and 𝐹2 ⊆ 𝐴𝑐 , the set (∩ 𝑓1∈𝐹1 𝑓

−1
1 𝐴) ∩ (∩ 𝑓2∈𝐹2 𝑓

−1
2 𝐴𝑐) is syndetic. In

this case, the latter subset is central.

Proof. Suppose that A is symmetrically syndetic. Identify 𝜕m 𝐺 with a fixed minimal left ideal L of 𝛽𝐺.
Then by Proposition 8.4, there is an idempotent 𝑢 ∈ 𝐿 such that 𝐴 = 𝐴𝑢 . Therefore, 𝑢 ∈ 𝑎−1𝐴 for every
𝑎 ∈ 𝐴 and 𝑢 ∉ 𝑏−1𝐴 for every 𝑏 ∈ 𝐴𝑐 . The latter statement is equivalent to 𝑢 ∈ 𝑏−1𝐴

𝑐
for every 𝑏 ∈ 𝐴𝑐 .

Therefore, for every pair of finite subsets 𝐹1 ⊆ 𝐴 and 𝐹2 ⊆ 𝐴𝑐 ,

𝑢 ∈ (
⋂
𝑓1∈𝐹1

𝑓 −1
1 𝐴) ∩ (

⋂
𝑓2∈𝐹2

𝑓 −1
2 𝐴

𝑐
) = (

⋂
𝑓1∈𝐹1

𝑓 −1
1 𝐴) ∩ (

⋂
𝑓2∈𝐹2

𝑓 −1
2 𝐴𝑐).

This implies that the intersection (∩ 𝑓1∈𝐹1 𝑓
−1
1 𝐴) ∩ (∩ 𝑓2∈𝐹2 𝑓

−1
2 𝐴𝑐) is nonempty, so by the definition of a

symmetrically syndetic subset, it is syndetic. We further observe that is central.
Conversely, suppose that A is such that for every pair of finite subsets 𝐹1 ⊆ 𝐴 and 𝐹2 ⊆ 𝐴𝑐 ,

the set (∩ 𝑓1∈𝐹1 𝑓
−1
1 𝐴) ∩ (∩ 𝑓2∈𝐹2 𝑓

−1
2 𝐴𝑐) is syndetic. Fix a minimal left ideal L of 𝛽𝐺. Since the sets

(∩ 𝑓1∈𝐹1 𝑓
−1
1 𝐴) ∩ (∩ 𝑓2∈𝐹2 𝑓

−1
2 𝐴𝑐) are syndetic for any choice of finite subsets 𝐹1 ⊆ 𝐴, 𝐹2 ⊆ 𝐴𝑐 , the

family of sets {𝑎−1𝐴 ∩ 𝐿 : 𝑎 ∈ 𝐴} ∪ {𝑏−1𝐴
𝑐
∩ 𝐿 : 𝑏 ∈ 𝐴𝑐} has the finite intersection property. By the

compactness of L, there is 𝑥 ∈ (∩𝑎∈𝐴𝑎
−1𝐴) ∩ (∩𝑏∈𝐴𝑐𝑏−1𝐴

𝑐
) ∩ 𝐿. Letting𝑈 = 𝐴 ∩ 𝐿, U is a nonempty

clopen subset and 𝑎𝑥 ∈ 𝑈 for all 𝑎 ∈ 𝐴 and 𝑏𝑥 ∉ 𝑈 for all 𝑏 ∈ 𝐴𝑐 . In other words, 𝐴 = 𝑈𝑥 . Hence, by
Proposition 6.11, A is symmetrically syndetic. �

We will now give another characterization of symmetrically syndetic subsets that uses the finer
structure of the semigroup 𝛽𝐺. It extends ideas from the proof of Proposition 8.5. Recall that an
idempotent in 𝛽𝐺 is minimal if it belongs to a minimal left ideal of 𝛽𝐺. We begin by establishing some
facts about minimal idempotents in 𝛽𝐺.

Definition 8.6. Let G be a discrete group. We will say that a family 𝐸 ⊆ 𝛽𝐺 of minimal idempotents is
compatible if
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1. for every minimal left ideal L of 𝛽𝐺 there is a unique 𝑢 ∈ 𝐸 ∩ 𝐿,
2. 𝑢𝑣 = 𝑣 for all 𝑢, 𝑣 ∈ 𝐸 .

Remark 8.7. For minimal left ideals 𝐿1, 𝐿2 of 𝛽𝐺 with corresponding idempotents 𝑢1, 𝑢2 ∈ 𝐸 , the
maps 𝐿1 → 𝐿2 : 𝑥 → 𝑥𝑢2 and 𝐿2 → 𝐿1 : 𝑦 → 𝑦𝑢1 are isomorphisms of G-flows (see, e.g., [13,
Proposition I.2.5]).

Lemma 8.8. Let G be a discrete group, let L be a minimal left ideal of 𝛽𝐺 and let 𝑢 ∈ 𝐿 be an
idempotent. Then there is a unique compatible family of minimal idempotents for 𝛽𝐺 containing u. In
particular, there is a compatible family of minimal idempotents in 𝛽𝐺.

Proof. Let {𝐿𝑖}𝑖 be the family of minimal left ideals of 𝛽𝐺. The structure theory of compact right
topological semigroups (see, e.g., [20, Theorem 1.64]) implies that for each i there is a unique idempotent
𝑣𝑖 ∈ 𝐿𝑖 such that 𝑢𝑣𝑖 = 𝑣𝑖 and 𝑣𝑖𝑢 = 𝑢. Then for each j, it follows that 𝑣𝑖𝑣 𝑗 = 𝑣𝑖 (𝑢𝑣 𝑗 ) = (𝑣𝑖𝑢)𝑣 𝑗 = 𝑢𝑣 𝑗 =
𝑣 𝑗 . Therefore, the family 𝐸 = {𝑣𝑖}𝑖 is compatible. If 𝐿 = 𝐿𝑖 , then 𝑢2 = 𝑢 so that the above uniqueness
of the idempotent 𝑣𝑖 implies 𝑢 = 𝑣𝑖 . �

The next result provides further motivation for the name ‘symmetrically syndetic’ by showing that
a subset is symmetrically syndetic if and only if it is invariant under taking return sets relative to a
compatible family of minimal idempotents.

Proposition 8.9. Let G be a discrete group. A subset 𝐴 ⊆ 𝐺 is symmetrically syndetic if and only if
there is a compatible family of minimal idempotents 𝐸 ⊆ 𝛽𝐺 such that 𝐴 = 𝐴𝑢 for all 𝑢 ∈ 𝐸 .

Proof. Suppose that A is symmetrically syndetic, and fix a minimal left ideal 𝐿 ⊆ 𝛽𝐺. By Proposition
6.11, there is an idempotent 𝑢 ∈ 𝐿 such that 𝐴 = 𝐴𝑢 . By Lemma 8.8 there is a compatible family of
minimal idempotents 𝐸 ⊆ 𝛽𝐺 such that 𝑢 ∈ 𝐸 . By Lemma 2.1, we have 𝐴 = 𝐴𝑢 = {𝑥 ∈ 𝛽𝐺 | 𝑥𝑢 ∈ 𝐴}.
Hence, for all 𝑣 ∈ 𝐸 , we find that

𝐴𝑣 = {𝑔 ∈ 𝐺 | 𝑔𝑣𝑢 ∈ 𝐴} = {𝑔 ∈ 𝐺 | 𝑔𝑢 ∈ 𝐴} = 𝐴𝑢 = 𝐴.

Conversely, suppose there is a compatible family of minimal idempotents 𝐸 ⊆ 𝛽𝐺 such that 𝐴𝑢 = 𝐴
for all 𝑢 ∈ 𝐸 . Let L be a minimal left ideal of 𝛽𝐺, and let 𝑢 ∈ 𝐸 be the unique idempotent such that
𝑢 ∈ 𝐿. Let𝑈 = 𝐴∩ 𝐿. Then U is clopen and 𝑔 ∈ 𝑈𝑢 if and only if 𝑔𝑢 ∈ 𝑈 if and only if 𝑔𝑢 ∈ 𝐴. Hence,
𝐴 = 𝐴𝑢 = 𝑈𝑢 , so A is symmetrically syndetic. �
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