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THE BEHAVIOUR OF HOMOLOGY IN 
THE LOCALIZATION OF FINITE GROUPS 

CARLES CASACUBERTA 

ABSTRACT. We show that, for a finite group G and a prime p, the following facts are 
equivalent: (i) the /^-localization homomorphism /: G —• Gp induces ̂ -localization on 
integral homology; (ii) the higher homotopy groups of the Bousfield-Kan 7AP -completion 
of a K(G, 1) vanish; (iii) the group G is p-nilpotent. 

0. Introduction. We deal with P-localization of groups in the sense of [2,13,19,29]. 
That is, given a set of primes P, a group G is called P-local if every element x G G has 
a unique nth root in G for every P'-number n (as customary, we denote by P/ the set of 
primes not in P and say that n G fv, or that n is a P'-number, if all prime divisors of 
n belong to P/). A group homomorphism l: G —• Gp is said to be a P-localization if it 
is universal (initial) among all group homomorphisms from G to P-local groups. Every 
group G admits a P-localization, which is unique up to isomorphism and functorial; see 
for example [19]. 

Since many other notions of localization and completion have been defined in group 
theory and homotopy theory, we have supplied an appendix recalling the definition of all 
functors referred to in this paper and detailing how they are related among themselves. 

For a nilpotent group G, the induced homomorphisms 

(0.1) k:Hk(G;Zp)-+Hk(GP;Zp) 

are isomorphisms for all k, where ZP denotes the ring of integers localized at P (viewed 
as a trivial coefficient module). This is false in general for nonnilpotent groups. For ex­
ample, if £3 denotes the symmetric group on three elements, then (£3)3 is trivial, while 
/ /3 (£ 3 ;Z 3 )^0 . 

We have been interested in finding examples of nonnilpotent groups for which (0.1 ) is 
still an isomorphism for all k and all sets of primes P. Locally nilpotent and locally free 
groups have this property [11,23]. Other (finitely generated) examples are the infinite 
dihedral group and the fundamental group of the Klein bottle [7]. 

In this note, we point out that no such examples are to be found in the class of finite 
groups, for if G is finite and (0.1 ) is an isomorphism for all ky then G must be P-nilpotent; 
cf. Theorem 1.5 below. Recall that a finite group G is called P-nilpotent if the subgroup 
of G generated by all Pf -torsion elements does not contain P-torsion. Thus, a finite group 
G is nilpotent if and only if it is /?-nilpotent for all primes p. 
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Our characterization of P-nilpotence is very much in the spirit of [15,16,18,24,25,26], 
where cohomological criteria for the/7-nilpotence of a finite group G (p stands for a single 
prime) were given in terms of the inclusion of a/7-Sylow subgroup /: S °-> G. Recent 
progress on that topic [ 12,17] has provided generalizations of the results cited to compact 
Lie groups, using the solution of the Segal conjecture [6]. 

In Section 2, we give a homotopy-theoretic interpretation of our previous result by 
showing that, for any finite group G and each single prime/?, the higher homotopy groups 
of the Bousfield-Kan Z^-completion [5] of a K(G, 1) 

^ ( Z ^ o o ^ C l ) , * > 2 , 

can be precisely interpreted as the obstruction to G being p-nilpotent or, equivalently, to 
/: G —• Gp inducing p-localization on the integral homology groups. A simple, illustra­
tive example is the symmetric group X3, for which 

(Z 2 )oo^(23, l )^^(Z/2 , l ) , 

while (23)00^X3,1) is a simply-connected space with complicated homotopy [5, VII, 
4.4]. 

As explained in Section 3, our theorem can be extended to an arbitrary set of primes 
P, provided we replace Zp-completion by a certain idempotent functor, developed in 
[8,9,10], which induces P-localization of fundamental groups in the above sense. 

ACKNOWLEDGEMENTS. This paper has been extracted from a chapter of my Ph.D. 
thesis. I am indebted to Manuel Castellet and Peter Hilton for their teaching, and to 
Guido Mislin for an appropriate hint. I also wish to thank the hospitality of the ETH 
Zurich. 

1. Homological localization and P-nilpotence. In what follows, we restrict our­
selves to the class of finite groups, in which the effect of P-localization on homology is 
particularly easy to analyze. First of all, the following facts are readily checked. 

PROPOSITION 1.1 [20]. If G is a finite group and P a set of primes, then the following 
assertions are equivalent: 

(a) G is P-local; 
(b) the order of G is a P-number; 
(c) each //*(G; Z),k> 1, is a Zp-module. m 

PROPOSITION 1.2 [20]. Let G be a finite group and P a set of primes. Then the 
P-localization homomorphism l: G —• Gp is surjective and ker / is the subgroup gen­
erated by all Pt-torsion elements ofG. m 

THEOREM 1.3. Let G be a finite group and P a set of primes. Then P-localization in­
duces an isomorphism l*:H\(G;Zp) = H\(Gp\Zp) and an epimorphism 
k:H2(G;Zp)^H2(GP;Zp). 

PROOF. Consider the extension 

(1.1) ker/ >-• G-^Gp 
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given by Proposition 1.2 and look at the associated five-term exact sequence [14] ten-
sored with Zp: 

#2(G; Z/>) —• HiiGp', Tup) —> 

ZP <g> (ker // [G, ker /]) -> Hi(G; ZP) -> Hx(G/>; ZP) - • 0. 

Our assertion is a consequence of the vanishing of the middle term, which follows from 
Lemma 1.4 below. • 

LEMMA 1.4. Let G be a finite group, P a set of primes, and h G —* G/> the 
P-localization homomorphism. If A is any abelian epimorphic image of ker /, then 
ZP(g>A = 0. 

PROOF. Since ker / is generated by ̂ -torsion elements, A is necessarily a ^-torsion 
group. • 

If the group G is nilpotent, then l:G-^Gp in fact induces isomorphisms 

(1.2) /*: Hk{G\ Zp) ^ Hk{GP\ ZP) for all k. 

It is natural to ask for which—possibly larger—class of finite groups (1.2) still holds. 
This question has a precise answer: 

THEOREM 1.5. Let G be a finite group, P a set of primes, and l: G —* G/> the 
P-localization homomorphism. The following statements are equivalent: 

(a) G is P-nilpotent; 
(b) ker / is Pf-torsion; 
(c) /*: Hk(G,A) = Hk(Gp\A) for all k and every P-local abelian group A with an 

action ofGp (here we consider homology with twisted coefficients); 
(d) /*: Hk(G; ZP) 9É Hk(GP; ZP)for all k; 
(e) /*: Hic(G; Zp) —• Hk{Gp\ Zp) is a monomorphismfor all k; 
(f) /*: Hk(G\ Z) —• Hk{GP\ Z) is a P-localizationfor allk>\. 

PROOF. The equivalence of (a) and (b) is immediate from Proposition 1.2. To prove 
that (b)=>(c), assume given an action UJ : G/> —• Aut(A), where A is abelian and P-local. 
Then the induced action of ker / on A is trivial. Since we are assuming that ker / is Pf-
torsion and A is a Zp-module, we have Hk(ker /; A) = 0 for k > 1, and H0(ker /; A) = A. 
Therefore the Lyndon-Hochschild-Serre spectral sequence [14] associated to the exten­
sion (1.1) collapses and gives isomorphisms /*: Hk(G,A) = Hk(Gp\A) for all &, as stated. 
The implications (c)=Kd) and (d)=>(e) are trivial. We next show that (e)=>(b). Thus as­
sume that /* is a monomorphism for all &, and assume further that ker / contains an el­
ement x ^ 1 whose order is a P-number. The next argument is essentially contained in 
[16]: Let C = (x) be the cyclic group generated by x andy: C <—• G the corresponding 
embedding. By Corollary 2 in [28], the homomorphism 

UHk(C;Z)-+Hk(G',Z) 
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is nonzero for infinitely many values of k. Choose one such value of k > 1. Since 
Hk{C\ Z) is a Zp-module, the image of 7* is contained in the P-torsion part of Hk(G; Z). 
Therefore the composition 

Hk(C; ZP) ± Hk(G; ZP) ±+ Hk(GP; ZP) 

is nonzero. This is absurd, because C is contained in ker / and hence Ij is trivial. 
Finally, the equivalence of (f) and (d) is obvious, for Hk(G\ Z)P = ZP ® //^(G; Z) = 

Hk(G\ Zp) and Hk(GP\ Z) ^ Hk(GP\ ZP) by Proposition 1.1. • 

COROLLARY 1.6. If G is a finite group for which the homomorphisms 

k:Hk(G;Z)-+Hk(Gp;Z) 

are p-localizations for all k > 1 and each prime p, then G is nilpotent. m 

2. Topological interpretation. If we restrict ourselves to the case when the set 
P consists of a single prime /?, then Theorem 1.5 can be expanded and partially re­
proved using the machinery of [5]. Specifically, the failure of /: G —> Gp to induce 
^-localization on integral homology is detected by the appearance of higher homotopy 
in the Zp-completion of a K(G, 1). We recall from [5] (see also the Appendix below) 
that Zp-completion, //*( ; Z/7)-localization and /?-profinite completion all coincide on 
spaces K(G, 1) with G finite. 

If the group G is nilpotent, then the result of applying any of these functors to a K(G, 1 ) 
is a K(GP, 1). We next prove that this still holds if we only assume G p-nilpotent, and that 
this property in fact characterizes /?-nilpotence. 

LEMMA 2.1. Let G be a finite group and l: G —• Gp its localization at a given prime 
p. Then the sequence 

(Zp)oo^(ker/, 1) -4 (Zp)oo^(G, 1) — ( Z ^ ^ G , , 1) 

induced by the extension (1.1) is a homotopy fibration. Moreover, the fibre is simply-
connected and(Zp)OQK(Gp, 1) ~ K(GP, 1). 

PROOF. For each k > 1, the induced action of Gp on //^(ker/; Zp) is nilpotent be­
cause they are both finite/?-groups. Thus our first assertion follows from [5, II, 5.1]; cf. 
also [4, 14.4]. To prove that 7Ti (Z/7)0OAT(ker/, 1) is trivial, use [5,1, 6.1] after observing 
that H\(ker/; Zp) = 0 by Lemma 1.4. The last assertion is deduced from the fact that Gp 

is a finite p-group and hence nilpotent/?-local. • 

THEOREM 2.2. Let G be a finite group and l: G —• Gp its localization at a given 
prime p. The following statements are equivalent: 

(a) G is p-nilpotent; 
(b) U: Hk(G; Zp) * Hk(Gp; Zp)for all k; 
(c) I induces a homotopy equivalence (Zp)00A

r(G, 1) ^ K(GP, 1); 
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(d) irk(Zp)ooK(G91) = 0 for all k > 2. 

PROOF. The equivalence of (a) and (b) has been proved in Section 1 (in fact, we 
only use here the easier implication (a)=>(b)). To check that (b)=>(c), observe that from 
(b) it follows that / induces a homotopy equivalence 

(Zp)00K(G,l)^(Zp)00K(Gp,l), 

and (Zp^KiGp, 1) ~ K(GP, 1) by Lemma 2.1. The implication (c)=>(d) is trivial. To 
prove that (d)=>(a), consider the fibration given by Lemma 2.1. From assumption (d) it 
follows that the fiber is contractible. Now, since a K(G, 1) with G finite is always Z^-good 
[5, VII, 4.3], the homology groups 

Hk(ktrl;Zp) * H^iZp^KQcerl, 1);ZP) 

vanish for k > 1. This implies, by [28], that p does not divide the order of ker/ and 
therefore G is p-nilpotent. • 

Although the space (Zp)ooK(G, 1) is far from being a K(GP, 1) in general, it is impor­
tant to point out the following corollary of Lemma 2.1 : 

COROLLARY 2.3. For every finite group G and every single prime p, the fundamental 
group of(Zp)ooK(G, 1) is isomorphic to Gp. m 

If we consider a set P containing more than one prime, then Corollary 2.3 is false and 
statements (c) and (d) can no longer be included in Theorem 2.2. For example, let G be 
a nontrivial perfect finite group and P be the set of all primes dividing its order. Then G 
is P-local and P-nilpotent, yet {ZP)OQK{G, 1) is a simply-connected space (by [5,1,6.1]) 
which is not contractible because G is not Zp-acyclic. A justification of this somehow 
disappointing feature is given in the next section. 

3. On P-localization of spaces. The techniques developed in [8,9,10] actually al­
low improvement of some of the above results. These papers contain a proof of the exis­
tence of an idempotent functor [1] in the pointed homotopy category of CW-complexes 
extending P-localization of nilpotent spaces and inducing P-localization on the funda­
mental group; cf. Appendix. We denote this functor by ( )/> and call it P-localization. 

The associated P-equivalences can be described as maps f:X —• Y inducing a 
P-equivalence of fundamental groups and isomorphisms/*: //^(X; A) —• H^Y^A) for all 
k, with certain (twisted) coefficients A whose underlying abelian group is P-local [8,9], 
which include trivial ZP coefficients. 

Here is an application of the existence of this functor (showing that the finiteness 
assumption can be removed from Theorem 1.3): 

THEOREM 3.1. For each group G and each set of primes P, the P-localization ho-
momorphism l: G —• Gp induces an isomorphism /*: H\(G; Z/>) = H\(Gp\ Zp) and an 
epimorphism /*: H2(G; Zp) —+> H2{Gp\ Zp). 

PROOF. The P-localization map K(G, 1) —• K{G, \)P is an //*( ; Z/>)-equivalence 
and induces l:G—+Gp on fundamental groups. Our assertion follows, as in [3, Lemma 
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6.1], from the fact that, for every space X, the natural map X —• K(ir\X, 1) induces an 
isomorphism on H\ and an epimorphism on H2 with arbitrary coefficients. • 

If the set P consists of a single prime/?, then the effect of ̂ -localization on a K(G, 1) 
with G finite turns out to be precisely Z^-completion, i.e. 

*(G,l),~(Z,)ooA:(G,l). 

The proof, based on Corollary 2.3, is provided in [8]. Thus, the following theorem may 
be viewed as a generalization of Theorem 2.2 to an arbitrary set of primes P, and this 
makes it clear that the difficulty in the example at the end of Section 2 lies in the non-
coincidence of the functors ( )p and (Zp)oo in general. 

THEOREM 3.2. Let G be a finite group and P a set of primes. Then G is P-nilpotent 
if and only ifTTkK(G, l)p = 0 for all k>2. 

PROOF. If nkK{G, l)P = 0 for k > 2, then K(G, l)P ~ K(GP, 1) and hence the 
homomorphism l: G —• Gp is an //*( ; Z/>)-equivalence. Now the P-nilpotence of G 
is deduced from Theorem 1.5. Conversely, assume that G is P-nilpotent. Then, since 
/: G —• Gp is certainly a P-equi valence of groups and moreover, by Theorem 1.5, it 
is an //*( ; A)-equivalence for every coefficient module A whose underlying abelian 
group is P-local, it follows that the induced map K(G, 1) —> K(GPy 1) is a P-equivalence 
of spaces and hence a P-localization. This proves that the higher homotopy groups of 
K(G, l)p vanish. • 

4. Appendix: A roadmap on localization and completion. A good method to un­
derstand the relationship between the various localization functors existing in the litera­
ture is to compare the respective classes of "local objects" and "equivalences" associated 
to them. Following [1], if £ is an idempotent functor in a category C, we call E-local 
the objects X of C such that X = EX and E-equivalences the maps f:A —• B such 
that Ef: EA = EB. These two classes determine each other by means of a simple rule: 
an object X is £-local if and only if each ^-equivalence f:A —> B induces a bijection 
/*: Mor(Z?,X) = Mor(A,X), and a map/ : A —> B is an ^-equivalence if and only if it 
induces a bijection/*: Mor(#,X) = Mor(A,X) for each £-local object X. 

If we have two idempotent functors E\, £2 in the same category C, and the class of 
E\ -local objects is contained in the class of £2-local objects (or, equivalently, the class 
of £2-equivalences is contained in the class of E\ -equivalences), then there is a natural 
transformation of functors E2^E\. 

On the other hand, if C is a subcategory of C, and if E, Ef are idempotent functors in 
C, C respectively, then we say that E extends El if both the class of £Mocal objects is 
contained in the class of £-local objects, and the class of ^-equivalences is contained in 
the class of £-equivalences. If this is the case, then for every object X of the subcategory 
C', the objects E'X and EX are naturally isomorphic. This approach is the starting point 
of the more detailed discussion on localization functors in categories contained in [9,10]. 
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(GR1 ) P-LOCALIZATION OF NILPOTENT GROUPS. In the category of nilpotent groups, 
the local objects associated to the P-localization functor developed by Bousfield-Kan [5], 
Hilton-Mislin-Roitberg [13], and Warfield [29] are the nilpotent groups in which P'-roots 
exist and are unique, and the equivalences are the P'-bisections [13]. These can alterna­
tively be described as being homomorphisms ip: G —• K such that (p*:Hk(G;ZP) = 
Hk(K;ZP) for sal k. 

(GR 2) P-LOCALIZATION OF GROUPS. The localization functor in the category of all 
groups considered by Ribenboim [19], after earlier work of other authors on radicability 
in groups (see [2] and the references there), has as local objects—called P-local groups— 
the groups in which P'-roots exist and are unique. As far as we know, the class of associ­
ated P-equivalences has not explicitly been characterized in any useful form. However, 
it has been proved [11,20] that this functor, which we denote by ( )/>, indeed extends 
P-localization of nilpotent groups to the category of all groups. 

(GR 3) //P-LOCALIZATTON OF GROUPS. Let R be a subring of the rationals or a finite 
cyclic ring. Bousfield defined in [3,4] a class of groups called HR-local as follows (in 
fact, this definition makes sense for R an arbitrary abelian group). A group homomor-
phism ip:K—+L inducing an isomorphism (/?* : H\ {K\ R) = H\ (L; R) and an epimorphism 
<p*: H2{K\ R) —» H2{L\ R) is called an HR-map, and a group G is said to be HR-local if 
each HR-map (p:K-^L induces a bijection cp*: Hom(L, G) = Hom(i£, G). There is an 
idempotent functor ER in the category of groups, called HR-localization, whose local 
objects are the //P-local groups. Warning: the class of equivalences associated to ER is 
strictly bigger than the class of//P-maps in general. 

In the case R = ZP, this functor—which we denote by EP for simplicity—extends 
P-localization of nilpotent groups [4]. Since multiplication by a P'-number Z —• Z is 
an //Zp-map, it follows that Z/Z/>-local groups are P-local. Hence, there is a natural 
transformation of functors ( )P —» EP in the category of groups. The homomorphism 
GP —> EPG is an isomorphism in some cases; for example, whenever GP is nilpotent. 

Of course, there are many other functors extending P-localization of nilpotent groups 
to the category of all groups. The family of all them is partially ordered by inclusion of 
the respective classes of local objects. Moreover, it is easy to see [10] that the functor 
( )/> is initial in this family. That is, for any other functor E extending P-localization of 
nilpotent groups to all groups, there is a natural transformation of functors ( )P—>E. 

(GR 4) P-COMPLETION OF GROUPS. Let R be a ring with 1. A group N is called 
R-nilpotent [5] if it has a finite central series in which the factors admit an P-module 
structure. For example, Z/>-nilpotent groups are precisely P-local nilpotent groups. The 
R-completion of a group G, denoted by G#, is the inverse limit of a cofinal diagram in the 
system of all targets of homomorphisms from G to P-nilpotent groups [4,5]. In general, 
G^ need not be P-nilpotent itself, but it is always //P-local. Hence, there is a natural 
transformation of functors ER —> ( )^. If the group G is finitely generated, then the 
homomorphism ERG-^G^ is surjective [4]. 
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If R = Z / p and the group G is finitely generated, then G% is isomorphic to the 
/7-profinite completion [22] of G. If R = ZP, then [5] 

G£^ l im(G/ r ,G)p , 

where TkG denotes the lower central series of the group G. In particular, if G is nilpotent, 
then the Zp-completion of G is isomorphic to GP. However, since the /^-completion func­
tor is not idempotent on arbitrary groups, our previous considerations used to compare 
idempotent functors do not apply to it. 

(Ho 1) P-LOCALIZATION OF NILPOTENT SPACES. In the pointed homotopy category 
of nilpotent CW-complexes, the local objects associated to the P-localization functor de­
scribed by several authors (Adams [1], Bousfield-Kan [5], Hilton-Mislin-Roitberg [13], 
Sullivan [27), are the nilpotent spaces whose homotopy (and integral homology) groups 
are P-local. Equivalently, P-local nilpotent spaces are those in which the nth power 
map OX —• OX, uo »—• uon, is a homotopy equivalence for every n G P7, cf. [8,21]. 
P-equivalences are maps/:X —> Y inducing isomorphisms/*: Hk(X\ZP) = Hk{Y\ZP) 
for all k. For every nilpotent group G, the space K(G, l)P is a K(GP, 1). 

(HO 2) P-LOCALIZATION OF SPACES. As proved in [8,9,10], there exists an idempo­
tent functor in the pointed homotopy category of CW-complexes whose local objects are 
those spaces in which the nth power map QX —•*• QX, UJ i—* ojn, is a homotopy equiv­
alence for every n € P*. We denote this functor by ( )P and call it P-localization. It 
has been shown [8] that it extends P-localization of nilpotent spaces. Furthermore, it is 
related to P-localization in the category of groups by 

GP ^ 7rxK(G, 1)P. 

The associated class of P-equivalences is properly contained in the class of all 
//*( ; Zp)-equivalences. 

(Ho 3) /̂ -LOCALIZATION OF SPACES. For each additive homology theory /i* in the 
pointed homotopy category of CW-complexes, Bousfield proved in [3] the existence 
of an h*-localization functor, i.e. an idempotent functor whose equivalences are maps 
f:X —> Y inducing isomorphisms/*: hk(X) = hk(Y) for all k. For any abelian group 
R, //P-localization ER in the category of groups is related to the //*( ; P)-localization 
functor (which we denote by ER as well) by 

ERG ^ 7TiERK(G, 1). 

The //*( ; Zp)-localization functor (written EP to simplify the notation) extends 
P-localization of nilpotent spaces to all spaces, and it is not difficult to see that EP 

is indeed final in the family of all such extensions [10]. In particular, if ( )P is the 
P-localization functor, then there is a natural transformation of functors ( )P —y EP. 
The map XP —• EPX is a homotopy equivalence in some cases, e.g. when the space XP 

is nilpotent. 
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(Ho 4) ^-COMPLETION OF SPACES. Given a ring R with 1, a nilpotent space X is called 

R-nilpotent [5] if all its homotopy groups 7i>X, k > 1, are /^-nilpotent. For each space 

X, Bousfield and Kan constructed a functorial R-completion <f>:X—> RQQX by taking the 

homotopy inverse limit of a cofinal diagram in the system of all targets of maps from X 

to /^-nilpotent spaces. It has the property that, if/: X —• Y is an #*( ; /^-equivalence, 

then the induced map/*: R^X —> R^Y is a homotopy equivalence. A space X is called 

R-good if <j> : X —> /?ooX is an //*( ; /^-equivalence. For every connected space X, the 

space ROQX is //*( ; /?)-local [5, II, 2.8], and hence there is a natural map ERX —> /?ooX, 

which is a homotopy equivalence if and only if X is /?-good. 

Since nilpotent spaces are /?-good for R = ZP [5], the functor (Zp)oo coincides with 

/^-localization on nilpotent spaces. However, (Zp)^ is not idempotent on arbitrary spaces, 

and therefore it cannot be compared to the previous functors using the methods of this 

section. 

If X is a space such that Hk(X; Zj p) is finite for all k, then ( Z / p)ooX has the homotopy 

type of the p-profinite completion X^ in the sense of Sullivan [27]. If G is a finite group 

and P a set of primes, then [5, VII, § 4] 

EPK(G, 1) ~ (ZP)œK(G, 1) ~ UiZ/p^KiG, 1) ~ ft K(G, 1)£. 
peP PEP 

For every group G there is an epimorphism [4, p. 66] 

7riRooK(G, 1) —» GR, 

which is an isomorphism in many cases, e.g. for G free, G nilpotent or G finite. 
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